Facile synthesis of silver/iron-TiO2 nanoparticles for sterilization of Nodal explants of Dracaena sanderiana Sander ex Mast. cvs ‘Gold’ and ‘Victory’ and growth regulator effects on in vitro growth
- Integrated Watershed and Water Resources Management Project (IWWRMP), Ministry of Irrigation, Colombo, Sri Lanka
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), New Kandy Road, Malabe, Sri Lanka
- Faculty of Humanities and Sciences, Sri Lanka Institute of Information Technology (SLIIT), New Kandy Road, Malabe, Sri Lanka
- Department of Chemistry, Faculty of Applied Sciences, University of Sri Jayewardenepura, Colombo, Sri Lanka
Received: 2024-08-11
Revised: 2024-11-27
Accepted: 2025-01-27
Published 2025-02-08
Copyright (c) 2025 Kasun L. Seneviratne, Sriyani E. Peiris, Colin N. Peiris, R.P.A. Shashikala, Sehan Jayasinghe, Nilwala Kottegoda (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 59
Abstract
This study investigates the application of silver/iron-titanate (Ag/Fe-TiO2) nanoparticles (NPs) as a sterilizing agent for in vitro cultures of Dracaena sanderiana cultivars ‘Gold’ and ‘Victory’. The motivation behind this research is to find an effective sterilization method that does not harm plant growth. The Ag/Fe-TiO2 NPs, activated by visible light, exhibit catalytic properties that eliminate harmful microbes such as Escherichia coli, Staphylococcus aureus, and Fusarium spp. The main findings indicate that the combination of Benzyl Amino Purine (BAP) at 1.5 mg L-1 and Indole Acetic Acid (IAA) at 0.01 mg L-1 significantly enhances shoot number and length in both cultivars. The use of 200 mg L-1 Ag/Fe-TiO2 NPs achieved 90% contamination-free cultures in the first cycle, with a slight decrease to 80% in the second cycle and 70% in the third cycle. Importantly, the treatment not only sterilizes but also promotes plant growth, suggesting that Ag/Fe-TiO2 NPs could be a sustainable solution for in vitro plant mass production.
Research Highlights
- Visible-light-driven Ag/Fe-TiO2 NPs show significant antibacterial and antifungal activity.
- Antimicrobial action of Ag/Fe-TiO2 NPs is utilized for in vitro micro-propagation.
- The proposed Ag/Fe-TiO2 NPs treatment eliminates the bacteria and fungus sp. adhere to the plant node surface.
- The growth regulator combination (BAP + IAA) enhanced the shoot multiplication and shoot growth with both species.
- Enhance the micropropergation method.
Keywords
- Dracaena sanderiana,
- In vitro multiplication,
- Benzyl Amino Purine,
- Indole Acetic Acid,
- Photo-sterilization,
- Ag/Fe-TiO2 nanoparticles
References
- Z. Mehrabadi, H. Faghihian, J. Photochem. Photobiol. A Chem. 356 (2018) 102-11. doi: 10.1016/j.jphotochem.2018.01.035.
- K.L. Seneviratne, I. Munaweera, S.E. Peiris, P. Kodithuwakku, C.N. Peiris, N. Kottegoda, Adv. Mater. Technol. 2022, 2201292. doi: 10.1002/admt.202201292.
- T.A. Thorpe. History of plant tissue culture. Mol Biotechnol. 2007;37(2):169-80. https://doi.org/10.1007/s12033-007-0031-3.
- I. Sivanesan, S.W. Park, Ind. Crops Prod. 2015, 76, 323-328. doi: 10.1016/j.indcrop.2015.05.014.
- N. Gupta, V. Jain, M.R. Joseph, S. Devi, Asian J. Pharm. Res. Dev. 2020, 8(2), 86-93. doi: 10.22270/ajprd.v8i1.653.
- K. Keren, R.S. Berman, E. Buchstab, U. Sivan, E. Braun, Science 2003, 302(5649), 1380-1382. doi: 10.1126/science.1091022.
- J. Aslam, A. Mujib, M.P. Sharma, Saudi J. Biol. Sci. 2013, 20(1), 63-68. doi: 10.1016/j.sjbs.2012.11.005. [8] N. Kumari, A. Gupta, B.C. Pandey, R. Kushwaha, M. Yaseen, Plants Immun. Conserv. Strateg. (2023) 371-83. doi: 10.1007/978-3-030-12345-6_20.
- K.L. Seneviratne, G. Malwattage, G.K. Weerakkody, S.E. Peiris, B.C.N. Peiris. In: SLIIT International Conference on Advances in Science and Humanities. Malabe: SLIIT; 2021. p. 100-107.
- G. Malwattage, R.D. Ratnayake, K.L. Seneviratne, S.E. Peiris, B.C.N. Peiris. In: National Symposium on Floriculture Research. Colombo, Sri Lanka: Sri Lanka Council for Agricultural Research Policy; 2021. p. 8-13.
- C. Leifert, C.E. Morris, W.M. Waites, Crit. Rev. Plant Sci. 1994, 13, 139-183. doi: 10.1080/07352689409701912.
- S. Sirimat, A. Sakulsathaporn, J. Adv. Agric. Technol. 2019, 6(4).
- A. Tigrel, M. Arslan, B. Arıcı, B. Yücesan. In: Commercial Scale Tissue Culture for Horticulture and Plantation Crops. Springer; 2022. p. 23-48.
- R.A. Rana, M.N. Siddiqui, M. Skalicky, M. Brestic, A. Hossain, E. Kayesh, M. Popov, V. Hejnak, D.R. Gupta, N.U. Mahmud. Horticulturae. 2021;7:332. https://doi.org/10.3390/horticulturae7100332
- M. Abedi, G. Mahmoudi, P. Hayati, B. Machura, F.I. Zubkov, K. Mohammadi, et al., New J. Chem. 43 (2019) 17457-65. doi: 10.1039/C9NJ04044A.
- S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. Part B Eng. 183 (2020) 107712. doi: 10.1016/j.compositesb.2020.107712
- B. Pepió, N. Contreras-Pereda, S. Suárez-García, P. Hayati, S. Benmansour, P. Retailleau, et al., Ultrason. Sonochem. 72 (2021) 105425. doi: 10.1016/j.ultsonch.2020.105425.
- B. Souri, P. Hayati, A.R. Rezvani, R. Mendoza-Meroño, J. Janczak, Inorg. Nano-Met. Chem. 50 (2020) 80-93. doi: 10.1080/24701556.2019.1702582.
- A. Pérez-de-Luque. Interaction of nanomaterials with plants: What do we need for real applications in agriculture? Front Environ Sci. 2017;5. https://doi.org/10.3389/fenvs.2017.00012.
- A. Singh, N.B. Singh, I. Hussain, H. Singh, S.C. Singh. Plant-nanoparticle interaction: An approach to improve agricultural practices and plant productivity. (p. 16).
- B. Ruttkay-Nedecky, O. Krystofova, L. Nejdl, V. Adam. Nanoparticles based on essential metals and their phytotoxicity. J Nanobiotechnol. 2017;15:33. https://doi.org/10.1186/s12951-017-0268-3.
- L. Wang, C. Hu, L. Shao. The antimicrobial activity of nanoparticles: present situation and prospects for the future. Int J Nanomedicine. 2017;12:1227-49. https://doi.org/10.2147/IJN.S121956.
- G. Abdi, H. Salehi, M. Khosh-Khui, Acta Physiol. Plant. 2008, 30, 709-714. doi: 10.1007/s11738-008-0169-z.
- N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Evid. Based Complement. Alternat. Med. 2015, 2015, 1-16. doi: 10.1155/2015/246012.
- B. Zudyte, Z. Luksiene, J. Photochem. Photobiol. B Biol. 2021, 219, 112206. doi: 10.1016/j.jphotobiol.2021.112206.
- M. Balouiri, M. Sadiki, S.K. Ibnsouda, J. Pharm. Anal. 2016, 6, 71-79. doi: 10.1016/j.jpha.2015.11.005.
- H. Qian, X. Peng, X. Han, J. Ren, L. Sun, Z. Fu, J. Environ. Sci. 2013, 25, 1947-1956. doi: 10.1016/S1001-0742(12)60301-5.
- D. Kotsias, P.A. Roussos, Sci. Hortic. 2001, 89, 115-128. doi: 10.1016/S0304-4238(00)00227-2.
- T. Ali, A. Ahmed, U. Alam, I. Uddin, P. Tripathi, M. Muneer, Mater. Chem. Phys. 2018, 212, 325-335. doi: 10.1016/j.matchemphys.2018.03.052.
- E. Kowalska, Z. Wei, B. Karabiyik, A. Herissan, M. Janczarek, M. Endo, A. Markowska-Szczupak, H. Remita, B. Ohtani, Catal. Today 2015, 252, 136-142.
- A. Truppi, F. Petronella, T. Placido, M. Striccoli, A. Agostiano, M. Curri, R. Comparelli, Catalysts 2017, 7, 1-33. doi: 10.3390/catal7040100.
- C. Liao, Y. Li, S.C. Tjong, Nanomaterials 2020, 10, 124-181. doi: 10.3390/nano10010124.
- M.H.H. Mahmoud, M.A. El-Sayed, M.E. El-Khouly, et al., Chem. Eng. J. 2012, 187, 96-103. doi: 10.1016/j.cej.2012.01.045.
- F. Wu, X. Li, Z. Wang, C. Xu, H. He, A. Qi, X. Yin, H. Guo, Hydrometallurgy 2013, 140, 82-88. doi: 10.1016/j.hydromet.2013.09.003.
- S. Kuganathan, M. Fossati, A. Chroneos, Minerals 2019, 9, 1-13. doi: 10.3390/min9100610.
- R. Marques, A. Ferrari-Lima, V. Slusarski-Santana, N. Fernandes-Machado, J. Environ. Manag. 2017, 195, 242-248. doi: 10.1016/j.jenvman.2016.08.034.
- S. Salesi, A. Nezamzadeh-Ejhieh, Environ. Sci. Pollut. Res. 2023, 30(48), 105440-105456.
- B. Lee, M. Mahtab, T. Neo, I. Farooqi, A. Khursheed, J. Water Process Eng. 2022, 47, 102673. doi: 10.1016/j.jwpe.2022.102673.
- N. Kumar, S.C. Dubey, P. Kumar, S.M.P. Khurana, Indian Phytopathol. 72 (2019) 367–371. doi: 10.1007/s42360-019-00119.
- K.L. Seneviratne, I. Munaweera, S.E. Peiris, C.N. Peiris, N. Kottegoda, Iran. J. Catal. 11, 217–245.
- W.A.P.J. Premaratne, N.A. Rowson, J. Sci. Univ. Kelaniya Sri Lanka 9 (2015) 1–14. doi: 10.4038/josuk.v9i0.6398.
- T.A.I. Lasheen, Hydrometallurgy 76 (2005) 123–129. doi: 10.1016/j.hydromet.2004.10.002.
- N.A. Jabit, G. Senanayake, J. Phys. Conf. Ser. 1082 (2018) 1–7. doi: 10.1088/1742-6596/1082/1/012089.
- T. Murashige, F. Skoog, Physiol. Plant. 15 (1962) 3. doi: 10.1111/j.1399-3054.1962.tb08052.x.
- S.E. Peiris, E.D.U.D. De Silva, M. Edussuriya, A.M.U.R.K. Attanayake, B.C.N. Peiris, J. Natl. Sci. Found. Sri Lanka 40 (2012) 49–54. doi: 10.4038/jnsfsr.v40i1.4168.
- T. Ivanova, A. Harizanova, T. Koutzarova, R. Closset, Molecules 29 (2024) 5156. doi: 10.3390/molecules29215156.
- A. Shirpay, M. Tavakoli, Indian J. Phys. 96 (2022) 1673–1681.
- F. Soleimani, A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol. 9 (2020) 16237–16251. doi: 10.1016/j.jmrt.2020.11.091.
- A.Y. Vakhrushev, T.B. Boitsova, J. Porous Mater. 28 (2021) 1023–1030.
- W.A.P.J. Premaratne, N.A. Rowson, Phys. Sep. Sci. Eng. 12 (2003) 13–22. doi: 10.1080/1478647031000101232.
- G. Zeng, Q. Zhang, Y. Liu, S. Zhang, J. Guo, Nanomaterials 9 (2019) 1173–1190. doi: 10.3390/nano9081173.
- J.A. Torres-Luna, N.R. Sanabria, J.G. Carriazo, Powder Technol. 302 (2016) 254–260. doi: 10.1016/j.powtec.2016.08.056.
- X. Zhang, M. Li, X. He, X. Huang, R. Hang, B. Tang, Mater. Des. 65 (2015) 600–605. doi: 10.1016/j.matdes.2014.09.060.
- L.M. Santos, W.A. Machado, M.D. França, K.A. Borges, R.M. Paniago, A.O.T. Patrocinio, A.E.H. Machado, RSC Adv. 5 (2015) 103752–103759. doi: 10.1039/C5RA22647C.
- S.M. Gupta, M. Tripathi, Chin. Sci. Bull. 56 (2011) 1639–1657. doi: 10.1007/s11434-011-4476-1.
- J.C. Durán-Álvarez, V.A. Hernández-Morales, M. Rodríguez-Varela, D. Guerrero-Araque, D. Ramirez-Ortega, F. Castillón, P. Acevedo-Peña, R. Zanella, Catal. Today 341 (2020) 71–81. doi: 10.1016/j.cattod.2019.01.027.
- M. Nasirian, C.F. Bustillo-Lecompte, M. Mehrvar, J. Environ. Manag. 196 (2017) 487–498. doi: 10.1016/j.jenvman.2017.03.030.
- R. Sinha. Structure-property-performance relationships in photoanode materials. 2020.
- M.F. La Russa, A. Macchia, S.A. Ruffolo, F. De Leo, M. Barberio, P. Barone, G.M. Crisci, C. Urzì, Int. Biodeterior. Biodegrad. 96 (2014) 87–96. doi: 10.1016/j.ibiod.2014.10.002.
- S. Saroj, L. Singh, R. Ranjan, S.V. Singh, Res. Chem. Intermed. 45 (2019) 1883–1906. doi: 10.1007/s11164-018-3708-2.
- G. Li, B. Wang, W.Q. Xu, Y. Han, Q. Sun, Dyes Pigments 155 (2018) 265–275. doi: 10.1016/j.dyepig.2018.03.058.
- C.V. Tran, P.T.H. Nguyen, D.A. Nguyen, B.T. Le, T.N. Truong, D.D. La, Int. J. Adv. Eng. Manag. Sci. 4 (2018) 574–578. doi: 10.22161/ijaems.4.7.11.
- T. Jermoumi, M. Hafid, N. Toreis, Phys. Chem. Glasses 43 (2002) 129–132.
- S. Rada, A. Dehelean, E. Culea, J. Mol. Model. 17 (2011) 2103–2111.
- I.S. Ignatyev, M. Montejo, J.J.L. González, Vib. Spectrosc. 51 (2009) 218–225. doi: 10.1016/j.vibspec.2009.05.001.
- G. Tsilomelekis, S. Boghosian, J. Phys. Chem. C 115 (2011) 2146–2154.
- W. Gamal, A.A. El-Bassuony, H. Abdelsalam, Polym. Bull. 81 (2024) 1821–1837.
- M. Farsi, A. Nezamzadeh-Ejhieh, Surf. Interfaces 32 (2022) 102148. doi: 10.1016/j.surfin.2022.102148.
- N. Omrani, A. Nezamzadeh-Ejhieh, Separation and Purification Technology 235 (2020) 116228. doi: 10.1016/j.seppur.2019.116228.
- N. H. Daud, S. Jayaraman, R. Mohamed, Asia-Pacific Journal of Molecular Biology and Biotechnology 20 (2012) 55–58.
- Z. Hossain, G. Mustafa, S. Komatsu, International Journal of Molecular Sciences 16 (2015) 26644–26653. doi: 10.1039/C7RA07025J.
- D. H. Kim, J. Gopal, I. Sivanesan, RSC Advances 7 (2017) 36492–36505. doi: 10.3390/ijms161125980.
- S. P. O. Werbrouck, M. Strnad, H. A. Van Onckelen, P. C. Debergh, Physiologia Plantarum 98 (1996) 291–297. doi: 10.1034/j.1399-3054.1996.980210.x.
- S. O. Amoo, J. Van Staden, South African Journal of Botany 85 (2013) 87–93. doi: 10.1016/j.sajb.2013.01.001.
- A. O. Aremu, M. W. Bairu, L. Szüčová, K. Doležal, J. F. Finnie, J. Van Staden, Acta Physiologiae Plantarum 34 (2012) 2265–2273. doi: 10.1007/s11738-012-1027-6.
- M. Biroščíková, K. Spišáková, Š. Lipták, V. Pichler, J. Ďurkovič, Plant Cell Reports 22 (2004) 640–644. doi: 10.1007/s00299-003-0749-8.
- A. Junaid, A. Mujib, M. P. Sharma, W. Tang, Plant Growth Regulation 51 (2007) 271–281. doi: 10.1007/s10725-007-9171-5.
- M. Phulwaria, M. K. Rai, Harish, A. K. Gupta, K. Ram, N. S. Shekhawat, Acta Physiologiae Plantarum 34 (2012) 299–305. doi: 10.1007/s11738-011-0828-3.
- A. K. Patel, D. Lodha, N. S. Shekhawat, In Vitro Cellular & Developmental Biology - Plant 56 (2020) 817–826. doi: 10.1007/s11627-020-10089-6.
- D. B. Dhed’a, F. Dumortier, B. Panis, D. Vuylsteke, Fruits 46 (1991) 125–135.
- N. Jafari, R. Y. Othman, N. Khalid, African Journal of Biotechnology 10 (2011) 2446–2450. doi: 10.5897/AJB10.1149.
- H. M. N. Iqbal, G. Kyazze, T. Keshavarz, BioResources 8 (2013) 3157–3176. doi: 10.15376/biores.8.2.3157-3176.
- L.S. Chua, N.L.A. Rahaman, N.A. Adnan, T.T. Eddie Tan, J. Anal. Methods Chem. 2013 (2013) 1–8. doi: 10.1155/2013/313798.
- D. I. Pacurar, I. Perrone, C. Bellini, Physiologia Plantarum 151 (2014) 83–96. doi: 10.1111/ppl.12171.
- M. A. Shatnawi, R. A. Shibli, S. M. Abu-Romman, M. S. Al-Mazra’awi, Z. I. Al Ajlouni, W. A. Shatanawi, W. H. Odeh, Spanish Journal of Agricultural Research 9 (2011) 213–220. doi: 10.5424/sjar/20110901-021-10.
- A. I. A. Abido, M. A. M. Aly, S. A. Hassanen, G. A. Rayan, Middle-East Journal of Scientific Research 13 (2013) 328–337. doi: 10.5829/idosi.mejsr.2013.13.3.1926.
- J.-Y. Maillard, P. Hartemann, Crit Rev Microbiol 39 (2013) 373–383.
- F. Mirzajani, A. Ghassempour, A. Aliahmadi, M.A. Esmaeili, Res Microbiol 162 (2011) 542–549. doi: 10.1016/j.resmic.2011.04.009.
- A. Taglietti, Y.A. Diaz Fernandez, E. Amato, L. Cucca, G. Dacarro, P. Grisoli, V. Necchi, P. Pallavicini, L. Pasotti, M. Patrini, Langmuir 28 (2012) 8140–8148. doi: 10.1021/la3003838.