10.57647/j.ijc.2025.1501.10

Optimization of Photocatalytic Degradation of Safranin O under UV and Visible Light using ZnFe2O4 Coated Graphited Sand in Batch and Continuous Systems

  1. Chemistry Department, Faculty of Science, Damanhour University, Damanhour, Egypt
Optimization of Photocatalytic Degradation of Safranin O under UV and Visible Light using ZnFe2O4 Coated Graphited Sand in Batch and Continuous Systems

Received: 2024-10-24

Revised: 2024-12-27

Accepted: 2025-01-23

Published 2025-01-27

How to Cite

Khalaf, H. A., Essam, M., Matter, E. A., & Esmail Abd Elgawad, G. (2025). Optimization of Photocatalytic Degradation of Safranin O under UV and Visible Light using ZnFe2O4 Coated Graphited Sand in Batch and Continuous Systems. Iranian Journal of Catalysis, 15(1 (March 2025), 1-13. https://doi.org/10.57647/j.ijc.2025.1501.10

PDF views: 85

Abstract

Zinc ferrite (ZF) coated graphited sand (GS) was synthesized using the coprecipitation method.  The produced zinc ferrite-coated graphitic sand (ZFGS) has been characterized by X-ray diffraction (XRD), Scan Electron Microscopy (SEM), Energy-dispersive X-ray Spectroscopy (EDS), Brunauer-Emmett-Teller (BET), Fourier Transform Infrared Spectroscopy (FTIR), Diffuse Reflectance Spectroscopy (DRS), and zeta potential measurements. The ZFGS catalyst was employed for the photodegradation of safranin O under both UV and visible light. Photodegradation experiments were conducted using batch and fixed-bed column methods under varying conditions. A fractional factorial design was utilized to assess the effects of pH, dye concentration, irradiation time, and catalyst dosage on degradation efficiency, with interactions analyzed through Analysis of Variance (ANOVA). The ANOVA results indicated that pH, catalyst dosage, and irradiation time significantly influenced degradation, while dye concentration had minimal impact. Optimization showed a strong agreement between experimental and predicted degradation efficiencies, supported by a high correlation coefficient and significant F-ratio, validating the model. Maximum degradation efficiencies of 98.8% under UV light and 90.4% under visible light were achieved at optimal conditions: 50 mg/L dye concentration, 0.3 g catalyst dosage, pH 9, and 45 minutes of irradiation. Breakthrough curve analysis highlighted strong interactions among these variables.

Research Highlights:

  • A new composite material, ZnFe₂O₄/graphited sand, was synthesized.
  • Providing a unique catalyst for photocatalytic degradation applications under both UV and visible light.
  • ZnFe₂O₄/GS was employed for the photodegradation of safranin O dye under both UV and visible light.
  • A fractional factorial design and ANOVA were applied to analyze the effects of key variables.
  • The photodegradation process of SO dye was studied using batch and fixed bed column study.

Keywords

  • Coated Sand,
  • Fixed-bed Column,
  • Factorial Study,
  • Photocatalysis,
  • Safranin O,
  • Zinc Ferrite

References

  1. M. El-Kemary, Y. Abdel-Moneam, M. Madkour, and I. El-Mehasseb, J. Lumin., 131, (2011)(4): 570-576. https://doi.org/10.1016/j.jlumin.2010.10.025
  2. A.I. Rehan, A.I. Rasee, M.E. Awual, R. Waliullah, M.S. Hossain, K.T. Kubra, M.S. Salman, M.M. Hasan, M.N. Hasan, and M.C. Sheikh, Colloids Surf., A, 673, (2023): 131859. https://doi.org/10.1016/j.colsurfa.2023.131859
  3. M.M. Hasan, M.S. Salman, M.N. Hasan, A.I. Rehan, M.E. Awual, A.I. Rasee, R. Waliullah, M.S. Hossain, K.T. Kubra, and M.C. Sheikh, Colloids Surf., A, 673, (2023): 131794. https://doi.org/10.1016/j.colsurfa.2023.131794
  4. K. Castro and R. Abejón, Membranes, 14, (2024)(8): 180. https://doi.org/10.3390/membranes14080180
  5. M. Sgroi, S.A. Snyder, and P. Roccaro, Chemosphere, 273, (2021): 128527. https://doi.org/10.1016/j.chemosphere.2020.128527
  6. D. Ma, H. Yi, C. Lai, X. Liu, X. Huo, Z. An, L. Li, Y. Fu, B. Li, and M. Zhang, Chemosphere, 275, (2021): 130104. https://doi.org/10.1016/j.chemosphere.2021.130104
  7. R. Waliullah, A.I. Rehan, M.E. Awual, A.I. Rasee, M.C. Sheikh, M.S. Salman, M.S. Hossain, M.M. Hasan, K.T. Kubra, and M.N. Hasan, J. Mol. Liq, 388, (2023): 122763. https://doi.org/10.1016/j.molliq.2023.122763
  8. H. Zangeneh, A.A.L. Zinatizadeh, M. Habibi, M. Akia, and M. Hasnain Isa, J. Ind. Eng. Chem., 26, (2015): 1-36. https://doi.org/10.1016/j.jiec.2014.10.043
  9. J.A. Garrido-Cardenas, B. Esteban-García, A. Agüera, J.A. Sánchez-Pérez, and F. Manzano-Agugliaro, Int. J. Environ. Res. Public Health, 17, (2020)(1): 170. https://doi.org/10.3390/ijerph17010170
  10. X. Huo, Y. Yang, Q. Niu, Y. Zhu, G. Zeng, C. Lai, H. Yi, M. Li, Z. An, D. Huang, Y. Fu, B. Li, L. Li, and M. Zhang, Chem. Eng. J., 403, (2021): 126363. https://doi.org/10.1016/j.cej.2020.126363
  11. H.A. Khalaf and R.F.A. El-Baki, Iranian Journal of Catalysis, 13, (2023)(3): 285-297. https://doi.org/10.30495/ijc.2023.1985433.2006
  12. A. Yousefi and A. Nezamzadeh-Ejhieh, Iran. J. Catal., 11, (2021)(3): 247-259. https://oiccpress.com/ijc/article/view/3600
  13. M. Rezaei, A. Nezamzadeh-Ejhieh, and A.R. Massah, Ecotoxicol. Environ. Saf., 269, (2024): 115927. https://doi.org/10.1016/j.ecoenv.2024.115927
  14. D.K.L. Harijan, S. Gupta, S.K. Ben, A. Srivastava, J. Singh, and V. Chandra, Physica B, 627, (2022): 413567. https://doi.org/10.1016/j.physb.2021.413567
  15. K.M. Lee, C.W. Lai, K.S. Ngai, and J.C. Juan, Water Res., 88, (2016): 428-448. https://doi.org/10.1016/j.watres.2015.09.045
  16. H. Liu, C. Han, C. Shao, S. Yang, X. Li, B. Li, X. Li, J. Ma, and Y. Liu, ACS App. Nano Mater., 2, (2019)(8): 4879-4890. https://pubs.acs.org/doi/abs/10.1021/acsanm.9b00838
  17. I. Hasan, C. Shekhar, I.I. Bin Sharfan, R.A. Khan, and A. Alsalme, ACS Omega, 5, (2020)(49): 32011-32022. https://doi.org/10.1021/acsomega.0c04917
  18. A. Islam, S.H. Teo, M.T. Islam, A.H. Mondal, H. Mahmud, S. Ahmed, M. Ibrahim, Y.H. Taufiq-Yap, G. Abdulkareem-Alsultan, and M.L. Hossain, Renewable Sustainable Energy Rev., 208, (2025): 115033. https://doi.org/10.1016/j.rser.2024.115033
  19. A. Islam, T. Islam, H. Mahmud, O. Raihan, M.S. Islam, H.M. Marwani, M.M. Rahman, A.M. Asiri, M.M. Hasan, and M.N. Hasan, Int. J. Hydrogen Energy, 67, (2024): 458-486. https://doi.org/10.1016/j.ijhydene.2024.04.142
  20. Z.O. Basyigit and Z. Ciğeroğlu, Fibers and Polym., 25, (2024)(8): 2913-2923. https://doi.org/10.1007/s12221-024-00642-0
  21. Z. Ciğeroğlu and Z. Omerogullari Basyigit, J. Mol. Liq., 412, (2024): 125895. https://doi.org/10.1016/j.molliq.2024.125895
  22. B. Erim, Z. Ciğeroğlu, S. Şahin, and Y. Vasseghian, Chemosphere, 291, (2022): 132929. https://doi.org/10.1016/j.chemosphere.2021.132929
  23. V. Vaiano, O. Sacco, D. Pisano, D. Sannino, and P. Ciambelli, Chem. Eng. Sci., 137, (2015): 152-160. https://doi.org/10.1016/j.ces.2015.06.023
  24. A. Sraw, T. Kaur, I. Thakur, A. Verma, R.K. Wanchoo, and A.P. Toor, J. Mol. Struct., 1265, (2022): 133392. https://doi.org/10.1016/j.molstruc.2022.133392
  25. A.R. Soleymani, A.M. Tavassoli, and H. Rezaei-Vahidian, Chem. Eng. Res. Des., 190, (2023): 759-776. https://doi.org/10.1016/j.cherd.2022.12.047
  26. A.M. Kosba, G.M. El-Naggar, E. Elmaghraby, and H.A. Khalaf, Catal. Surv. Asia, (2024): 1-20. https://doi.org/10.1007/s10563-024-09429-y
  27. S. Saensook and A. Sirisuk, J. Water Process Eng., 45, (2022): 102495. https://doi.org/10.1016/j.jwpe.2021.102495
  28. A.W. Skinner, A.M. DiBernardo, A.M. Masud, N. Aich, and A.H. Pinto, J. Environ. Chem. Eng.8, (2020)(5): 104235. https://doi.org/10.1016/j.jece.2020.104235
  29. S.S. Gupta, T.S. Sreeprasad, S.M. Maliyekkal, S.K. Das, and T. Pradeep, ACS Appl. Mater. Interfaces, [4, (2012)(8): 4156-4163. https://doi.org/10.1021/am300889u
  30. S. Gautam, P. Shandilya, B. Priya, V.P. Singh, P. Raizada, R. Rai, M. Valente, and P. Singh, Sep. Purif. Technol., 172, (2017): 498-511. https://doi.org/10.1016/j.seppur.2016.09.006
  31. M. Cobos, P. de la Presa, I. Llorente, A. García-Escorial, A. Hernando, and J.A. Jiménez, J. Alloys Compd., 849, (2020): 156353. https://doi.org/10.1016/j.jallcom.2020.156353
  32. B. Jyothish and J. Jacob, J. Alloys Compd., 863, (2021): 158352. https://doi.org/10.1016/j.jallcom.2020.158352
  33. N. Meftah and M.S. Mahboub, Silicon, 12, (2020)(1): 147-153. https://doi.org/10.1007/s12633-019-00109-5
  34. A. Shalaby, D. Nihtianova, P. Markov, A. Staneva, R. Iordanova, and Y. Dimitriev, Bulg. Chem. Commun., 47, (2015)(1): 291-295.
  35. M.J. McAllister, J.-L. Li, D.H. Adamson, H.C. Schniepp, A.A. Abdala, J. Liu, M. Herrera-Alonso, D.L. Milius, R. Car, R.K. Prud'homme, and I.A. Aksay, Chem. Mater., 19, (2007)(18): 4396-4404. https://pubs.acs.org/doi/10.1021/cm0630800
  36. L.T.T. Nguyen, K.D.M. Nguyen, T.A. Nguyen, and K. No, Ceram. Int., 48, (2022)(3): 4090-4095. https://doi.org/10.1016/j.ceramint.2021.10.199
  37. J. Wu, S. Bai, X. Shen, and L. Jiang, Appl. Surf. Sci., 257, (2010)(3): 747-751. https://doi.org/10.1016/j.apsusc.2010.07.058
  38. P. Sathya, G. Velraj, and S. Meyvel, Adv Appl. Sci. Res., 3, (2012)(2): 776-779.
  39. S.S. Jadhav, V.Y. Salunke, C.H. Jadhav, S.H. Mujawar, and S.R. Bhongale. Macromolecular Symposia. 2021. Wiley Online Library. https://doi.org/10.1002/masy.202100070
  40. G. Joshi, N. Saxena, R. Mangal, A. Mishra, and T. Sharma, Bull. Mater. Sci., 26, (2003): 387-389. https://doi.org/10.1007/BF02711181
  41. M. Farsi and A. Nezamzadeh-Ejhieh, Surf. Interfaces, 32, (2022): 102148. https://doi.org/10.1016/j.surfin.2022.102148
  42. N. Fallah and M. Taghizadeh, J. Environ. Chem. Eng. 8, (2020)(5): 104079.
  43. H.A. Khalaf, Sep. Sci. Technol., 49, (2014)(4): 523-532. https://doi.org/10.1080/01496395.2013.853084.
  44. T. Claes, T. Van Gerven, and M. Leblebici, Chem. Eng. J., 403, (2021): 126355. https://doi.org/10.1016/j.cej.2020.126355
  45. J. Zhu, Y. Zhu, Z. Chen, S. Wu, X. Fang, and Y. Yao, Int. J. Environ. Res. Public. Health., 19, (2022)(17): 10710. https://doi.org/10.3390/ijerph191710710
  46. F. Ajormal, F. Moradnia, S. Taghavi Fardood, and A. Ramazani, J. Chem. Rev., 2, (2020)(2): 90-102.
  47. D. Chahar, S. Taneja, S. Bisht, S. Kesarwani, P. Thakur, A. Thakur, and P. Sharma, J. Alloys Compd., 851, (2021): 156878. https://doi.org/10.1016/j.jallcom.2020.156878
  48. S. Ghattavi and A. Nezamzadeh-Ejhieh, Desalin. Water Treat., 166, (2019): 92-104. https://doi.org/10.5004/dwt.2019.24638
  49. S.A. Mirsalari, A. Nezamzadeh-Ejhieh, and A.R. Massah, Spectrochim. Acta, Part A, 288, (2023): 122139. https://doi.org/10.1016/j.saa.2022.122139
  50. K. Arya, A. Kumar, A. Sharma, S. Singh, S.K. Sharma, S.K. Mehta, and R. Kataria, Top. Catal., 65, (2022)(19): 1924-1937. https://doi.org/10.1007/s11244-022-01701-7
  51. W.-C. Oh, K.N. Fatema, Y. Liu, C.S. Lim, K.Y. Cho, C.-H. Jung, and M.R.U.D. Biswas, J. Photochem. Photobiol., A, 394, (2020): 112484. https://doi.org/10.1016/j.jphotochem.2020.112484
  52. M.F. El-Berry, S.A. Sadeek, A.M. Abdalla, and M.Y. Nassar, Mater. Res. Bull., 133, (2021): 111048. https://doi.org/10.1016/j.materresbull.2020.111048
  53. N. YAHI, L. AOUDJIT, I. KAHINA, I. BAALACHE, and D. SELLAM, Cellul. Chem. Technol., 58, (2024).
  54. G. Mandal and B. Bhattacharjee, The Scientific Temper, 15, (2024)(02): 2092-2098. https://doi.org/10.58414/SCIENTIFICTEMPER.2024.15.2.19
  55. M.V. Kangralkar, J. Manjanna, N. Momin, K. Rane, G. Nayaka, and V.A. Kangralkar, Environ. Nanotechnol. Monit. Manage.,16, (2021): 100508. https://doi.org/10.1016/j.enmm.2021.100508.