Fe3O4@nano-coconut shell/Cu(II): A Unique and Reusable Catalyst for Green Synthesis of naphtho[1,3]oxazine Derivatives
- Department of Organic Chemistry, Faculty of Chemistry, College of Science, Yazd University, Yazd, Iran
Received: 2024-03-23
Revised: 2024-10-28
Accepted: 2025-01-08
Published 2025-01-08
Copyright (c) -1 Farhad Hajati, Bi Bi Fatemeh Mirjalili (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 63
Abstract
Coconut shell nanoparticles were transformed into magnetic nanoparticles (Fe3O4@nano-coconut shell) that were utilized for Lewis acid (Cu(II)) support. Consequently, the synthesis of the Fe3O4@nano-coconut shell/Cu(II) catalyst, possessing easy and complete recovery capabilities, was achieved. The characterization of Fe3O4@nano-coconut shell/Cu(II) was conducted using various techniques, including FT-IR, FESEM, VSM, EDS-MAP, XRD, BET, and TGA. The catalytic efficacy of Fe3O4@nano-coconut shell/Cu(II) as a potent Lewis acid nano-catalyst was assessed for the manufacture of 2-aryl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine derivatives via a reaction of formaldehyde, aniline derivatives, and phenolic substrate such as β-naphthol. Fe3O4@nano-coconut shell/Cu(II) demonstrated robust performance in the reaction and could be reused up to four consecutive times with only a minor decline in catalytic activity.
Research Highlights
- Fe3O4@nano-coconut shell/Cu(II) catalyst with a very easy and complete recovering ability was synthesized.
- The synthesized catalyst was characterized by different techniques such as FT-IR, FESEM, VSM, EDS-MAP, XRD, BET as well as TGA.
- The catalytic performance of Fe3O4@nano-coconut shell/Cu(II) was evaluated.
- Synthesis of 2-aryl-2,3-dihydro-1H-naphtho[1,2-e][1,3]oxazine derivatives was done.
- Fe3O4@nano-cocoanut shell/Cu(II) can be effective in reaction and reused four times.
Keywords
- Fe3O4@nano-coconut shell/Cu (II),
- Green Chemistry,
- Magnetic nanoparticles,
- Multi-component reactions,
- 1,3-Oxazine
References
- T. Ahmadi, G.M. Ziarani, P. Gholamzadeh, H. Mollabagher, Tetrahedron: Asym. 28 (2017) 708-724. Doi: 10.1016/j.tetasy.2017.04.002
- C. Hulme, S. Chappeta, C. Griffith, Y.S. Lee, J. Dietrich, Tetrahedron Lett. 50 (2009) 1939-1942. Doi: 10.1016/j.tetlet.2009.02.099
- S. Verma, S.L. Jain, B. Sain, Tetrahedron Lett. 51 (2010) 6897-6900. Doi: 10.1016/j.tetlet.2010.10.124
- K. Tanaka, F. Toda, Chem. Rev. 100 (2000) 1025-1074. Doi: 10.1021/cr940089p
- Z.L. Shen, S.J. Ji, Synth. Commun. 39 (2009) 775-791. Doi: 10.1080/00397910802431149
- L. H. Reddy, J. L. Arias, J. Nicolas, P. Couvreur, Chem. Rev. 112 (2012) 5818-5878. Doi: 10.1021/cr300068p
- K. Zhou, X. Zhou, J. Liu, and Z. Huang, J. Pet. Sci. Eng. 188 (2020) 106943. Doi: 10.1016/j.petrol.2020.106943
- S. Zhang, H. Niu, Z. Hu, Y. Cai, Y. Shi, J. Chromatogr. A 1217 (2010) 4757-4764. Doi: 10.1016/j.chroma.2010.05.035
- K. Khoshnevisan, M. Barkhi, D. Zare, D. Davoodi, M. Tabatabaei, Synth. React. Inorg. Met-Org. Chem. 42 (2012) 644-648. Doi: 10.1080/15533174.2011.614997
- J. Safari, L. Javadian, RSC Adv. 4 (2014) 48973-48979. Doi: 10.1039/C4RA06618A
- V. A. J. Silva, P. L. Andrade, M. P. C. Silva, L.D.L.S. Valladares, J.A. Aguiar, J. Magn. Magn. Mater. 343 (2013) 138-143. Doi: 10.1016/j.jmmm.2013.04.062
- V. Polshettiwar, R. Luque, A. Fihri, H. Zhu, M. Bouhrara, J.M. Basset, Chem. Rev. 111 (2011) 3036-3075. Doi: 10.1021/cr100230z
- R. B. Nasir Baig, R.S. Varma, Ind. Eng. Chem. Res. 53 (2014) 18625-18629. Doi: 10.1021/ie501081q
- S.A. Sadaphal, S.S. Sonar, B.B. Shingate, M.S. Shingare, Green. Chem. Lett. Rev. 3 (2010) 213-216. Doi: 10.1080/17518251003709522
- P.V. Shinde, A.H. Kategaonkar, B.B. Shingate, M.S. Shingare, Chin. Chem. Lett. 22 (2011) 915-918. Doi: 10.1016/J.CCLET.2011.01.011
- V.D. Dhakane, S.S. Gholap, U.P. Deshmukh, H.V. Chavan, B.P. Bandgar, C. R. Chim. 17 (2014) 431-436. Doi: 10.1016/j.crci.2013.06.002
- M. S. Al-Ajely, A. M. Noori, Bio med. J. Sci. Tech. Res. 29 (2020) 22510-22516. Doi: 10.26717/BJSTR.2020.29.004815
- S. S. Hosseinikhah, B. B. F. Mirjalili, N. Salehi, A. H. Bamoniri, RSC. Adv. 10 (2020) 40508-40513. Doi: 10.1039/D0RA07199D
- R. Borah, A.K. Dutta, P. Sarma, C. Dutta, B. Sarma, RSC Adv. 4 (2014) 10912-10917. Doi: 10.1039/C3RA47211F
- C.S. Higham, D.P. Dowling, J.L. Shaw, A. Cetin, C.J. Ziegler, J.R. Farrell, Tetrahedron lett. 47 (2006) 4419-4423. Doi: 10.1016/j.tetlet.2006.04.077
- W.J. Burke, E.M. Glennie, C. Weatherbee, Org. Chem. 29 (1964) 909-912. Doi: 10.1021/jo01027a038
- R.A. Sheldon, Green. Chem. 7 (2005) 267-278. Doi: 10.1039/B418069K
- M. Zhang, Q.Y. Fu, G. Gao, H.Y. He, Y. Zhang, Y.S. Wu, Z.H. Zhang, ACS Sustain. Chem. Eng. 7 (2017) 6175-6182. Doi: 10.1021/acssuschemeng.7b01102
- O.L. Keller Jr, Inorg. Chem. 2 (1963) 783-787. Doi: 10.1021/ic50008a029
- E. Babaei, B. F. Mirjalili, Polycycl. Aromat. Comp. 41 (2021) 518-525. Doi:10.1080/10406638.2019.1600561.
- S. S. Ganesan, N. Rajendran, S. I. Sundarakumar, A. Ganesan and B. Pemiah, Synthesis 45 (2013) 1564-1568. Doi: 10.1055/s-0033-1338430.
- M.V. Reddy, K.T. Lim, J.T. Kim, Y.T. Jeong, J. Chem. Res. 7 (2012) 398-401. Doi: 10.3184/174751912X1337166261377.
- A. D. Tafti, B. F. Mirjalili, RSC Adv. 10 (2020) 31874–31880. Doi: 10.1039/D0RA04282J
- Ganesan, S. S.; Rajendran, N.; Sundarakumar, S. I.; Ganesan, A.; Pemiah. B. Synthesis, 45 (2013) 1564-1568. Doi: 10.1055/s-0033-1338430
- V. D. Dhakane, S. S. Gholap, U. P. Deshmukh, H. V. Chavan, Bandgar. B. P. C. R. Chim. 17 (2014) 431-436. Doi: 10.1016/j.crci.2013.06.002
- S. Khabnadideh, A. solhjoo, R. Heidari, L Amiri Zirtol, A Sakhteman, Z. Rezaei, E. Babaei, S. Rahimi, L. Emami. BMC Chemistry. 16 (2022) 1-18. Doi: 10.1186/s13065-022-00836-8.
- M. Keihanfar, B. F. Mirjalili. Sci. Rep. 12 (2022) 17713-17724. Doi: 10.1038/s41598-022-22712-0.
- T. Lohar, A. Mane, S. Kamat, R. Salunkhe. Polycycl. Aromat. Comp. 40 (2020) 1210-1222. Doi: 10.1080/10406638.2018.1538057