10.57647/j.ijc.2025.1501.08

Influence of Surface Roughness, Electrical, and Structural Properties on the Catalytic Sulfurization of Glutamic Acid for S-Glutamate Production: Enhancement in Rate and Selectivity under the Catalyst of Lycopene

  1. Department of physics and chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad, Telangana, India
  2. Department of physics, Chaitanya Bharathi institute of technology, Gandipet, Hyderabad, Telangana, India
  3. Department of physics, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh, India
  4. Department of Mechanical Engineering, Vignana Bharathi Institute of Technology. Ghatkesar, Hyderabad, Telangana, India
  5. Department of physics, Holymary Institute of Technology and Science, Ghatkesar, Hyderbada, Telangana, India
  6. Department of chemistry, Chaitanya Bharathi institute of technology, Gandipet, Hyderabad, Telangana, India
Influence of Surface Roughness, Electrical, and Structural Properties on the Catalytic Sulfurization of Glutamic Acid for S-Glutamate Production: Enhancement in Rate and Selectivity under the Catalyst of Lycopene

Received: 2024-08-01

Revised: 2024-11-15

Accepted: 2024-12-25

Published 2025-01-11

How to Cite

Ramesh, M. ., Kumar, A. S. ., Perumalveeramalai, C. ., Mondal, A. ., Venkateswara Rao, R. ., Nagaraju, R. ., Chandrakanta, K., & Ganji, S. . (2025). Influence of Surface Roughness, Electrical, and Structural Properties on the Catalytic Sulfurization of Glutamic Acid for S-Glutamate Production: Enhancement in Rate and Selectivity under the Catalyst of Lycopene. Iranian Journal of Catalysis, 15(1 (March 2025), 1-10. https://doi.org/10.57647/j.ijc.2025.1501.08

PDF views: 91

Abstract

S-glutamate nanoparticles are synthesized via a catalytic transfer sulfurization process with the aid of lycopene, and they are subsequently characterized by Raman, FTIR, XRD, SEM, and EDS. The average size of the S-glutamate particles was found to be between 10 and 50 nm based on the analysis of Image J. The average surface roughness of the glutamate nanoparticles was measured to be 6.42 nm ± 12.6 nm. The radial average made it easier to find the regularity ratio (R) of glutamate particles, which is estimated to be between 0.23 and 0.75 %. Zeta potential provides information about the stability of the colloidal system, which ranges from +30 mV to -30 mV. The catalytic characteristics of S-glutamate nanoparticles were ultimately investigated using UV-visible spectroscopy. When lycopene or H2S are heated to 100°C for 45 min, lycopene shows 81.9 % catalytic activity in the conversion of glutamic acid to S-glutamate and 89.2% with selectivity. Lycopene alone demonstrates 35.68% catalytic activity in the conversion of glutamic acid to glutamate with ethanol for the reaction time of 15 min. Moreover, lycopene-100 is stable and exhibits high catalytic efficiency in the decomposition of glutamic acids using various polar solvents.

Keywords

  • Catalytic process,
  • Hydrocarbon,
  • Lycopene,
  • Reaction time,
  • S-glutamate

References

  1. H. L. McLain, D. P. Glavin, J. P. Dworkin, E. T. Parker, J. E. Elsila, J. C. Aponte, D. N. Simkus, C. I. Pozarycki, H.V. Graham, L. R. Nittler, et al., Meteorit. Planet. Sci. 55 (2020) 1979. doi.org/10.1111/maps.13560
  2. A. Yousefi, A. N. Ejhieh, Iran. J. Catal. 11(3) (2021) 247-259. https://journals.iau.ir/article_684355_ba281a758a9084e2a3f2d3bf091152da.pdf
  3. M. G. Chegini, M. Mokhtary, A. Pourahmad, A. Pourahmad, Iran J. Catal. 14 (2) (2024) 1-12. doi.10.57647/j.ijc.2024.1402.12
  4. D. P. Glavin, J. E. Elsila, H. L. McLain, J. C. Aponte, E. T. Parker, J. P. Dworkin, D. H. Hill, H. C. Connolly, D. S. Lauretta, Meteorit. Planet. Sci. 56 (2021) 148−173. doi.org/10.1111/maps.13451
  5. T. Koga and H. Naraoka, ACS Earth Space Chem. 6 (2022) 1311-1320. doi.org/10.1021/acsearthspacechem.2c00008
  6. Q. Zhang , L. Zhang, X. Cheng , Z. Qi, Iran J. Catal., 14 (2) (2024)1-12. doi.org/10.57647/j.ijc.2024.1402.09
  7. F. Pietrucci, J. C. Aponte, R. Starr, A. P. Villa, J. E. Elsila, J. P. Dworkin, A. M. Saitta, ACS Earth Space Chem. 2 (2018) 588-598. doi.org/10.1021/acsearthspacechem.8b00025
  8. T. Magrino, F. Pietrucci, A. M. Saitta, Phys. Chem. Lett. 12 (2021) 2630-2637. doi.org/10.1021/acs.jpclett.1c00194
  9. M. A. Matsko, N. V. Semikolenova and V. A. Zakharov, Catal. Chem. Petrochem. Indust. 15 (2023) 267-277. doi.org/10.1134/S2070050423030066.
  10. L. N. Nasirmahale, and F. Shirini, Iran J. Catal. 14 (2) (2024) 1-12. doi.org/10.57647/j.ijc.2024.1402.17 [11] J. G. Kim, S. J. Yoo, C. Y. Kim, H. T. Jou, Appl. Microscop. 44(4) (2014) 138-143. doi.org/10.9729/AM.2014.44.4.138
  11. S. Ghattavi, A. N. Ejhieh, J. Mol. Liq. 322 (2021) 114563. doi.org/10.1016/j.molliq.2020.114563
  12. M. B. McElroy and S. C. Wofsy, Atmospheric Environment 14(2) (1980) 159-163. doi.org/10.1016/0004-6981(80)90274-7
  13. M. M. Huo, W. L. Liu, Z. R. Zheng, W Zhang, A. H. Li and D. P. Xu, Molecules 16 (2011) 1973-1980. doi.org/10.3390/molecules16031973
  14. P. Bazylewski, R. Divigalpitiya and G. Fanchini, RSC Adv. 7 (2017) 2964 –2970. doi.10.1039/C6RA25879D
  15. A. L. Jenkins, R. A. Larsen and T. B. Williams, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61 (7) (2005) 1585-1594. doi.org/10.1016/j.saa.2004.11.055
  16. A. Owhal, A. D. Pingale, S. U. Belgamwar, J. S. Rathore, Alloys and Metallurgical Systems 6 (2024) 100083. doi.org/10.1016/j.jalmes.2024.100083
  17. Z. Shirazi, A. N. Golikand & M. H. Keshavarz, Iranian Chemical Society 21 (2024) 409 - 419. doi.org/10.1007/s13738-023-02933-4
  18. G. Liu, L. Liu, Y. Zhou, Y. Wang, G. Sui & P. Zhang, Iranian Chemical Society 21(2024) 877-885. doi.org/10.1007/s13738-024-02968-1
  19. Z. Wei, Y. Chen, J. Wang, D. Su, M. Tang, S. Mao and Y. Wang, ACS Catal. 6 (2016) 5816-5822. doi.org/10.1021/acscatal.6b01240
  20. I. Horcas, R. Fernández, J. M. G. Rodríguez, J. Colchero, J. G. Herrero, A. M. Baro, Review of Scientific Instruments 78 (2007) 013705. doi.org/10.1063/1.2432410
  21. C. C. Harper, J. S. Jordan, S. Papanu, and E. R. Williams, ACS Nano 18 (27) (2024) 17806-17814. doi.org/10.1021/acsnano.4c03503
  22. C. Pfeiffer, C. Rehbock, D. Hu¨hn, C. C. Carrion, D. J. de Aberasturi, V. Merk, S. Barcikowski and W. J. Parak, J. R. Soc. Interface 11 (2013) 0931. doi.org/10.1093/ndt/gfs439
  23. B. Wang, G. Fang, X. Tan, J. Liang, J. Ge, S. Liu, Composite Structures 247 (2020) 112448. doi.org/10.1016/j.compstruct.2020.112448
  24. M. Ramesh, H.S. Nagaraja, Mater. Today Chem., 3 (2017) 10-14. doi.org/10.1016/j.mtchem.2016.12.002
  25. M. Kaszuba, J. Corbett, F. M. Watson, and A. Jones, Philos Trans A Math Phys Eng Sci. 368 (2010) 4439-4451. doi.org/10.1098/rsta.2010.0175
  26. C. P. Romero, R. I. Jeldres, G. R. Quezada, F. Concha and P. G. Toledo, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538 (2018) 210-218. doi.org/10.1016/j.colsurfa.2017.10.080
  27. F. Chen, C. Kreyenschulte, J. Radnik, H. Lund, A. E. Surkus, K. Junge and M. Beller, ACS Catal. 7 (2017) 1526-1532. doi.org/10.1021/acscatal.6b03140
  28. M. Uddin, S. E. Chowdhury & S. Elahi, Water Conserv Sci Eng. 7(2022) 351-361. doi.org/10.1007/s41101-022-00146-z
  29. H. Li, Q. Z. Yao, Y. Y. Wang, Y. L. Li & G. T. Zhou, Scientific Reports, 5 (2015) 7718. doi.org/10.1038/srep07718
  30. L. Yao, X. Min, H. Xu, Y. Ke, Y. Liang, K. Yang, Int. J. Environ. Res. Public Health 15(9) (2018) 1863. doi.org/10.3390/ijerph15091863
  31. P. Dhanasekaran, K. Srinivasan, Cryst. Res. Technol. 47(12) (2012) 1217-1230. doi.org/10.1002/crat.201200053
  32. J. Uma, V. Rajendran, Progress in Natural Science: Materials International 26 (1) (2016) 24-31. doi.org/10.1016/j.pnsc.2016.01.013