Influence of Surface Roughness, Electrical, and Structural Properties on the Catalytic Sulfurization of Glutamic Acid for S-Glutamate Production: Enhancement in Rate and Selectivity under the Catalyst of Lycopene
- Department of physics and chemistry, Mahatma Gandhi Institute of Technology, Gandipet, Hyderabad, Telangana, India
- Department of physics, Chaitanya Bharathi institute of technology, Gandipet, Hyderabad, Telangana, India
- Department of physics, Madanapalle Institute of Technology and Science, Madanapalle, Andhra Pradesh, India
- Department of Mechanical Engineering, Vignana Bharathi Institute of Technology. Ghatkesar, Hyderabad, Telangana, India
- Department of physics, Holymary Institute of Technology and Science, Ghatkesar, Hyderbada, Telangana, India
- Department of chemistry, Chaitanya Bharathi institute of technology, Gandipet, Hyderabad, Telangana, India
Received: 2024-08-01
Revised: 2024-11-15
Accepted: 2024-12-25
Published 2025-01-11
Copyright (c) -1 Martha Ramesh, A Santhosh Kumar, Chandrasekar Perumalveeramalai, Arijit Mondal, Ravuri Venkateswara Rao, Ravoori Nagaraju, K. Chandrakanta, Saidulu Ganji (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 91
Abstract
S-glutamate nanoparticles are synthesized via a catalytic transfer sulfurization process with the aid of lycopene, and they are subsequently characterized by Raman, FTIR, XRD, SEM, and EDS. The average size of the S-glutamate particles was found to be between 10 and 50 nm based on the analysis of Image J. The average surface roughness of the glutamate nanoparticles was measured to be 6.42 nm ± 12.6 nm. The radial average made it easier to find the regularity ratio (R) of glutamate particles, which is estimated to be between 0.23 and 0.75 %. Zeta potential provides information about the stability of the colloidal system, which ranges from +30 mV to -30 mV. The catalytic characteristics of S-glutamate nanoparticles were ultimately investigated using UV-visible spectroscopy. When lycopene or H2S are heated to 100°C for 45 min, lycopene shows 81.9 % catalytic activity in the conversion of glutamic acid to S-glutamate and 89.2% with selectivity. Lycopene alone demonstrates 35.68% catalytic activity in the conversion of glutamic acid to glutamate with ethanol for the reaction time of 15 min. Moreover, lycopene-100 is stable and exhibits high catalytic efficiency in the decomposition of glutamic acids using various polar solvents.
Keywords
- Catalytic process,
- Hydrocarbon,
- Lycopene,
- Reaction time,
- S-glutamate
References
- H. L. McLain, D. P. Glavin, J. P. Dworkin, E. T. Parker, J. E. Elsila, J. C. Aponte, D. N. Simkus, C. I. Pozarycki, H.V. Graham, L. R. Nittler, et al., Meteorit. Planet. Sci. 55 (2020) 1979. doi.org/10.1111/maps.13560
- A. Yousefi, A. N. Ejhieh, Iran. J. Catal. 11(3) (2021) 247-259. https://journals.iau.ir/article_684355_ba281a758a9084e2a3f2d3bf091152da.pdf
- M. G. Chegini, M. Mokhtary, A. Pourahmad, A. Pourahmad, Iran J. Catal. 14 (2) (2024) 1-12. doi.10.57647/j.ijc.2024.1402.12
- D. P. Glavin, J. E. Elsila, H. L. McLain, J. C. Aponte, E. T. Parker, J. P. Dworkin, D. H. Hill, H. C. Connolly, D. S. Lauretta, Meteorit. Planet. Sci. 56 (2021) 148−173. doi.org/10.1111/maps.13451
- T. Koga and H. Naraoka, ACS Earth Space Chem. 6 (2022) 1311-1320. doi.org/10.1021/acsearthspacechem.2c00008
- Q. Zhang , L. Zhang, X. Cheng , Z. Qi, Iran J. Catal., 14 (2) (2024)1-12. doi.org/10.57647/j.ijc.2024.1402.09
- F. Pietrucci, J. C. Aponte, R. Starr, A. P. Villa, J. E. Elsila, J. P. Dworkin, A. M. Saitta, ACS Earth Space Chem. 2 (2018) 588-598. doi.org/10.1021/acsearthspacechem.8b00025
- T. Magrino, F. Pietrucci, A. M. Saitta, Phys. Chem. Lett. 12 (2021) 2630-2637. doi.org/10.1021/acs.jpclett.1c00194
- M. A. Matsko, N. V. Semikolenova and V. A. Zakharov, Catal. Chem. Petrochem. Indust. 15 (2023) 267-277. doi.org/10.1134/S2070050423030066.
- L. N. Nasirmahale, and F. Shirini, Iran J. Catal. 14 (2) (2024) 1-12. doi.org/10.57647/j.ijc.2024.1402.17 [11] J. G. Kim, S. J. Yoo, C. Y. Kim, H. T. Jou, Appl. Microscop. 44(4) (2014) 138-143. doi.org/10.9729/AM.2014.44.4.138
- S. Ghattavi, A. N. Ejhieh, J. Mol. Liq. 322 (2021) 114563. doi.org/10.1016/j.molliq.2020.114563
- M. B. McElroy and S. C. Wofsy, Atmospheric Environment 14(2) (1980) 159-163. doi.org/10.1016/0004-6981(80)90274-7
- M. M. Huo, W. L. Liu, Z. R. Zheng, W Zhang, A. H. Li and D. P. Xu, Molecules 16 (2011) 1973-1980. doi.org/10.3390/molecules16031973
- P. Bazylewski, R. Divigalpitiya and G. Fanchini, RSC Adv. 7 (2017) 2964 –2970. doi.10.1039/C6RA25879D
- A. L. Jenkins, R. A. Larsen and T. B. Williams, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy 61 (7) (2005) 1585-1594. doi.org/10.1016/j.saa.2004.11.055
- A. Owhal, A. D. Pingale, S. U. Belgamwar, J. S. Rathore, Alloys and Metallurgical Systems 6 (2024) 100083. doi.org/10.1016/j.jalmes.2024.100083
- Z. Shirazi, A. N. Golikand & M. H. Keshavarz, Iranian Chemical Society 21 (2024) 409 - 419. doi.org/10.1007/s13738-023-02933-4
- G. Liu, L. Liu, Y. Zhou, Y. Wang, G. Sui & P. Zhang, Iranian Chemical Society 21(2024) 877-885. doi.org/10.1007/s13738-024-02968-1
- Z. Wei, Y. Chen, J. Wang, D. Su, M. Tang, S. Mao and Y. Wang, ACS Catal. 6 (2016) 5816-5822. doi.org/10.1021/acscatal.6b01240
- I. Horcas, R. Fernández, J. M. G. Rodríguez, J. Colchero, J. G. Herrero, A. M. Baro, Review of Scientific Instruments 78 (2007) 013705. doi.org/10.1063/1.2432410
- C. C. Harper, J. S. Jordan, S. Papanu, and E. R. Williams, ACS Nano 18 (27) (2024) 17806-17814. doi.org/10.1021/acsnano.4c03503
- C. Pfeiffer, C. Rehbock, D. Hu¨hn, C. C. Carrion, D. J. de Aberasturi, V. Merk, S. Barcikowski and W. J. Parak, J. R. Soc. Interface 11 (2013) 0931. doi.org/10.1093/ndt/gfs439
- B. Wang, G. Fang, X. Tan, J. Liang, J. Ge, S. Liu, Composite Structures 247 (2020) 112448. doi.org/10.1016/j.compstruct.2020.112448
- M. Ramesh, H.S. Nagaraja, Mater. Today Chem., 3 (2017) 10-14. doi.org/10.1016/j.mtchem.2016.12.002
- M. Kaszuba, J. Corbett, F. M. Watson, and A. Jones, Philos Trans A Math Phys Eng Sci. 368 (2010) 4439-4451. doi.org/10.1098/rsta.2010.0175
- C. P. Romero, R. I. Jeldres, G. R. Quezada, F. Concha and P. G. Toledo, Colloids and Surfaces A: Physicochemical and Engineering Aspects, 538 (2018) 210-218. doi.org/10.1016/j.colsurfa.2017.10.080
- F. Chen, C. Kreyenschulte, J. Radnik, H. Lund, A. E. Surkus, K. Junge and M. Beller, ACS Catal. 7 (2017) 1526-1532. doi.org/10.1021/acscatal.6b03140
- M. Uddin, S. E. Chowdhury & S. Elahi, Water Conserv Sci Eng. 7(2022) 351-361. doi.org/10.1007/s41101-022-00146-z
- H. Li, Q. Z. Yao, Y. Y. Wang, Y. L. Li & G. T. Zhou, Scientific Reports, 5 (2015) 7718. doi.org/10.1038/srep07718
- L. Yao, X. Min, H. Xu, Y. Ke, Y. Liang, K. Yang, Int. J. Environ. Res. Public Health 15(9) (2018) 1863. doi.org/10.3390/ijerph15091863
- P. Dhanasekaran, K. Srinivasan, Cryst. Res. Technol. 47(12) (2012) 1217-1230. doi.org/10.1002/crat.201200053
- J. Uma, V. Rajendran, Progress in Natural Science: Materials International 26 (1) (2016) 24-31. doi.org/10.1016/j.pnsc.2016.01.013