10.57647/j.ijc.2025.1501.06

Bicyclic 1,2,3-Triazolium Ionic Liquids as a novel ionic liquid based catalytic systems for the preparation of spirobenzo[f]pyrano[3,2-c]chromene derivatives under ultrasonic irradiation conditions

  1. Department of Chemistry, Zarghan Branch, Islamic Azad University, Zarghan, Iran
  2. Department of Chemistry, Najafabad Branch, Islamic Azad University, Najafabad, Iran
Bicyclic 1,2,3-Triazolium Ionic Liquids as a novel ionic liquid based catalytic systems for the preparation of spirobenzo[f]pyrano[3,2-c]chromene derivatives under ultrasonic irradiation conditions

Received: 2024-01-30

Revised: 2024-05-11

Accepted: 2024-11-21

Published 2024-11-25

How to Cite

Fazlinia, A., Tavakoli, F. H., & Ghashang, M. (2024). Bicyclic 1,2,3-Triazolium Ionic Liquids as a novel ionic liquid based catalytic systems for the preparation of spirobenzo[f]pyrano[3,2-c]chromene derivatives under ultrasonic irradiation conditions. Iranian Journal of Catalysis, 15(1 (March 2025), 1-8. https://doi.org/10.57647/j.ijc.2025.1501.06

PDF views: 83

Abstract

A novel ionic liquid, 2-butyl-4,5,6,7-tetrahydro-2H-[1,2,3]triazolo[1,5-a]pyridin-8-ium hydrogen sulfate, was synthesized and employed as an efficient catalyst in the high-yield synthesis of spiro compounds featuring the benzo[f]pyrano[3,2-c]chromene scaffold. Through a three-component reaction involving 1-hydroxy-3H-benzo[f]chromen-3-one, malononitrile, and 1-benzylindoline-2,3-dione in ethanol under reflux and ultrasonic irradiation, 10 distinct compounds were successfully obtained in excellent yields ranging from 86% to 97%. The products were characterized comprehensively by Fourier-transform infrared spectroscopy (FT-IR), nuclear magnetic resonance (NMR), and CHN analysis. Notably, the protocol offers an efficient, non-chromatographic method for separation and purification, ensuring high-yield productivity and operational simplicity, making it a highly advantageous approach for synthesizing spiro compounds.

Research Highlights

  • Bicyclic 1,2,3-Triazolium Ionic Liquids were prepared and used for the preparation of some spiro compounds.
  • Spiro compounds with the benzo[f]pyrano[3,2-c]chromene moiety were prepared by a three-component reaction.
  • The nonchromatographic separation and purification of the products with high-yield productivity are the salient features of this protocol.
  • All reactions proceed well and the products were formed in high yields.

Keywords

  • Benzo[f]pyrano[3,2-c]chromene,
  • Catalyst,
  • Ionic liquid,
  • 1-hydroxy-3H-benzo[f]chromen-3-one,
  • Spiro compounds

References

  1. H. Maciejewski, Ionic Liquids in Catalysis. Catalysts 11 (2021) 367. DOI: https://doi.org/10.3390/catal11030367.
  2. J.P. Hallet, T. Welton, Room-temperature ionic liquids: Solvents for synthesis and catalysis. Chem. Rev. 111 (2011) 3508-3576. DOI: https://doi.org/10.1021/cr1003248.
  3. M. Gholinejad, F. Zareh, H. Sheibani, C. Nájera, M. Yus, Magnetic ionic liquids as catalysts in organic reactions. J. Mole. Liq. 367 (2022) 120395. DOI: https://doi.org/10.1016/j.molliq.2022.120395.
  4. P. Migowski, P. Lozano, J. Dupont, Imidazolium based ionic liquid-phase green catalytic reactions. Green Chem. 25 (2023) 1237-1260. DOI: https://doi.org/10.1039/D2GC04749G.
  5. M. Ghashang, H. Taghrir, M.N. Biregan, N. Heydari, F. Azimi, Preparation of novel 2-(2-oxo-2 H-chromen-4-yl)-3-arylthiazolidin-4-one derivatives using an efficient ionic liquid catalyst. J. Sulfur Chem. 37 (2016) 61-69. DOI: https://doi.org/10.1080/17415993.2015.1089440.
  6. M. Ziyaadini, S.J. Roudbaraki, M. Ghashang, Ionic-liquid Promoted Multi-component Preparation of Pyrazolo[3, 4-d]thiazolo[3, 2-a]pyrimidines under Solvent-free Conditions. Org. Prep. Proceed. Int. 52 (2020) 311-318. DOI: https://doi.org/10.1080/00304948.2020.1763098.
  7. H. Alinezhad, M. Tajbakhsh, B. Maleki, F. Pourshaban Oushibi, Acidic Ionic Liquid [H-NP]HSO4 Promoted One-Pot Synthesis of Dihydro-1H-Indeno[1,2-b]pyridines and Polysubstituted Imidazoles. Polycycl. Arom. Comp. 40 (2020) 1485-1500. DOI: https://doi.org/10.1080/10406638.2018.1557707
  8. B. Maleki, E. Akbarzadeh, S. Babaee, New basic ionic liquid from ethan-1,2-diyl bis(hydrogen sulfate) and DBU (1,8-diazobicyclo[5.4.0]undec-7-ene) as an efficient catalyst for one-pot synthesis of xanthene derivatives. Dyes Pigm. 123 (2015) 222-234. DOI: https://doi.org/10.1016/j.dyepig.2015.08.009.
  9. F.H. Tavakoli, M. Asadollahi Chaharsoughi, M. Ghashang, Acidic Ionic Liquids in Ultrasonic Irradiation Conditions Promote the Nucleophilic Addition to Chalcone Derivatives. Polycycl. Arom. Compd. (2023) 1-13. DOI: https://doi.org/10.1080/10406638.2023.2259572.
  10. M. Vafaeezadeh, H. Alinezhad, Brønsted acidic ionic liquids: Green catalysts for essential organic reactions. J. Mole. Liq. 218 (2016) 95-105. DOI: https://doi.org/10.1016/j.molliq.2016.02.017.
  11. N. Patel, D. Katheriya, H. Dadhania, A. Dadhania, Graphene oxide supported dicationic ionic liquid: an efficient catalyst for the synthesis of 1-carbamatoalkyl-2-naphthols. Res. Chem. Intermed. 45 (2019) 5595-5607. DOI: https://doi.org/10.1007/s11164-019-03922-0.
  12. H.N. Dadhania, D.K. Raval, A.N. Dadhania, Sonochemical synthesis of 2,3-dihydro-4(1H)-quinazolinones and 1-amidoalkyl-2-naphthols using magnetic nanoparticle-supported ionic liquid as a heterogeneous catalyst. Res. Chem. Intermed. 44 (2018) 117-134. DOI: https://doi.org/10.1007/s11164-017-3093-2.
  13. H. Dadhania, D. Raval, A. Dadhania, A Highly Efficient and Solvent-Free Approach for the Synthesis of Quinolines and Fused Polycyclic Quinolines Catalyzed by Magnetite Nanoparticle-Supported Acidic Ionic Liquid. Polycycl. Arom. Compd. 41 (2021) 440-453. DOI: https://doi.org/10.1080/10406638.2019.1595057.
  14. D.M. Patel, P.J. Patel, H.M. Patel, Catalytic Stereoselective Multicomponent Reactions for the Synthesis of Spiro Derivatives: Recent Progress. Eur. J. Org. Chem. 2022 (2022) e202201119. DOI: https://doi.org/10.1002/ejoc.202201119.
  15. L. Gilles, S. Antoniotti, Spirocyclic Compounds in Fragrance Chemistry: Synthesis and Olfactory Properties. ChemPlusChem 87 (2022) e202200227. DOI: https://doi.org/10.1002/cplu.202200227.
  16. R. Rios Torres, Spiro Compounds Synthesis and Applications, John Wiley & Sons, (2022).
  17. N. Patel, U. Patel, A. Dadhania, Highly efficient and green synthesis of spiro[indoline-3,9′-xanthene]trione and spiro[chromene-4,3′-indoline]-3-carbonitrile derivatives in water catalyzed by graphene oxide-supported dicationic ionic liquid. Res. Chem. Intermed. 47 (2021) 2189-2206. DOI: https://doi.org/10.1007/s11164-021-04405-x.
  18. L. Zare Fekri, Green Synthesis of New Category of Pyrano[3,2-c]Chromene-Diones Catalyzed by Nanocomposite as Fe3O4@SiO2-Propyl Covalented Dapsone-Copper Complex. Front. Chem. 9 (2021) 720555. DOI: https://doi.org/10.3389/fchem.2021.720555.
  19. S. Khabnadideh, E. Mirzaei, L. Amiri-Zirtol, L-arginine modified graphene oxide: A novel heterogeneous catalyst for synthesis of benzo[b]pyrans and pyrano[3,2‑c]chromenes. J. Mole. Struct. 1261 (2022) 132934. DOI: https://doi.org/10.1016/j.molstruc.2022.132934.
  20. M. Ahmadian, K. Rad-Moghadam, Z. Gholami, Supercooled deep eutectic melt of tetramethylguanidine hydrochloride and sorbitol: An efficient promoter for synthesis of pyrano[3,2-c]chromenes. J. Mole. Liq. 367 (2022) 120501. DOI: https://doi.org/10.1016/j.molliq.2022.120501.
  21. F. Ghorbanipour, S. Mirani Nezhad, S.A. Pourmousavi, E. Nazarzadeh Zare, G. Heidari, Superparamagnetic polymer nanocomposite as a catalyst for the synthesis of pyrano[3,2-c]chromene, pyrano[2,3-c]pyrazole, and benzylpyrazolyl coumarin. Inorg. Chem. Commun. 147 (2023) 110271. DOI: https://doi.org/10.1016/j.inoche.2022.110271.
  22. M. Ziyaadini, N. Nemat-Bakhsh, S.J. Roudbaraki, M. Ghashang, Zn2SnO4-SnO2 Nano-Composite Promoted Ultrasonic-Assisted Synthesis of Pyran Derivatives, Polycycl. Arom. Compd. 42 (2022) 460-474. DOI: https://doi.org/10.1080/10406638.2020.1743328.
  23. S.J. Roudbaraki, S.S. Mansoor, M. Ghashang, Aqueous media synthesis of pyrano[3, 2-c]chromen derivatives using magnesium oxide nanoparticles as a recyclable catalyst. Polycycl. Arom. Compd. 41 (2021) 211-222. DOI: https://doi.org/10.1080/10406638.2019.1576746
  24. H.-Y. Li, C.-Y. Chen, H.-T. Cheng, Y.-H. Chu, Exploiting 1,2,3-Triazolium Ionic Liquids for Synthesis of Tryptanthrin and Chemoselective Extraction of Copper(II) Ions and Histidine-Containing Peptides. Molecules 21 (2016) 1355. https://doi.org/10.3390/molecules21101355
  25. M.-C. Tseng, H.-T. Cheng, M.-J. Shen, Y.-H. Chu, Bicyclic 1,2,3-Triazolium Ionic Liquids: Synthesis, Characterization, and Application to Rutaecarpine Synthesis. Org. Lett. 13 (2011) 4434-4437. DOI: https://doi.org/10.1021/ol201793v.