Synthesis, Characterization and Biological Activity of Mn (II), Fe (II), Cd (II), and Hg (II) Complexes using (benzo[d]thiazol-2-yldiazenyl)-4-nitroaniline as Novel Ligand in the Epoxidation of Alkenes under Thermal and Microwave Irradiation
- Al Sadder city Education, Rusafa 3, Al-Affa High School, Ministry of Education Baghdad, Baghdad, Iraq
Received: 2024-06-26
Revised: 2024-10-30
Accepted: 2025-05-31
Published 2024-11-25
Copyright (c) 2024 Jinan Mohsen Abdulrasool (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 59
Abstract
Ligand formation in this research was accomplished by reacting each diazonium salt of 2-aminobenzothiazole with 4-nitroaniline. The ligand was characterized using various spectral techniques, including UV-Vis, FTIR, 1H, and 13CNMR, as well as LC-Mass. Furthermore, micro-elemental analysis (C.H.N.S.O) was conducted. Mn (II), Fe (II), Cd (II), and Hg (II) complexes were synthesized and thoroughly analyzed. The differentiation of metals in the chelates was determined through atomic absorption from flame, element analysis, infrared and UV-Vis spectral methods, and conductibility measurements to investigate their magnetic properties. The study provided insights into the molar ratio and continuous variation methods used to identify the compounds. Beer's law was utilized to determine the absorbance range (1×10-4 - 3×10-4 M/L), and complex solutions with high absorbability were observed. Analytical data for each chelated metal was reported in a 1:2 ratio of metallic ligand. The compounds displayed an octahedral geometry, as indicated by physico-chemical reference. Additionally, the biological activity of the compounds was evaluated. Moreover, for the practicality of these complexes, the Mn-complex was studied in the epoxidation of substituted styrene compounds as the target alkene to produce epoxide products.
Research Highlights
- In this study a novel azo ligand was synthesized.
- Different metal complex such as Mn, Fe, Cd, and Hg were prepared and characterized.
- The prepared metal complex were investigated in the antimicrobial test.
- Mn-complex was test in the epoxidation of different styrene derivatives under thermal and microwave irradiations.
- In this research only 2.5 mol% and 1 mol% of catalyst were used for epoxidation of different alkenes.
- In microwave conditions, the yield of the desired products and time of the reaction was improved.
Keywords
- Alkene,
- Catalyst,
- Characterization,
- Epoxidation,
- Metal complex,
- Synthesis
References
- S. Bilgen, Renewable and Sustainable Energy Reviews, 38 (2014) 890-902. https://doi.org/10.1016/j.rser.2014.07.004
- A. Al-Ghandoor, J.O. Jaber, I. Al-Hinti, I.M. Mansour, Renewable and Sustainable Energy Reviews, 13 (2009) 1262-1274. https://doi.org/10.1016/j.rser.2008.09.008
- J. Muzart, Synthesis, 1995 (1995) 1325-1347. 10.1055/s-1995-4128
- S. Jin Choi, U. Sang Shin, S.-H. Kim, Tetrahedron Lett., 117 (2023) 154378. https://doi.org/10.1016/j.tetlet.2023.154378
- B.R. Moser, S.C. Cermak, K.M. Doll, J.A. Kenar, B.K. Sharma, J. Am. Oil Chem. Soc., 99 (2022) 801-842. https://doi.org/10.1002/aocs.12623
- S. Verma, A. Joshi, S.R. De, J.L. Jat, New J. Chem., 46 (2022) 2005-2027. 10.1039/D1NJ04950J
- T. Maharana, N. Nath, H.C. Pradhan, S. Mantri, A. Routaray, A.K. Sutar, React. Funct. Polym., 171 (2022) 105142. https://doi.org/10.1016/j.reactfunctpolym.2021.105142
- A.A. Ryan, S.D. Dempsey, M. Smyth, K. Fahey, T.S. Moody, S. Wharry, P. Dingwall, D.W. Rooney, J.M. Thompson, P.C. Knipe, M.J. Muldoon, Org. Process Res. Dev., 27 (2023) 262-268. 10.1021/acs.oprd.2c00222
- Z. Yan, J. Tian, K. Wang, K.D.P. Nigam, G. Luo, Chem. Eng. Sci., 229 (2021) 116071. https://doi.org/10.1016/j.ces.2020.116071
- M.R. Elsby, R.T. Baker, Chem. Soc. Rev., 49 (2020) 8933-8987. 10.1039/D0CS00509F
- N.W. Kinzel, C. Werlé, W. Leitner, Angew. Chem. Int. Ed., 60 (2021) 11628-11686. https://doi.org/10.1002/anie.202006988
- X. Liu, Z. Chen, S. Xu, G. Liu, Y. Zhu, X. Yu, L. Sun, F. Li, J. Am. Chem. Soc., 144 (2022) 19770-19777. 10.1021/jacs.2c06273
- M.L. Mohammed, B. Saha, Energies, 15 (2022) 2858.
- I. Triandafillidi, M.G. Kokotou, D. Lotter, C. Sparr, C.G. Kokotos, Chem. Sci., 12 (2021) 10191-10196. 10.1039/D1SC02360H
- M. Porchia, M. Pellei, F. Del Bello, C. Santini, Molecules, 25 (2020) 5814.
- R. Mondal, A.K. Guin, G. Chakraborty, N.D. Paul, Org. Biomol. Chem., 20 (2022) 296-328. 10.1039/D1OB01153G
- Y. Tanabe, Y. Nishibayashi, Coord. Chem. Rev., 472 (2022) 214783. https://doi.org/10.1016/j.ccr.2022.214783
- A. Neshat, P. Mastrorilli, A. Mousavizadeh Mobarakeh, Molecules, 27 (2022) 95.
- F. He, K.P. Zois, D. Tzeli, A.A. Danopoulos, P. Braunstein, Coord. Chem. Rev., 514 (2024) 215757. https://doi.org/10.1016/j.ccr.2024.215757
- W. Stroek, M. Albrecht, Chem. Soc. Rev., 53 (2024) 6322-6344. 10.1039/D4CS00021H
- Q. Yan, X. Wu, H. Jiang, H. Wang, F. Xu, H. Li, H. Zhang, S. Yang, Coord. Chem. Rev., 502 (2024) 215622. https://doi.org/10.1016/j.ccr.2023.215622
- F.P. Guengerich, Drug Metab. Disposition, 52 (2024) 493-497. 10.1124/dmd.123.001431
- O. Skorokhod, E. Vostokova, G. Gilardi, BioFactors, 50 (2024) 16-32. https://doi.org/10.1002/biof.1996
- Q. He, M.-P. Pu, Z. Jiang, H. Wang, X. Feng, X. Liu, J. Am. Chem. Soc., 145 (2023) 15611-15618. 10.1021/jacs.3c05476
- Y. Zhao, M. Duan, C. Deng, J. Yang, S. Yang, Y. Zhang, H. Sheng, Y. Li, C. Chen, J. Zhao, Nature Communications, 14 (2023) 1943. 10.1038/s41467-023-37620-8
- H. Liu, W. Liu, G. Xue, T. Tan, C. Yang, P. An, W. Chen, W. Zhao, T. Fan, C. Cui, Z. Tang, G. Li, J. Am. Chem. Soc., 145 (2023) 11085-11096. 10.1021/jacs.3c00460
- H. Hu, Y. Li, Y. Li, Y. Ding, Y. Sun, Y. Li, J. Catal., 421 (2023) 45-54. https://doi.org/10.1016/j.jcat.2023.02.016
- V.K. Tyagi, S.-L. Lo, Renewable and Sustainable Energy Reviews, 18 (2013) 288-305. https://doi.org/10.1016/j.rser.2012.10.032
- T. Wei, Z. Fan, G. Luo, C. Zheng, D. Xie, Carbon, 47 (2009) 337-339. https://doi.org/10.1016/j.carbon.2008.10.013
- H. Naeimi, M. Golestanzadeh, New J. Chem., 39 (2015) 2697-2710. 10.1039/C4NJ02340D
- Á. Díaz-Ortiz, P. Prieto, A. de la Hoz, The Chemical Record, 19 (2019) 85-97. https://doi.org/10.1002/tcr.201800059
- A.d. la Hoz, A. Díaz-Ortiz, A. Moreno, J. Microw. Power Electromagn. Energy, 41 (2006) 45-66. 10.1080/08327823.2006.11688549
- A. de la Hoz, A. Díaz-Ortis, A. Moreno, F. Langa, Eur. J. Org. Chem., 2000 (2000) 3659-3673. https://doi.org/10.1002/1099-0690(200011)2000:22<3659::AID-EJOC3659>3.0.CO;2-0
- P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 57 (2001) 9225-9283. https://doi.org/10.1016/S0040-4020(01)00906-1
- A.M. Jreo, Anal. Biochem, 4 (2015) 1-5. 10.4172/2161-1009.1000167
- G. Iniama, E. Nfor, E. Okon, I. Iorkpiligh, Int. J. Sci. Techn. Res, 3 (2014) 73-77.
- H.M. Farhan, World Science Research Journals, 2 (2014) 26-34.
- G.B. Vadher, R.V. Zala, Int. J. Chem. Sci, 9 (2011) 87-94.
- M. Al-Sheikh, H.Y. Medrasi, K. Usef Sadek, R.A. Mekheimer, Molecules, 19 (2014) 2993-3003.
- A.J. Jarad, S.H. Quiasim, J. Pharm. Biol. Chem. Sci, 9 (2018) 631-642.
- M. Wächtler, J. Guthmuller, L. González, B. Dietzek, Coord. Chem. Rev., 256 (2012) 1479-1508. https://doi.org/10.1016/j.ccr.2012.02.004
- J. Malinowski, D. Zych, D. Jacewicz, B. Gawdzik, J. Drzeżdżon, International Journal of Molecular Sciences, 21 (2020) 5443.
- K. Mostafa MH, I. Eman H, M. Gehad G, Z. Ehab M, B. Ahmed, Open Journal of Inorganic Chemistry, 2012 (2012) 1-9. 10.4236/ojic.2012.22003
- S.R. Al-Ayash, T.H. Al-Noor, A. Abdou, Russ. J. Gen. Chem., 93 (2023) 987-995. 10.1134/S107036322304028X
- H. Pallathadka, H.K. Mohammed, Z.H. Mahmoud, A.A. Ramírez-Coronel, F.M.A. Altalbawy, M.A. Gatea, M. Kazemnejadi, Inorg. Chem. Commun., 154 (2023) 110944. https://doi.org/10.1016/j.inoche.2023.110944
- J. Li, W. Gu, Z. Wang, X. Zhou, Y. Chen, ChemBioChem, 24 (2023) e202200719. https://doi.org/10.1002/cbic.202200719
- M. Alvear, F. Orabona, K. Eränen, J. Lehtonen, S. Rautiainen, M. Di Serio, V. Russo, T. Salmi, Chem. Eng. Sci., 269 (2023) 118467. https://doi.org/10.1016/j.ces.2023.118467
- M. Rocha, S.L.H. Rebelo, C. Freire, Appl. Catal., A, 460-461 (2013) 116-123. https://doi.org/10.1016/j.apcata.2013.04.025
- A. Malik, U.P. Singh, J. Porous Mater., 30 (2023) 2011-2021. 10.1007/s10934-023-01475-7
- J. Liu, W. Wang, L. Wang, P. Jian, J. Colloid Interface Sci., 630 (2023) 804-812. https://doi.org/10.1016/j.jcis.2022.10.076
- C. Salubi, Current Chemistry Letters, 12 (2023) 91-106. 10.5267/j.ccl.2022.9.003
- Y. Fu, L. Liu, S. Tricard, K. Liang, J. Zhang, J. Fang, J. Zhao, Appl. Catal., A, 657 (2023) 119161. https://doi.org/10.1016/j.apcata.2023.119161
- B. Maleki, R. Sandaroos, S. Peiman, Heliyon, 9 (2023).
- R.S. Mahmood, M.I. Abowd, A.B. Sabti, Iran. J. Catal., 13 (2023). 10.30495/ijc.2023.1986079.2007