10.57647/j.ijc.2025.1501.05

Synthesis, Characterization and Biological Activity of Mn (II), Fe (II), Cd (II), and Hg (II) Complexes using (benzo[d]thiazol-2-yldiazenyl)-4-nitroaniline as Novel Ligand in the Epoxidation of Alkenes under Thermal and Microwave Irradiation

  1. Al Sadder city Education, Rusafa 3, Al-Affa High School, Ministry of Education Baghdad, Baghdad, Iraq
Synthesis, Characterization and Biological Activity of Mn (II), Fe (II), Cd (II), and Hg (II) Complexes using (benzo[d]thiazol-2-yldiazenyl)-4-nitroaniline as Novel Ligand in the Epoxidation of Alkenes under Thermal and Microwave Irradiation

Received: 2024-06-26

Revised: 2024-10-30

Accepted: 2025-05-31

Published 2024-11-25

How to Cite

Abdulrasool, J. M. (2024). Synthesis, Characterization and Biological Activity of Mn (II), Fe (II), Cd (II), and Hg (II) Complexes using (benzo[d]thiazol-2-yldiazenyl)-4-nitroaniline as Novel Ligand in the Epoxidation of Alkenes under Thermal and Microwave Irradiation. Iranian Journal of Catalysis, 15(1 (March 2025), 1-14. https://doi.org/10.57647/j.ijc.2025.1501.05

PDF views: 59

Abstract

Ligand formation in this research was accomplished by reacting each diazonium salt of 2-aminobenzothiazole with 4-nitroaniline. The ligand was characterized using various spectral techniques, including UV-Vis, FTIR, 1H, and 13CNMR, as well as LC-Mass. Furthermore, micro-elemental analysis (C.H.N.S.O) was conducted. Mn (II), Fe (II), Cd (II), and Hg (II) complexes were synthesized and thoroughly analyzed. The differentiation of metals in the chelates was determined through atomic absorption from flame, element analysis, infrared and UV-Vis spectral methods, and conductibility measurements to investigate their magnetic properties. The study provided insights into the molar ratio and continuous variation methods used to identify the compounds. Beer's law was utilized to determine the absorbance range (1×10-4 - 3×10-4 M/L), and complex solutions with high absorbability were observed. Analytical data for each chelated metal was reported in a 1:2 ratio of metallic ligand. The compounds displayed an octahedral geometry, as indicated by physico-chemical reference. Additionally, the biological activity of the compounds was evaluated. Moreover, for the practicality of these complexes, the Mn-complex was studied in the epoxidation of substituted styrene compounds as the target alkene to produce epoxide products.

Research Highlights

  • In this study a novel azo ligand was synthesized.
  • Different metal complex such as Mn, Fe, Cd, and Hg were prepared and characterized.
  • The prepared metal complex were investigated in the antimicrobial test.
  • Mn-complex was test in the epoxidation of different styrene derivatives under thermal and microwave irradiations.
  • In this research only 2.5 mol% and 1 mol% of catalyst were used for epoxidation of different alkenes.
  • In microwave conditions, the yield of the desired products and time of the reaction was improved.

Keywords

  • Alkene,
  • Catalyst,
  • Characterization,
  • Epoxidation,
  • Metal complex,
  • Synthesis

References

  1. S. Bilgen, Renewable and Sustainable Energy Reviews, 38 (2014) 890-902. https://doi.org/10.1016/j.rser.2014.07.004
  2. A. Al-Ghandoor, J.O. Jaber, I. Al-Hinti, I.M. Mansour, Renewable and Sustainable Energy Reviews, 13 (2009) 1262-1274. https://doi.org/10.1016/j.rser.2008.09.008
  3. J. Muzart, Synthesis, 1995 (1995) 1325-1347. 10.1055/s-1995-4128
  4. S. Jin Choi, U. Sang Shin, S.-H. Kim, Tetrahedron Lett., 117 (2023) 154378. https://doi.org/10.1016/j.tetlet.2023.154378
  5. B.R. Moser, S.C. Cermak, K.M. Doll, J.A. Kenar, B.K. Sharma, J. Am. Oil Chem. Soc., 99 (2022) 801-842. https://doi.org/10.1002/aocs.12623
  6. S. Verma, A. Joshi, S.R. De, J.L. Jat, New J. Chem., 46 (2022) 2005-2027. 10.1039/D1NJ04950J
  7. T. Maharana, N. Nath, H.C. Pradhan, S. Mantri, A. Routaray, A.K. Sutar, React. Funct. Polym., 171 (2022) 105142. https://doi.org/10.1016/j.reactfunctpolym.2021.105142
  8. A.A. Ryan, S.D. Dempsey, M. Smyth, K. Fahey, T.S. Moody, S. Wharry, P. Dingwall, D.W. Rooney, J.M. Thompson, P.C. Knipe, M.J. Muldoon, Org. Process Res. Dev., 27 (2023) 262-268. 10.1021/acs.oprd.2c00222
  9. Z. Yan, J. Tian, K. Wang, K.D.P. Nigam, G. Luo, Chem. Eng. Sci., 229 (2021) 116071. https://doi.org/10.1016/j.ces.2020.116071
  10. M.R. Elsby, R.T. Baker, Chem. Soc. Rev., 49 (2020) 8933-8987. 10.1039/D0CS00509F
  11. N.W. Kinzel, C. Werlé, W. Leitner, Angew. Chem. Int. Ed., 60 (2021) 11628-11686. https://doi.org/10.1002/anie.202006988
  12. X. Liu, Z. Chen, S. Xu, G. Liu, Y. Zhu, X. Yu, L. Sun, F. Li, J. Am. Chem. Soc., 144 (2022) 19770-19777. 10.1021/jacs.2c06273
  13. M.L. Mohammed, B. Saha, Energies, 15 (2022) 2858.
  14. I. Triandafillidi, M.G. Kokotou, D. Lotter, C. Sparr, C.G. Kokotos, Chem. Sci., 12 (2021) 10191-10196. 10.1039/D1SC02360H
  15. M. Porchia, M. Pellei, F. Del Bello, C. Santini, Molecules, 25 (2020) 5814.
  16. R. Mondal, A.K. Guin, G. Chakraborty, N.D. Paul, Org. Biomol. Chem., 20 (2022) 296-328. 10.1039/D1OB01153G
  17. Y. Tanabe, Y. Nishibayashi, Coord. Chem. Rev., 472 (2022) 214783. https://doi.org/10.1016/j.ccr.2022.214783
  18. A. Neshat, P. Mastrorilli, A. Mousavizadeh Mobarakeh, Molecules, 27 (2022) 95.
  19. F. He, K.P. Zois, D. Tzeli, A.A. Danopoulos, P. Braunstein, Coord. Chem. Rev., 514 (2024) 215757. https://doi.org/10.1016/j.ccr.2024.215757
  20. W. Stroek, M. Albrecht, Chem. Soc. Rev., 53 (2024) 6322-6344. 10.1039/D4CS00021H
  21. Q. Yan, X. Wu, H. Jiang, H. Wang, F. Xu, H. Li, H. Zhang, S. Yang, Coord. Chem. Rev., 502 (2024) 215622. https://doi.org/10.1016/j.ccr.2023.215622
  22. F.P. Guengerich, Drug Metab. Disposition, 52 (2024) 493-497. 10.1124/dmd.123.001431
  23. O. Skorokhod, E. Vostokova, G. Gilardi, BioFactors, 50 (2024) 16-32. https://doi.org/10.1002/biof.1996
  24. Q. He, M.-P. Pu, Z. Jiang, H. Wang, X. Feng, X. Liu, J. Am. Chem. Soc., 145 (2023) 15611-15618. 10.1021/jacs.3c05476
  25. Y. Zhao, M. Duan, C. Deng, J. Yang, S. Yang, Y. Zhang, H. Sheng, Y. Li, C. Chen, J. Zhao, Nature Communications, 14 (2023) 1943. 10.1038/s41467-023-37620-8
  26. H. Liu, W. Liu, G. Xue, T. Tan, C. Yang, P. An, W. Chen, W. Zhao, T. Fan, C. Cui, Z. Tang, G. Li, J. Am. Chem. Soc., 145 (2023) 11085-11096. 10.1021/jacs.3c00460
  27. H. Hu, Y. Li, Y. Li, Y. Ding, Y. Sun, Y. Li, J. Catal., 421 (2023) 45-54. https://doi.org/10.1016/j.jcat.2023.02.016
  28. V.K. Tyagi, S.-L. Lo, Renewable and Sustainable Energy Reviews, 18 (2013) 288-305. https://doi.org/10.1016/j.rser.2012.10.032
  29. T. Wei, Z. Fan, G. Luo, C. Zheng, D. Xie, Carbon, 47 (2009) 337-339. https://doi.org/10.1016/j.carbon.2008.10.013
  30. H. Naeimi, M. Golestanzadeh, New J. Chem., 39 (2015) 2697-2710. 10.1039/C4NJ02340D
  31. Á. Díaz-Ortiz, P. Prieto, A. de la Hoz, The Chemical Record, 19 (2019) 85-97. https://doi.org/10.1002/tcr.201800059
  32. A.d. la Hoz, A. Díaz-Ortiz, A. Moreno, J. Microw. Power Electromagn. Energy, 41 (2006) 45-66. 10.1080/08327823.2006.11688549
  33. A. de la Hoz, A. Díaz-Ortis, A. Moreno, F. Langa, Eur. J. Org. Chem., 2000 (2000) 3659-3673. https://doi.org/10.1002/1099-0690(200011)2000:22<3659::AID-EJOC3659>3.0.CO;2-0
  34. P. Lidström, J. Tierney, B. Wathey, J. Westman, Tetrahedron, 57 (2001) 9225-9283. https://doi.org/10.1016/S0040-4020(01)00906-1
  35. A.M. Jreo, Anal. Biochem, 4 (2015) 1-5. 10.4172/2161-1009.1000167
  36. G. Iniama, E. Nfor, E. Okon, I. Iorkpiligh, Int. J. Sci. Techn. Res, 3 (2014) 73-77.
  37. H.M. Farhan, World Science Research Journals, 2 (2014) 26-34.
  38. G.B. Vadher, R.V. Zala, Int. J. Chem. Sci, 9 (2011) 87-94.
  39. M. Al-Sheikh, H.Y. Medrasi, K. Usef Sadek, R.A. Mekheimer, Molecules, 19 (2014) 2993-3003.
  40. A.J. Jarad, S.H. Quiasim, J. Pharm. Biol. Chem. Sci, 9 (2018) 631-642.
  41. M. Wächtler, J. Guthmuller, L. González, B. Dietzek, Coord. Chem. Rev., 256 (2012) 1479-1508. https://doi.org/10.1016/j.ccr.2012.02.004
  42. J. Malinowski, D. Zych, D. Jacewicz, B. Gawdzik, J. Drzeżdżon, International Journal of Molecular Sciences, 21 (2020) 5443.
  43. K. Mostafa MH, I. Eman H, M. Gehad G, Z. Ehab M, B. Ahmed, Open Journal of Inorganic Chemistry, 2012 (2012) 1-9. 10.4236/ojic.2012.22003
  44. S.R. Al-Ayash, T.H. Al-Noor, A. Abdou, Russ. J. Gen. Chem., 93 (2023) 987-995. 10.1134/S107036322304028X
  45. H. Pallathadka, H.K. Mohammed, Z.H. Mahmoud, A.A. Ramírez-Coronel, F.M.A. Altalbawy, M.A. Gatea, M. Kazemnejadi, Inorg. Chem. Commun., 154 (2023) 110944. https://doi.org/10.1016/j.inoche.2023.110944
  46. J. Li, W. Gu, Z. Wang, X. Zhou, Y. Chen, ChemBioChem, 24 (2023) e202200719. https://doi.org/10.1002/cbic.202200719
  47. M. Alvear, F. Orabona, K. Eränen, J. Lehtonen, S. Rautiainen, M. Di Serio, V. Russo, T. Salmi, Chem. Eng. Sci., 269 (2023) 118467. https://doi.org/10.1016/j.ces.2023.118467
  48. M. Rocha, S.L.H. Rebelo, C. Freire, Appl. Catal., A, 460-461 (2013) 116-123. https://doi.org/10.1016/j.apcata.2013.04.025
  49. A. Malik, U.P. Singh, J. Porous Mater., 30 (2023) 2011-2021. 10.1007/s10934-023-01475-7
  50. J. Liu, W. Wang, L. Wang, P. Jian, J. Colloid Interface Sci., 630 (2023) 804-812. https://doi.org/10.1016/j.jcis.2022.10.076
  51. C. Salubi, Current Chemistry Letters, 12 (2023) 91-106. 10.5267/j.ccl.2022.9.003
  52. Y. Fu, L. Liu, S. Tricard, K. Liang, J. Zhang, J. Fang, J. Zhao, Appl. Catal., A, 657 (2023) 119161. https://doi.org/10.1016/j.apcata.2023.119161
  53. B. Maleki, R. Sandaroos, S. Peiman, Heliyon, 9 (2023).
  54. R.S. Mahmood, M.I. Abowd, A.B. Sabti, Iran. J. Catal., 13 (2023). 10.30495/ijc.2023.1986079.2007