10.57647/j.ijc.2025.1501.04

Functionalized Fe3O4 hybrid nanocatalyst for the green synthesis of polyhydroqunolines, tetrahydrobenzopyranes, and 1,4-dihydropyridines derivatives

  1. Department of Chemistry, Faculty of Science, Arak University, Arak, Iran   AND Institute of Nanoscience and Nanotechnology, Arak University, Arak, Iran
  2. Faculty of Chemistry, Bu-Ali Sina University, Hamedan, Iran
  3. Department of Chemistry, Faculty of Science, Arak University, Arak, Iran
Functionalized Fe3O4 hybrid nanocatalyst for the green synthesis of polyhydroqunolines, tetrahydrobenzopyranes, and 1,4-dihydropyridines derivatives

Received: 2024-06-20

Revised: 2024-09-26

Accepted: 2025-05-31

Published 2024-11-25

How to Cite

Khosravi, K., Azizi, A., Zolfigol, M. A., Afsharnadery, F., & Nazari, Z. (2024). Functionalized Fe3O4 hybrid nanocatalyst for the green synthesis of polyhydroqunolines, tetrahydrobenzopyranes, and 1,4-dihydropyridines derivatives . Iranian Journal of Catalysis, 15(1 (March 2025), 1-15. https://doi.org/10.57647/j.ijc.2025.1501.04

PDF views: 121

Abstract

Recently, nanocatalysts, and especially their magnetic types, have been functionalized by appropriate organic groups and have been widely used in the synthesis of various materials. In this work, functionalized Fe3O4 nanoparticles by tris(hydroxymethyl)aminomethane/cyanuric chloride/2-pyridineethanol/SO3H were synthesized and characterized by FESEM, EDX, FT-IR, VSM, and XRD analyses. Their catalytic efficiency was tested in the synthesis of polyhydroqunolines (19 entries, 12-25 minutes, 85-95%, solvent-free, room temperature), 1,4-dihydropyridines (16 entries, 25-50 minutes, 88-92%, solvent-free, 80 °C),  and tetrahydrobenzopyranes (17 entries, 10-52 minutes, 90-97%, solvent-free, room temperature) derivatives under mild and environmentally friendly reaction conditions. This novel nano organic/inorganic hybrid acidic catalyst was easily separable by an external magnet. Fast reaction times and high purity of the products are the remarkable advantages of this new catalyst.

Keywords

  • 1,4-Dihydropyridines,
  • Green chemistry,
  • Hybrid catalyst,
  • Nanomagnetic,
  • Polyhydroqunolines,
  • Tetrahydrobenzopyranes

References

  1. https://doi.org/10.1016/j.tet.2018.09.041.
  2. K. Khosravi, S. Naserifar, B. Mahmoudi, and K. Khalaji. Phosphorus, Sulfur Silicon Relat. Elem., 192(2017):316–321. DOI: https://doi.org/10.1080/10426507.2016.1237951.
  3. S. Hemmati, A. Sedrpoushan, N. Soudalizadeh, K. Khosravi, and M. Hekmati. Appl. Organomet. Chem., 33 (2019) e5103. DOI: https://doi.org/10.1002/aoc.5103.
  4. E. Alimohammadi, K. Khosravi, and M.A. Zolfigol. J. Iran. Chem. Soc., 19(2022):4721–4734. DOI: https://doi.org/10.1007/s13738-022-02635-3.
  5. L. Heidari and L. Shiri. Appl. Organomet. Chem., 33(2019):4636. DOI: https://doi.org/10.1002/aoc.4636.
  6. M. Kazemi and M. Mohammadi. Appl. Organomet. Chem., (2019):5400. DOI: https://doi.org/10.1002/aoc.5400.
  7. S. Feng, J. Tan, Y. Ma, and L.-Y. Chang. RSC Adv., 13(2023):16078–16090. DOI: https://doi.org/10.1039/D3RA02261G.
  8. M.A. Bodaghifard, M. Hamidinasab, and N. Ahadi. Curr. Org. Chem., 22(2018):234–267. DOI: https://doi.org/10.2174/1385272821666170705144854.
  9. R. Patil, J. Chavan, S. Patel, and A. Beldar. Turk. J. Chem., 45(2021):1299–1326. DOI: https://doi.org/10.3906/kim-2106-5.
  10. J.E. Biggs-Houck, A. Younai, and J. T Shaw. Curr. Opin. Chem. Biol., 14(2010):371–382. DOI: https://doi.org/10.1016/j.cbpa.2010.03.003.
  11. C. Tang and B.T. McInnes, Molecules, 27(2022):5611. DOI: https://doi.org/10.3390/molecules27175611.
  12. H. Ahankar, A. Ramazani, and S. W. Joo. Res. Chem. Intermed., 42(2016):2487–2500. DOI: https://doi.org/10.1007/s11164-015-2163-6.
  13. S. Sahu, T. Sahu, G. Kalyani, and B. Gidwani. J. pharmacopunct., 24(2021):32. DOI: https://doi.org/10.3831/KPI.2021.24.1.32.
  14. A.M. Zonouz, N. Sahranavard, and others. J. Chem., 7(2010):S372–S376. DOI: https://doi.org/10.1155/2010/792730.
  15. D. Kumar, V. Kumar, J. Mundlia, D. Pradhan, and S. Malik. Cent. Nerv. Syst. Agents Med. Chem., 15(2015):23–27. DOI: https://doi.org/10.2174/1871524915666150223121951.
  16. F.H. Mohammed, A.M. Aljeboree, N. Abd Alrazzak, A.F. Alkaim, Y.S. Karim, S.A. Hamood, A.B. Mahdi, M. Abed Jawad, and S. Ahjel. Iran. J. Catal., 12(2022):237–259. DOI: https://doi.org/10.30495/ijc.2022.1957195.1929.
  17. M. Bodaghifard, A. Mobinikhaledi, and S. Asadbegi, Appl. Organomet. Chem., 31(2017):3557. DOI: https://doi.org/10.1002/aoc.3557.
  18. L. Saikia, D. Dutta, and D. K. Catal. Commun., 19(2012):1–4. DOI: https://doi.org/10.1016/j.catcom.2011.12.013.
  19. K. Bozorov, J. Zhao, and H.A. Aisa. Bioorg. Med. Chem., 27(2019):3511–3531. DOI: https://doi.org/10.1016/j.bmc.2019.07.005.
  20. M. Hong, C. Cai, and W.B. Yi. Fluor. Chem., 131(2010):111–114. DOI: https://doi.org/10.1016/j.cclet.2011.07.009.
  21. J.D. Bhatt, T.S. Patel, C.J. Chudasama, and K. D. Patel. ChemistrySelect, 3 (2018) 3632–3640. DOI: https://doi.org/10.1002/slct.201702285.
  22. J. H. Lee. Tetrahedron Lett., 46(2005):7329–7330. DOI: https://doi.org/10.1016/j.tetlet.2005.08.137.
  23. S. Khot, P.B. Auti, and S.A. Khedkar. Mini-Rev. Med. Chem,. 21(2021):135–149. DOI: https://doi.org/10.2174/1389557520666200807130215.
  24. N. George, A.A. Manakkadan, A. Ariyath, S. Maniyamma, V. Vijayakumar, R.G. Pai, and S.M. Zachariah. Curr. Drug Discov. Technol., 16(2019):127–134. DOI: https://doi.org/10.2174/1570163815666180807141922.
  25. N. Shahab, D. Kong, M. Ali, A. Alam, N. Ur Rehman, S. Ullah, Z. Zainab, M. Khan, A. Latif, M. Shah, and others. Res. Chem. Intermed., 49(2023):3005–3028. DOI: https://doi.org/10.1007/s11164-023-05038-y.
  26. S.K. Das, S. Roy, and B. Chattopadhyay. Angew. Chem. Int. Ed., 62(2023):e202210912. DOI: https://doi.org/10.1002/anie.202210912.
  27. D. Elhamifar, Z. Ramazani, M. Norouzi, and R. Mirbagheri. J. Colloid Interface Sci., 511(2018):392–401. DOI: https://doi.org/10.1016/j.jcis.2017.10.013.
  28. A.M. Zonouz, S. Okhravi, and D. Moghani. Monatsh. Chem., 147(2016):1819–1824. DOI: https://doi.org/10.1007/s00706-016-1683-0.
  29. S.J. Tripathi, S. Chakraborty, E. Miller, A.A. Pieper, and B.D. Paul. Br. J. Pharmacol., (2023). DOI: https://doi.org/10.1111/bph.16170.
  30. R. Gupta, D. Advani, D. Yadav, R.K. Ambasta, and P. Kumar. Mol. Neurobiol., 60(2023):6476–6529. DOI: https://doi.org/10.1111/bph.16170.
  31. N. Hazeri, M.T. Maghsoodlou, F. Mir, M. Kangani, H. Saravani, and E. Molashahi. Chin. J. Catal., 35(2014):391–395. DOI: https://doi.org/10.1016/S1872-2067(14)60003-6.
  32. L.-Q. Yu, F. Liu, and Q.-D. You. Org. Prep. Proced. Int., 41(2009):77–82. DOI: https://doi.org/10.1080/00304940802711275.
  33. A. Ghorbani-Choghamarani, M. Nikoorazm, and M. Norouzi. J. Org. Chem. Res., 4(2018):11–22. DOI: https://doi.org/10.22036/org.chem.2017.95828.1102.
  34. S. Balalaie, M. Sheikh-Ahmadi, and M. Bararjanian. Catal. Commun., 8(2007):1724–1728. DOI: https://doi.org/10.1016/j.catcom.2007.01.034.
  35. M.A. Zolfigol, M. Kiafar, M. Yarie, A.A. Taherpour, and M. Saeidi-Rad. RSC Adv., 6(2016):50100–50111. DOI: https://doi.org/10.1039/C6RA12299J.
  36. H. Moghanian, A. Mobinikhaledi, A. Blackman, and E. Sarough-Farahani. RSC Adv., 4(2014):28176–28185. DOI: https://doi.org/10.1039/C4RA03676J.
  37. H. Moghanian, M.A.B. Fard, A. Mobinikhaledi, and N. Ahadi. Res. Chem. Intermed., 44(2018):4083–4101. DOI: https://doi.org/10.1007/s11164-018-3357-5.
  38. S.K. Goswami, L.R. Hanton, C.J. McAdam, S.C. Moratti, and J. Simpson. Acta Crystallogr. E: Crystallogr. Commun., 73(2017):658–663. DOI: https://doi.org/10.1107/S2056989017004959.
  39. M. Shankar, K. Ghosh, K. Mukherjee, R.K. Rit, and A.K. Sahoo. Org. Lett., 20(2018):5144–5148. DOI: https://doi.org/10.1021/acs.orglett.8b02068.
  40. A.M. Ondieki, Z. Birech, K.A. Kaduki, P.W. Mwangi, N.M. Mwenze, M. Juma, C. Jeptoo, M.S. Dlamini, and M. Maaza. Spectrochim. Acta A Mol. Biomol. Spectrosc., (2023):122694. DOI: https://doi.org/10.1016/j.saa.2023.122694.
  41. J.-Y. Feng, Y.-P. Lee, C.-Y. Zhu, P.-J. Hsu, J.-L. Kuo, and T. Ebata. Phys. Chem. Chem. Phys., 22(2020):21520–21534. DOI: https://doi.org/10.1039/D0CP03197F.
  42. A.S. Singh, J.H. Advani, and A.V. Biradar. Dalton Trans., 49(2020):7210–7217. DOI: https://doi.org/10.1039/D0DT00921K.
  43. Y.P. Yew, K. Shameli, M. Miyake, N. Kuwano, N.B. Bt Ahmad Khairudin, S.E. Bt Mohamad, and K.X. Lee. Nanoscale Res. Lett., 11(2016):1–7. DOI: https://doi.org/10.1186/s11671-016-1498-2.
  44. D.N. Gaikwad, S.T. Gaikwad, R.K. Manjul, D.M. Suryavanshi, A.S. Rajbhoj, S.R. Bankar, S.T. Shinde, and N.S. Dhane. Iran. J. Catal., 14(2024):1–14. DOI: https://doi.org/10.57647/j.ijc.2024.1403.28.
  45. E.A. Bakr, M.N. El-Nahass, W.M. Hamada, and T.A. Fayed. RSC Adv., 11(2021):781–797. DOI: https://doi.org/10.1039/d0ra08230a.
  46. A.G. Kolhatkar, A.C. Jamison, D. Litvinov, R.C. Willson, and T.R. Lee. Int. J. Mol. Sci., 14(2013):15977–16009. DOI: https://doi.org/10.3390/ijms140815977.
  47. L. Sun, X. Li, Z. Xu, K. Xie, and L. Liao. Beilstein J. Nanotechnol., 8 (2017) 1769–1773. DOI: https://doi.org/10.3762/bjnano.8.178.
  48. M. Safaiee, B. Ebrahimghasri, M.A. Zolfigol, S. Baghery, A. Khoshnood, and D. A, Alonso. New. J. Chem., 42(2018):12539–12548. DOI: https://doi.org/10.1039/C8NJ02062K.
  49. Q. Zhang, X.-M. Ma, H.-X. Wei, X. Zhao, and J. Luo. RSC Adv., 7(2017):53861–53870. DOI: https://doi.org/10.1039/c7ra10692k.
  50. S. Ghorbani, D. Habibi, S. Heydari, and H.E. Asl. Catal. Commun., 181(2023):106721. DOI: https://doi.org/10.1016/j.catcom.2023.106721.
  51. M. Aghajeri, A.R. Kiasat, and H. Sanaeishoar. Iran. J. Chem. Chem. Eng., 39(2020):35–48. DOI: https://doi.org/10.30492/ijcce.2020.34298.
  52. P. Mayurachayakul, W. Pluempanupat, C. Srisuwannaket, and O. Chantarasriwong. RSC Adv., 7(2017):56764–56770. DOI: https://doi.org/10.1039/C7RA13120H.
  53. M. Maheswara, V. Siddaiah, G.L.V. Damu, and C.V. Rao. Arkivoc, 2(2006):201–206. DOI: http://dx.doi.org/10.3998/ark.5550190.0007.223.
  54. R.S. Kumar, A. Idhayadhulla, A.J.A. Nasser, S. Kavimani, and S. Indumathy. Indian J. Pharm. Sci., 72(2010):719. DOI: https://doi.org/10.4103/0250-474X.84580.
  55. H. Niaz, H. Kashtoh, J.A. Khan, A. Khan, M.T. Alam, K.M. Khan, S. Perveen, M.I. Choudhary, and others. Eur. J. Med. Chem., 95(2015):199–209. DOI: http://dx.doi.org/10.1016/j.ejmech.2015.03.018.
  56. L. Moradi and M. Zare. Green Chem. Lett. Rev., 11(2018):197–208. DOI: https://doi.org/10.1080/17518253.2018.1458160.
  57. E. Hemmati, S. Soleimani-Amiri, and M. Kurdtabar. RSC Adv., 13:(2023)16567–16583. DOI: http://dx.doi.org/10.1039/D3RA01389H.
  58. A. Keyhani and F. Hatamjafari. Orient. J. Chem., 29(2013):783. DOI: http://dx.doi.org/10.13005/ojc/290260.
  59. A. Maleki, Z. Hajizadeh, and K. Valadi. Green Chem. Lett. Rev., 14(2021):62–72. DOI: http://dx.doi.org/10.1080/17518253.2020.1860259.
  60. N.K. Rao, T.N. Rao, B. Parvatamma, K.P. Devi, and S.C. Setty. Bull. Chem. Soc. Ethiop., 32(2018):133–138. DOI: https://dx.doi.org/10.4314/bcse.v32i1.12.
  61. R. Ramesh, P. Vadivel, S. Maheswari, and A. Lalitha. Res. Chem. Intermed., 42(2016):7625–7636. DOI: http://dx.doi.org/10.1007/s11164-016-2557-0.
  62. A.A. Mohammadi, M.R. Asghariganjeh, and A. Hadadzahmatkesh. Arab. J. Chem., 10(2017):S2213–S2216. DOI: https://doi.org/10.1016/j.arabjc.2013.07.055.
  63. M. Esmaeilpour, J. Javidi, F. Dehghani, and F.N. Dodeji. RSC Adv., 5(2015):26625–26633. DOI: https://doi.org/10.1039/C5RA01021G.
  64. A.P. Katariya, A.R. Yadav, O.B. Pawar, P.M. Pisal, J.N. Sangshetti, M.V. Katariya, and S.U. Deshmukh. ChemistrySelect, 7(2022):e202104184. DOI: https://doi.org/10.1002/slct.202104184.
  65. S.B. Sapkal, K.F. Shelke, B.B. Shingate, and M. S. Shingare. Tetrahedron Lett., 50(2009):1754–1756. DOI: https://doi.org/10.1016/j.tetlet.2009.01.140.
  66. M. Kidwai, R. Chauhan, D. Bhatnagar, A.K. Singh, B. Mishra, and S. Dey. Monatsh. Chem., 143(2012):1675–1680. DOI: https://doi.org/10.1007/s00706-012-0742-4.
  67. M.A. Zolfigol, A. Khazaei, A.R. Moosavi-Zare, A. Zare, H.G. Kruger, Z. Asgari, and et al. J. Org. Chem., 77(2012):3640–3645. DOI: https://doi.org/10.1021/jo300137w.
  68. N. Koukabi, E. Kolvari, A. Khazaei, M.A. Zolfigol, B. Shirmardi-Shaghasemi, and H. R. Khavasi. Chem. Commun., 47(2011):9230–9232. DOI: https://doi.org/10.1039/C1CC12693H.
  69. M. Suárez, E. Ochoa, Y. Verdecia, B. Pita, L. Morán, N., Martín, and et al. Tetrahedron, 2(1999):5-1. DOI: https://doi.org/10.1016/S0040-4020(98)01078-3.
  70. A. Maleki, V. Eskandarpour, J. Rahimi, and N. Hamidi. Carbohydr. Polym., 208(2019):251–260. DOI: https://doi.org/10.1016/j.carbpol.2018.12.069.
  71. A. Maleki, R. Firouzi-Haji, and Z. Hajizadeh. Int. J. Biol. Macromol., 116(2018):320–326. DOI: https://doi.org/10.1016/j.ijbiomac.2018.05.035.
  72. J. Davarpanah, M. Ghahremani, and O. Najafi. J. Mol. Struct., 1177(2019):525–535. DOI: https://doi.org/10.1016/j.molstruc.2018.10.002.
  73. J. Davarpanah, A.R. Kiasat, S. Noorizadeh, and M. Ghahremani. J. Mol. Catal. A, 376 (2013) 78–89. DOI: https://doi.org/10.1016/j.molcata.2013.04.020.
  74. J.-J. Xia and G.-W. Wang. Synth., 2005(2005):2379–2383. DOI: https://doi.org/10.1055/s-2005-870022.
  75. D. Azarifar and Y. Abbasi. Synth. Commun., 46(2016):745–758. DOI: https://doi.org/10.1080/00397911.2016.1171360.
  76. G.M. Ziarani, A. Abbasi, A. Badiei, and Z. Aslani. J. Chem., 8(2011):293–299. DOI: https://doi.org/10.1155/2011/367613.
  77. M. Hajjami, F. Gholamian, R.H. Hudson, and A. M. Sanati. Catal. Lett., 149(2019):228–247. DOI: https://doi.org/10.1007/s10562-018-2623-x.
  78. M.A. Bodaghifard, M. Solimannejad, S. Asadbegi, and S. Dolatabadifarahani. Res. Chem. Intermed., 42(2016):1165–1179. DOI: https://doi.org/10.1007/s11164-015-2079-1.
  79. H. Hu, F. Qiu, A. Ying, J. Yang, and H. Meng. Int. J. Mol. Sci., 15(2014):6897–6909. DOI: https://doi.org/10.3390/ijms15046897.
  80. A. Hasaninejad, M. Shekouhy, N. Golzar, A. Zare, and M. M. Doroodmand. Appl. Catal. A-Gen., 402(2011):11–22. DOI: https://doi.org/10.1016/j.apcata.2011.04.012.