10.57647/j.ijc.2025.1501.03

Visible-light-assisted Photocatalytic Removal of Cefixime and Cloxacillin Sodium using Cobalt Oxide Nanosheets

  1. Department of Chemistry, The University of Lahore, Pakistan
  2. Department of Chemistry, The University of Lahore, Pakistan  AND  College of Materials Science and Engineering, Beijing University of Chemical Technology, Beijing, China
  3. Department of Chemistry, University of Chakwal, Pakistan
  4. Department of Pharmacy, University of Chakwal, Pakistan
Visible-light-assisted Photocatalytic Removal of Cefixime and Cloxacillin Sodium using Cobalt Oxide Nanosheets

Received: 2024-04-27

Revised: 2024-06-29

Accepted: 2025-05-31

Published 2024-11-25

How to Cite

Amin, M. U., Ali, Z., Ahmed, S., Saleem, A., Younas, U., Hassan, F., & Mahmood, A. (2024). Visible-light-assisted Photocatalytic Removal of Cefixime and Cloxacillin Sodium using Cobalt Oxide Nanosheets. Iranian Journal of Catalysis, 15(1 (March 2025), 1-7. https://doi.org/10.57647/j.ijc.2025.1501.03

PDF views: 107

Abstract

The rise of consumerism and the pharmaceutical industries has led to an increase in waste drugs being dumped into water resources, causing severe environmental and health consequences. The Cobalt Oxide (Co3O4) nanosheets were prepared using the precipitation method under mild conditions. The formed Co3O4 was characterized using various spectroscopic techniques, including FTIR, X-ray diffraction, SEM, and UV-Vis analysis. The Co3O4 photocatalytic process has shown significant potential as an affordable, sustainable, and eco-friendly method of treating pharmaceutical drugs from wastewater. The highest photocatalytic degradation was obtained at an initial concentration of 10 ppm with an irradiation time of 180 minutes for cefixime and cloxacillin sodium. This study provides new insight and potential for practical application to overcome the pollution of emerging pollutants.

Research Highlights

  • Fabrication of cobalt oxide nanosheets under mild conditions.
  • Visible-light-assisted degradation of cefixime and cloxacillin sodium.
  • Maximum degradation was achieved at 10 ppm with an irradiation time of three hours.
  • The removal efficiency of pharmacuticals mainly depends upon the free radicals.
  • Provides new insight into the pollution control of emerging pollutants.

Keywords

  • Cefixime,
  • Cobalt oxide,
  • Cloxacillin Sodium,
  • Nanosheets,
  • Photodegradation,
  • Pharmaceuticals

References

  1. J. Low, J. Yu, M. Jaroniec, S. Wageh, and A. A. Al-Ghamdi, Adv Mater, 29(2017):1601694. DOI: 10.1002/adma.201601694.
  2. A. Kudo and Y. Miseki, Chem Soc Rev., 38(2009):253-78. DOI: https://doi.org/10.1039/B800489G.
  3. M. A. Ahmed and A. A. Mohamed, RSC Adv., 13(2023):421-439. DOI: https://doi.org/10.1039/D2RA07225D.
  4. D. V. Wellia, Y. Kusumawati, L. J. Diguna, and M. I. Amal. Nanocomposites for visible light-induced photocatalysis, Springer Cham (2017) pp. 1-17. DOI: https://doi.org/10.1007/978-3-319-62446-4
  5. H. Tong, S. Ouyang, Y. Bi, N. Umezawa, M. Oshikiri, and J. Ye, Adv Mater, 24(2012):229-51. DOI: https://doi.org/10.1002/adma.201102752.
  6. B. Ohtani, J. Photochem. Photobio. C: Photochemistry Reviews, 11(2010):157-178. DOI: https://doi.org/10.1016/j.jphotochemrev.2011.02.001.
  7. A. Fujishima and K. Honda, nature, 238(1972):37-38. DOI: https://doi.org/10.1038/238037a0.
  8. R. Javaid, U. Y. Qazi, A. Ikhlaq, M. Zahid, and A. Alazmi, J. Environment Managem, 290(2021):112605. DOI: https://doi.org/10.1016/j.jenvman.2021.112605.
  9. U. I. Gaya and A. H. Abdullah, J. Photochem. Photobio. C: Photochemistry reviews, 9(2008):1-12. DOI: https://doi.org/10.1016/j.jphotochemrev.2007.12.003.
  10. A. Mills and S. Le Hunte, J. Photochem. Photobio. A: Chemistry, 108(1997):1-35. DOI: https://doi.org/10.1016/S1010-6030(97)00118-4.
  11. J. Yang, D. Wang, H. Han, and C. Li, Acc. chem. Res., 46(2013):1900-1909. DOI: 10.1021/ar300227e.
  12. X. Li, J. Yu, and M. Jaroniec, Chem. Soc. Rev., 45(2016):2603-2636. DOI: https://doi.org/10.1039/C5CS00838G
  13. J. Hong, S. Yin, Y. Pan, J. Han, T. Zhou, and R. Xu. Nanoscale, 6(2014):14984–14990. DOI: https://doi.org/10.1039/C4NR05341A.
  14. X. Li, Y. Chen, Y. Tao, L. Shen, Z. Xu, Z. Bian, and H. Li. Chem Catalysis, 2(2022):1315–1345. DOI: https://doi.org/10.1016/j.checat.2022.04.007.
  15. A. Fujishima and X. Zhang. Comptes Rendus Chimie, 9(2006):750–760. DOI: https://doi.org/10.1016/j.crci.2005.02.055.
  16. S. Ortelli, M. Blosi, C. Delpivo, D. Gardini, M. Dondi, I. Gualandi, D. Tonelli, V. Aina, I. Fenoglio, A. A. Gandhi, S. A. M. Tofail, and
  17. A. L. Costa. J. Photochem. Photobio. A: Chem., 292(2014):26–33. DOI: https://doi.org/10.1016/j.jphotochem.2014.07.006.
  18. X. Pan, M.-Q. Yang, and Y.-J. Xu. Physic. Chem. Chem. Physic., 16(2014):5589–5599. DOI: https://doi.org/10.1039/C3CP55038A.
  19. H. Kumari, Sonia, Suman, R. Ranga, S. Chahal, S. Devi, S. Sharma, S. Kumar, P. Kumar, S. Kumar, A. Kumar, and R. Parmar. Water Air
  20. Soil Pollut, 234(2023):349. DOI: https://doi.org/10.1007/s11270-023-06359-9.
  21. S. A. Beknalkar, A. M. Teli, and J. C. Shin. J. Mater. Sci. Tech., 166(2023):208–233. DOI: https://doi.org/10.1016/j.jmst.2023.04.066.
  22. M. Hafeez, R. Shaheen, B. Akram, S. Haq, S. Mahsud, S. Ali, and R. T. Khan. Mater. Res. Express, 7(2020):025019. DOI: https://doi.org/10.1088/2053-1591/ab70dd.