10.57647/j.ijc.2024.1404.45

[Fe3O4@SiO2@Si(CH2)3–NMe2–(CH2)2–NMe2–SO3H][Cl]2 as a novel magnetic nanocatalyst for the synthesis of bis(6-amino-1,3-dimethyl-uracil-5-yl) methanes

  1. Department of Chemistry, Faculty of Nano and Bio Science and Technology, Persian Gulf University, Bushehr, Iran
  2. Department of Chemistry, Payame Noor University, Tehran, Iran
  3. Chemistry Department, College of Sciences, Shiraz University, Shiraz, Iran  AND  Department of Chemical Engineering, Hamedan University of Technology, Hamedan, Iran
[Fe3O4@SiO2@Si(CH2)3–NMe2–(CH2)2–NMe2–SO3H][Cl]2 as a novel magnetic nanocatalyst for the synthesis of bis(6-amino-1,3-dimethyl-uracil-5-yl) methanes

Received: 2024-06-02

Revised: 2024-10-02

Accepted: 2024-11-01

Published 2024-11-16

How to Cite

Zare, A. ., Dianat, M. ., Moosavi-Zare, A. R. ., & Monfared, F. . (2024). [Fe3O4@SiO2@Si(CH2)3–NMe2–(CH2)2–NMe2–SO3H][Cl]2 as a novel magnetic nanocatalyst for the synthesis of bis(6-amino-1,3-dimethyl-uracil-5-yl) methanes. Iranian Journal of Catalysis, 14(4), 1-14. https://doi.org/10.57647/j.ijc.2024.1404.45

PDF views: 54

Abstract

A new magnetic nanomaterial, namely [Fe3O4@SiO2@Si(CH2)3–NMe2–(CH2)2–NMe2–SO3H][Cl]2 (FSCNSC) was synthesized, and characterized by energy-dispersive X-ray spectroscopy (EDS), elemental mapping, field emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), FT-IR, vibrating-sample magnetometery (VSM), thermogravimetric (TG) and derivative thermogravimetry (DTG) analyses. Afterward, it was used as a highly effective catalyst for the synthesis of bis(6-amino-1,3-dimethyluracil-5-yl)methanes under solvent-free conditions. FSCNSC was better than many of the reported catalysts for the synthesis of this category of uracil derivatives in terms of the reaction conditions, the reaction times, and yields.

Research Highlights:

  • NMR analyses predicted the cost-effective replacement of ORR catalysts of PEMFCs.
  • Ni-doped (1%) rutile catalyst shows a significant level of chemical shift and charge density of electrons.
  • NMR is a potential analysis technique to measure the performances of a catalyst with surface defects.

Keywords

  • [Fe3O4@SiO2@Si(CH2)3–NMe2–(CH2)2–NMe2–SO3H][Cl]2,
  • Magnetic nanocatalyst,
  • Bis(6-amino-1,3-dimethyluracil-5-yl)methanes,
  • 6-Amino-1,3-dimethyluracil,
  • Solvent-free

References

  1. F. Kalantari, A. Ramazani, and M.R. Poor Heravi. Recent advances in the applications of hybrid magnetic nanomaterials as magnetically retrievable nanocatalysts. Curr. Org. Chem., 23(2019):136-163. DOI: https://doi.org/10.2174/1385272823666190206142328.
  2. M. Salimi, M.A. Nasseri, and B. Niroomand Jazi. Cu(II)-immobilized on functionalized magnetic nano-fibrillated cellulose (Fe3O4@NFC/E-CHDA-CuII): a novel, efficient, and magnetically nanocatalyst for the one-pot synthesis of tetrahydrobenzo[b]pyran derivatives. J. Iran. Chem. Soc., 16(2019):2221-2230. DOI: https://doi.org/10.1007/s13738-019-01689-0.
  3. E. Mohamadzadeh and Z. Gordi. Application of Fe3O4/SiO2/CeO2 nanocomposite, an efficient and magnetic catalyst, to synthesize 2,3-dihydroquinazolin-4(1H)-ones derivatives. Iran. J. Catal., 12(2022):169-180. DOI: https://doi.org/10.30495/IJC.2022.689839.
  4. A. Zare, N. Lotfifar, and M. Dianat. Preparation, characterization, and application of nano-[Fe3O4@-SiO2@R-NHMe2][H2PO4] as a novel magnetically recoverable catalyst for the synthesis of pyrimido[4,5-b]quinolines. J. Mol. Struct., 1211(2020):128030. DOI: https://doi.org/10.1016/j.molstruc.2020.128030.
  5. M. Nikpassand and M.J. Farshami. One-pot synthesis of novel 3-pyrazolyl-4H-1,2,4-triazoles using amino glucose‐functionalized silica-coated NiFe2O4 nanoparticles as a magnetically separable catalyst. J. Clust. Sci., 32(2021):975-982. DOI: https://doi.org/10.1007/s10876-020-01855-y.
  6. R. Jahanshahi, A. Khazaee, S. Sobhani, and J.M. Sansano. g-C3N4/-Fe2O3/TiO2/Pd: a new magnetically separable photocatalyst for visible-light-driven fluoride-free Hiyama and Suzuki-Miyaura cross-coupling reactions at room temperature. New J. Chem., 44(2020):11513-11526. DOI: https://doi.org/10.1039/D0NJ01599G.
  7. A. Ghobadpoor, M.M. Eskandari, A. Zare, and M. Karami. Novel nanomagnetic material with dimethylamino tag: a selective and recyclable catalyst for the reaction of malononitrile, aryl aldehydes and dimedone. Iran. J. Catal., 11(2021):69-75. https://oiccpress.com/ijc/article/view/3584.
  8. M. Nikpassand, A. Keyhani, L. Zare Fekri, and R.S. Varma. Mechanochemical synthesis of azo-linked 2-amino-4H-chromene derivatives using Fe3O4@SiO2@KIT-6-NH2@Schiff-base complex nanoparticles. J. Mol. Struct., 1251(2022):132065. DOI: https://doi.org/10.1016/j.molstruc.2021.132065.
  9. P. Ghasemi, M. Yarie, M.A. Zolfigol, A.A. Taherpour, and M. Torabi. Ionically tagged magnetic nanoparticles with urea linkers: application for preparation of 2-aryl-quinoline-4-carboxylic acids via an anomeric-based oxidation mechanism. ACS Omega, 5(2020):3207-3217. DOI: https://doi.org/10.1021/acsomega.9b03277.
  10. M. Nikpassand. NiFe2O4@SiO2@glucose amine nanoparticle catalyzed reaction of azo-linked thiosalicylic acid with CO2: access to azo-linked benzo[d]oxathiine-2,4-diones. Dyes Pigm., 173(2020):107936. DOI: https://doi.org/10.1016/j.dyepig.2019.107936.
  11. F. Hassani Bagheri, H. Khabazzadeh, M. Fayazi, and M. Rezaeipour. Synthesis of CuO and Cu2O nanoparticles stabilized on the magnetic Fe3O4-montmorillonite-K10 and comparison of their catalytic activity in A3 coupling reaction. J. Iran. Chem. Soc., 20(2023): 1439-1456. DOI: https://doi.org/10.1007/s13738-023-02768-z.
  12. M. Nikpassand, L. Zare Fekri, R.S. Varma, L. Hassanzadi, and F. Sedighi Pashaki. Green synthesis of novel 5-amino-bispyrazole-4-carbonitriles using a recyclable Fe3O4@SiO2@vanillin@thioglycolic acid nano-catalyst. RSC Adv., 12(2022):834-844. DOI: https://doi.org/10.1039/D1RA08001F.
  13. A. Zare and M. Barzegar. Dicationic ionic liquid grafted with silica-coated nano-Fe3O4 as a novel and efficient catalyst for the preparation of uracil-containing heterocycles. Res. Chem. Intermed., 46(2020):3727-3740. DOI: https://doi.org/10.1007/s11164-020-04171-2.
  14. S. Khaef, A. Rostami, V. Khakyzadeh, M.A. Zolfigol, A.A. Taherpour, and M. Yarie. Regioselective ortho-C-H sulfenylation of free phenols catalyzed by Co(II)-immobilized on silica-coated magnetic nanoparticles. Mol. Catal., 484(2020):110772. DOI: https://doi.org/10.1016/j.mcat.2020.110772.
  15. T. Shafaati, M. Nikpassand, M. Mokhtary, and L. Zare Fekri. Synthesis of novel azo-linked 4-arylidene-benzodiazepine using cellulose@SP@catechin@Fe3O4 nanocomposite and study of their antioxidant activity. Appl. Organomet. Chem., 38(2024):e7470. DOI: https://doi.org/10.1002/aoc.7470.
  16. S. Beiranvand, M. Norouzi, and B. Tahmasbi. One-pot multicomponent synthesis of pyrano[2,3-c]pyrazole and 2-amino-4Hbenzo[b]pyrans catalyzed by hercynite@SiO2@tris as novel and efficient nanocatalyst. Curr. Org. Chem., 28(2024):777-788. DOI: https://doi.org/10.2174/0113852728270373240222095835.
  17. S. Esmaili, A. Khazaei, and A.R. Moosavi-Zare. Multi-component synthesis of pyrido[2,3-d]pyrimidines catalyzed by nano magnetite Schiff base complex. Polycycl. Aromat. Compd., 43(2023):6615-6626. DOI: https://doi.org/10.1080/10406638.2022.2123539.
  18. M. Nikpassand, F. Rafat, and L. Zare Fekri. Greener synthesis of novel azo-linked 1,2,4-triazolidine-3-ones (thiones) using recyclable Fe3O4@SP@vanillin@thioglycolic acid magnetic nanocomposite. Org. Prep. Proced. Int., 56(2024):234-242. DOI: https://doi.org/10.1080/00304948.2023.2259779
  19. F. Hakimi, A. Sharifi-Zarchi, and E. Golrasan. Bifunctional polyethylene glycol/ethylenediamine nanomagnetic phase-transfer catalyst: preparation, characterization, and application in Knoevenagel condensation. Chem. Methodol., 7(2023):489-498. DOI: https://doi.org/10.22034/chemm.2023.392041.1667.
  20. A. Zarnegaryan and A. Salimi Beni. Immobilization of hexamolybdate onto carbon-coated Fe3O4 nanoparticle: A novel catalyst with high activity for oxidation of alcohols. J. Organomet. Chem., 953(2021):122043. DOI: https://doi.org/10.1016/j.jorganchem.2021.122043.
  21. M. Gharib, M. Nikpassand, M. Mokhtary, and L. Zare Fekri. “Glucono-delta-lactone” as a substrate for preparation of new magnetically recoverable nanocatalyst for the environmentally benign synthesis of novel azo linked 3-methyl-isoxazol-5-ones. Synth. Commun., 53(2023):1935-1953. DOI: https://doi.org/10.1080/00397911.2023.2258529.
  22. T. Arun, K. Prabakaran, R. Udayabhaskar, R.V. Mangalaraja, and A. Akbari-Fakhrabadi. Carbon decorated octahedral shaped Fe3O4 and α-Fe2O3 magnetic hybrid nanomaterials for next generation supercapacitor applications. Appl. Surf. Sci., 485(2019):147-157. DOI: https://doi.org/10.1016/j.apsusc.2019.04.177.
  23. M.B. Askari, A. Beheshti-Marnani, M. Seifi, S.M. Rozati, and P. Salarizadeh. Fe3O4@MoS2/RGO as an effective nano-electrocatalyst toward electrochemical hydrogen evolution reaction and methanol oxidation in two settings for fuel cell application. J. Colloid Interf. Sci., 537(2019):186-196. DOI: https://doi.org/10.1016/j.jcis.2018.11.019.
  24. A. Lashgarinejad, S.S. Hosseini, V. Irani, M.H. Ghasemi, R. Mohammadpour, and Ahmad Tavasoli. Enhancement of CO2 absorption and heat transfer properties using amine functionalized magnetic graphene oxide/MDEA nanofluid. J. Iran. Chem. Soc., 20(2023):1629-1642. DOI: https://doi.org/10.1007/s13738-023-02783-0.
  25. N. Zekri and R. Fareghi-Alamdari. Synthesis of new magnetic, reusable oil sorbent catalysts based on dodecanol and dodecyl sulfate: their application for oil/water separation. Iran. J. Catal., 14(2024):142402. DOI: https://doi.org/10.57647/j.ijc.2024.1401.02.
  26. I. Abyar, H. Asadollahzadeh, S.Z. Mohammadi, M. Shahidi, and M. Ghazizadeh. Electrochemical determination of 6-tioguanine by using modified screen-printed electrode: magnetic core-shell Fe3O4@SiO2/MWCNT nanoparticles. J. Iran. Chem. Soc., 20(2023):1237-1245. DOI: https://doi.org/10.1007/s13738-023-02751-8.
  27. M.A. Farajzadeh, S. Shaghaghipour, M. Abbaspour, and M.R. Afshar Mogaddam. Preparation of magnetic graphene nanocomposite based on metallic iron and its application in the extraction and preconcentration of some pesticides from fruit juice, river water, and wastewater samples. J. Iran. Chem. Soc., 20(2023):1879-1890. DOI: https://doi.org/10.1007/s13738-023-02804-y.
  28. A. Selmi, H. Teymourinia, A. Zarei, M. Timoumi, and A. Ramazani. CMCFO-Cr0.1 nanoferrites: sol-gel synthesis, structural, and magnetic studies: applications for photodegradation of Congo red dye. Iran. J. Catal., 12(2022):97-106. DOI: https://doi.org/10.30495/ijc.2022.689626.
  29. A. Nasiri, F. Tamaddon, M.H. Mosslemin, and M. Faraji. A microwave assisted method to synthesize nano CoFe2O4@methyl cellulose as a novel metal-organic framework for antibiotic degradation. MethodsX, 6(2019):1557-1563. DOI: https://doi.org/10.1016/j.mex.2019.06.017.
  30. E. Noroozizadeh, A.R. Moosavi-Zare, M.A. Zolfigol, M. Zarei, R. Karamian, M. Asadbegy, S. Yari, and S.H. Moazzami Farida. Synthesis of bis-coumarins over acetic acid functionalized poly(4-vinylpyridinum) bromide (APVPB) as a green and efficient catalyst under solvent-free conditions and their biological activity. J. Iran. Chem. Soc., 15(2018):471-481. DOI: https://doi.org/10.1007/s13738-017-1247-1.
  31. S. Mehrizi Marvast and E. Rostami. Graphene oxide modified with tetramethylethylenediamine ammonium salt as a powerful catalyst for production of trisubstituted imidazoles. Asian J. Green Chem., 8(2024):261-277. DOI: https://doi.org/10.48309/AJGC.2024.430848.1469.
  32. S. Rezayati, F. Kalantari, A. Ramazani, S. Sajjadifar, H. Aghahosseini, and A. Rezaei. Magnetic silica-coated picolylamine copper complex [Fe3O4@SiO2@GP/picolylamine-Cu(II)]-catalyzed Biginelli annulation reaction Inorg. Chem., 61(2022):992-1010. DOI: https://doi.org/10.1021/acs.inorgchem.1c03042.
  33. A. Zare, M. Dianat, and M.M. Eskandari. A novel organic-inorganic hybrid material: production, characterization and catalytic performance for the reaction of arylaldehydes, dimedone and 6-amino-1,3-dimethyluracil. New J. Chem., 44(2020):4736-4743. DOI: https://doi.org/10.1039/C9NJ06393E.
  34. F. Tamaddon and D. Azadi. Nicotinium methane sulfonate (NMS): A bio-renewable protic ionic liquid and bi-functional catalyst for synthesis of 2-amino-3-cyano pyridines. J. Mol. Liq., 249(2018):789-794. DOI: https://doi.org/10.1016/j.molliq.2017.10.153.
  35. A. Zare and M. Oraki. Fabrication of a novel organic-inorganic hybrid nanocatalyst and its application for the synthesis of bis(pyrazolyl)methanes. Iran. J. Catal., 13(2023):201-210. DOI: https://doi.org/10.30495/ijc.2023.1983633.2003.
  36. M. Fathalla, C.M. Lawrence, N. Zhang, J.L. Sessler, and J. Jayawickrama. Base-pairing mediated non-covalent polymers. Chem. Soc. Rev., 38(2009):1608-1620. DOI: https://doi.org/10.1039/B806484A.
  37. V.E. Semenov, A.D. Voloshina, E.M. Toroptzova, N.V. Kulik, V.V. Zobov, R.K. Giniyatullin, A.S. Mikhailov, A.E. Nikolaev, V.D. Akamsin, and V.S. Reznik. Antibacterial and antifungal activity of acyclic and macrocyclic uracil derivatives with quaternized nitrogen atoms in spacers. Eur. J. Med. Chem., 41(2006):1093-1101. DOI: https://doi.org/10.1016/j.ejmech.2006.03.030.
  38. M. Güney, H. Çavdar, M. Şentürk, and D. Ekinci. Synthesis and carbonic anhydrase inhibitory properties of novel uracil derivatives. Bioorg. Med. Chem. Lett., 25(2015):3261-3263. DOI: https://doi.org/10.1016/j.bmcl.2015.05.073.
  39. M.S. Novikov, D.A. Babkov, M.P. Paramonova, A.L. Khandazhinskaya, A.A. Ozerov, A.O. Chizhov, G. Andrei, R. Snoeck, J. Balzarini, and K.L. Seley-Radtke. Synthesis and anti-HCMV activity of 1-[ω-(phenoxy)alkyl]uracil derivatives and analogues thereof. Bioorg. Med. Chem., 21(2013):4151-4157. DOI: https://doi.org/10.1016/j.bmc.2013.05.009.
  40. S. Zhao, K. Li, Y. Jin, and J. Lin. Synthesis and biological evaluation of novel 1-(aryl-aldehyde-oxime)uracil derivatives as a new class of thymidine phosphorylase inhibitors. Eur. J. Med. Chem., 144(2018):41-51. DOI: https://doi.org/10.1016/j.ejmech.2017.12.016.
  41. L. Sun, X.-W. Chu, C.-m. Liu, L.-X. Sheng, Z.-X. Chen, and K.-G. Cheng. Antiproliferative activity of ursolic acid/glycyrrhetinic acid-uracil/thymine hybrids. Med. Chem. Res., 28(2019):892-899. DOI: https://doi.org/10.1007/s00044-019-02344-2.
  42. I. Kostova and P.Y. Atanasov. Antioxidant properties of pyrimidine and uracil derivatives. Curr. Org. Chem., 21(2017):2096-2108. DOI: https://doi.org/10.2174/1385272820666161025152154.
  43. R.S. Correa, L.M. Bomfim, K.M. Oliveira, D.R.M. Moreira, M.B.P. Soares, J. Ellena, D.P. Bezerra, and A. A. Batista. Ru(II) complexes containing uracil nucleobase analogs with cytotoxicity against tumor cells. J. Inorg. Biochem., 198(2019):110751. DOI: https://doi.org/10.1016/j.jinorgbio.2019.110751.
  44. E. Lunt and C.G. Newton. Comprehensive Heterocyclic Chemistry, vol. 3, A.R. Katritzky and C.W. Rees (Eds.), Pergamon, Oxford, 1984.
  45. G. Mohammadi Ziarani, N. Hosseini Nasab, and N. Lashgari. Synthesis of heterocyclic scaffolds through 6-aminouracil-involved multicomponent reactions. RSC Adv., 6(2016):38827-38848. DOI: https://doi.org/10.1039/C6RA02834A.
  46. C. Zhi, Z.-Y. Long, J. Gambino, W.-C. Xu, N.C. Brown, M. Barnes, M. Butler, W. LaMarr, and G. E. Wright. Synthesis of substituted 6-anilinouracils and their inhibition of DNA polymerase IIIC and gram-positive bacterial growth. J. Med. Chem., 46(2003):2731-2739. DOI: https://doi.org/10.1021/jm020591z.
  47. G. Brahmachari and B. Banerjee. Ceric ammonium nitrate (CAN): an efficient and eco-friendly catalyst for the one-pot synthesis of alkyl/aryl/heteroaryl-substituted bis(6-aminouracil-5-yl)methanes at room temperature. RSC Adv., 5(2015):39263-39269. DOI: https://doi.org/10.1039/C5RA04723D.
  48. R. Bansal, R.S. Kumar, G. Kumar, S. Thota, S. Thamotharan, V. Parthasarathi, and A. Linden. Formation of aryl-bis(6-amino-1,3-dimethyluracil-5-yl)methanes by reaction of 6-amino-1,3-dimethyluracil with aromatic aldehydes. J. Heterocycl. Chem., 45(2008):1789-1795. DOI: https://doi.org/10.1002/jhet.5570450636.
  49. A. Zare, A. Ghobadpoor, and T. Safdari. Preparation, characterization and utilization of a novel dicationic molten salt as catalyst for the synthesis of bis(6-amino-1,3-dimethyluracil-5-yl)methanes. Res. Chem. Intermed., 46(2020):1319-1327. DOI: https://doi.org/10.1007/s11164-019-04036-3.
  50. A.R. Karimi, Z. Dalirnasab, M. Karimi, and F. Bagherian. Sulfuric acid functionalized silica-coated magnetic nanoparticles: preparation and application in synthesis of mono-, di- and tri[bis(6-aminopyrimidinyl)methanes]. Synthesis, 45(2013):3300-3304. DOI: https://doi.org/10.1055/s-0033-1339761.
  51. J. Azizian, M.R. Mohammadizadeh, F. Teimouri, A.A. Mohammadi, and A.R. Karimi. Reactions of 6-aminouracils: the first simple, fast, and highly efficient synthesis of bis(6-aminopyrimidonyl)methanes (BAPMs) using thermal or microwave-assisted solvent-free methods. Synth. Commun., 36(2006):3631-3638. DOI: https://doi.org/10.1080/00397910600943832.
  52. D. Shi, J. Shi, and S. Rong. A facile and clean synthesis of pyrimidine derivatives via three-component reaction in aqueous media. Chin. J. Chem., 28(2010):791-796. DOI: https://doi.org/10.1002/cjoc.201090148.
  53. A. Zare, J. Atashrooz, and M.M. Eskandari. Synthesis, characterization and application of a novel nanorod-structured organic-inorganic hybrid material as an efficient catalyst for the preparation of aminouracil derivatives. Res. Chem. Intermed., 46(2020):2523-2539. DOI: https://doi.org/10.1007/s11164-020-04104-z.
  54. S. Qu, H. Yang, D. Ren, S. Kan, G. Zou, D. Liand, and M. Li. Magnetite nanoparticles prepared by precipitation from partially reduced ferric chloride aqueous solutions. J. Colloid Interf. Sci., 215(1999):190-192. DOI: https://doi.org/10.1006/jcis.1999.6185.
  55. M.A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery. The first urea-based ionic liquid-stabilized magnetic nanoparticles: an efficient catalyst for the synthesis of bis(indolyl)methanes and pyrano[2,3-d]pyrimidinone derivatives. Appl. Organomet. Chem., 30(2016):273-281. DOI: https://doi.org/10.1002/aoc.3428.
  56. Y.H. Deng, C.C. Wang, J.H. Hu, W.L. Yang, and S.K. Fu. Investigation of formation of silica-coated magnetite nanoparticles via sol-gel approach. Colloids Surf. A., 262(2005):87-93. DOI: https://doi.org/10.1016/j.colsurfa.2005.04.009.
  57. M. Barzegar, A. Zare, A. Ghobadpoor, and M. Dianat. Preparation, characterization and application of a novel organic-inorganic hybrid magnetic nanomaterial as a highly efficient catalyst for the synthesis of bis-coumarins. Iran. J. Catal., 12(2022):13-24. DOI: https://doi.org/10.30495/ijc.2022.688895.
  58. A. Zare, F. Monfared, and S.S. Sajadikhah. Synthesis and characterization of a novel organic-inorganic hybrid salt and its application as a highly effectual Brønsted-Lewis acidic catalyst for the production of N,N′-alkylidene bisamides. Appl. Organomet. Chem., 34(2020):e6046. DOI: https://doi.org/10.1002/aoc.6046.
  59. M.A. Zolfigol, R. Ayazi-Nasrabadi, and S. Baghery. Synthesis of the first nanomagnetic particles with semicarbazide-based acidic ionic liquid tag: an efficient catalyst for the synthesis of 3,3′-(arylmethylene)bis(4-hydroxycoumarin) and 1-carbamato-alkyl-2-naphthol derivatives under mild and green conditions. Appl. Organomet. Chem., 30(2016):500-509. DOI: https://doi.org/10.1002/aoc.3461.