10.57647/j.ijc.2024.1404.44

Synthesis and Characterization of Novel Heavy Metal (Pd (II), Pt (IV), Au (III)) Complexes in the Oxidation of Benzylic Alcohols: Investigation of Cytotoxicity of them using Breast Cancer Cell Line

  1. Department of Chemistry, College of Education for Pure Sciences, University of Karbala, Iraq
Synthesis and Characterization of Novel Heavy Metal (Pd (II), Pt (IV), Au (III)) Complexes in the Oxidation of Benzylic Alcohols: Investigation of Cytotoxicity of them using Breast Cancer Cell Line

Received: 2024-06-21

Revised: 2024-09-30

Accepted: 2024-10-16

Published 2024-10-22

How to Cite

Abdulameer, J. H., Daylee, S. H., & Obaid, N. H. (2024). Synthesis and Characterization of Novel Heavy Metal (Pd (II), Pt (IV), Au (III)) Complexes in the Oxidation of Benzylic Alcohols: Investigation of Cytotoxicity of them using Breast Cancer Cell Line. Iranian Journal of Catalysis, 14(4). https://doi.org/10.57647/j.ijc.2024.1404.44

PDF views: 79

Abstract

In this study, a novel amide ligand was synthesized through the two steps. I) Ethyl 4-nitrobenzoate was synthesized through a condensation reaction between p-nitrobenzoic acid and ethanol in the presence of concentrated H2SO4. II) This compound was further transformed into N, N'-(1,2-phenylene)bis(4-nitrobenzamide) through a chemical reaction with 1,2-benzene diamine. Novel chelating amide ligands were created using amide and its complexes with metal ions such as Pd (II), Pt (IV), and Au (III). The structures of the new compounds were thoroughly analyzed in the solid state using spectroscopy methods such as 1H NMR, UV-Vis, FT-IR, metals and elemental analyses, magnetic sensitivity, and conductance tests at room temperature. The geometry of the resulting complexes was determined to be octahedral for the (Pt-L) complex and square planar for the (Pd-L & Au-L) complexes. The ligand was identified to act as a tetradentate chelate through (N2O2). The Pd catalyst proved to be effective in the selective oxidation of benzylic alcohols to aldehydes when used alongside pyridine and oxygen gas. The reactions primarily produced aldehydes, with minimal conversion to carboxylic acids through further oxidation. Utilizing low catalyst loadings of 1.6 mol% resulted in high conversion rates of up to 100% and remarkable selectivity of up to 97% for the carbonyl derivatives. The Pd-complex catalyst demonstrated effective catalytic activity and maintained its performance over five cycles without any significant loss in activity, suggesting potential economic benefits. Moreover, an in vitro toxicity bioassay was conducted to evaluate the toxicity of the newly synthesized compounds against MDA cell lines, showing promising results as potential novel anticancer candidates, especially in larger quantities. 

Research Highlights

  • In this study, some of the heavy metal including Pd (II), Pt (IV), and Au (II) were chelated with a new amide ligand.
  • The prepared metal complexes were characterized using NMR, FT-IR, UV-Vis and elemental analysis.
  • The Pd-complex was applied in the oxidation of benzylic alcohols under O2
  • The cytotoxicity of the prepared complexes was investigated in breast cancer cell line.

Keywords

  • Alcohol,
  • Cancer,
  • Catalyst,
  • Cytotoxicity,
  • Metal complex,
  • Oxidation

References

  1. T. Mandal, S. Maity, D. Dasgupta, S. Datta, Desalination, 250 (2010) 87-94. https://doi.org/10.1016/j.desal.2009.04.012
  2. T. Mandal, D. Dasgupta, S. Mandal, S. Datta, J. Hazard. Mater., 180 (2010) 204-211. https://doi.org/10.1016/j.jhazmat.2010.04.014
  3. G. Hong Tran, T. Khanh Tran, H.-J. Leu, D. Richards, S.-S. Lo, Arabian Journal of Chemistry, 17 (2024) 105611. https://doi.org/10.1016/j.arabjc.2024.105611
  4. V. Kolkovsky, physica status solidi (a), n/a 2400281. https://doi.org/10.1002/pssa.202400281
  5. S. Abu-Melha, Polyhedron, 252 (2024) 116781. https://doi.org/10.1016/j.poly.2023.116781
  6. N. Nath, S. Chakroborty, K. Pal, A. Barik, N. Priyadarsini Mishra, S. Kralj, Top. Catal., 67 (2024) 192-202. 10.1007/s11244-023-01839-y
  7. H. Alamgholiloo, S. Rostamnia, K. Zhang, T.H. Lee, Y.-S. Lee, R.S. Varma, H.W. Jang, M. Shokouhimehr, ACS Omega, 5 (2020) 5182-5191. 10.1021/acsomega.9b04209
  8. Z. Sun, X. Yang, X.-F. Yu, L. Xia, Y. Peng, Z. Li, Y. Zhang, J. Cheng, K. Zhang, J. Yu, Applied Catalysis B: Environmental, 285 (2021) 119790. https://doi.org/10.1016/j.apcatb.2020.119790
  9. G. Lu, X. Huang, Y. Li, G. Zhao, G. Pang, G. Wang, J. Energ. Chem., 43 (2020) 8-15. https://doi.org/10.1016/j.jechem.2019.07.014
  10. A.H.C. Khavar, Z. Khazaee, A.R. Mahjoub, R. Nejat, J. Photochem. Photobiol. A: Chem., 431 (2022) 114020. https://doi.org/10.1016/j.jphotochem.2022.114020
  11. P. Chandra, T. Ghosh, N. Choudhary, A. Mohammad, S.M. Mobin, Coord. Chem. Rev., 411 (2020) 213241. https://doi.org/10.1016/j.ccr.2020.213241
  12. X. Zhao, Q. Liu, Q. Li, L. Chen, L. Mao, H. Wang, S. Chen, Chem. Eng. J., 400 (2020) 125744. https://doi.org/10.1016/j.cej.2020.125744
  13. Z.-X. He, B. Yin, X.-H. Li, X.-L. Zhou, H.-N. Song, J.-B. Xu, F. Gao, J. Org. Chem., 88 (2023) 4765-4769. 10.1021/acs.joc.2c02667
  14. R. Hong, R.-T. Lan, Y. Ren, L. Xu, Y.-X. Xu, N.A. Shah, R.M. Gul, S. Huang, L. Li, J.-Z. Xu, Z.-M. Li, K. Li, Polymer, 295 (2024) 126773. https://doi.org/10.1016/j.polymer.2024.126773
  15. S. Kundu, D. Sarkar, J. Heterocycl. Chem., 60 (2023) 345-368. https://doi.org/10.1002/jhet.4565
  16. J. De Maron, T. Tabanelli, F. Ospitali, C. Lopez Cruz, P. Righi, F. Cavani, Catal. Sci. Technol., 13 (2023) 1059-1073. 10.1039/D2CY01836E
  17. M.C. Cancellieri, D. Maggioni, L. Di Maio, D. Fiorito, E. Brenna, F. Parmeggiani, F.G. Gatti, Green Chem., 26 (2024) 6150-6159. 10.1039/D4GC00746H
  18. R.K. Sharma, R. Bandichhor, V. Mishra, S. Sharma, S. Yadav, S. Mehta, B. Arora, P. Rana, S. Dutta, K. Solanki, Materials Advances, 4 (2023) 1795-1830. 10.1039/D2MA00977C
  19. D. Tang, G. Lu, Z. Shen, Y. Hu, L. Yao, B. Li, G. Zhao, B. Peng, X. Huang, J. Energ. Chem., 77 (2023) 80-118. https://doi.org/10.1016/j.jechem.2022.10.038
  20. U.R. Pillai, E. Sahle–Demessie, J. Catal., 211 (2002) 434-444. https://doi.org/10.1006/jcat.2002.3771
  21. T. Mallat, A. Baiker, Catal. Today, 19 (1994) 247-283. https://doi.org/10.1016/0920-5861(94)80187-8
  22. C. Venturello, M. Gambaro, J. Org. Chem., 56 (1991) 5924-5931. 10.1021/jo00020a040
  23. K. Sato, M. Aoki, J. Takagi, R. Noyori, J. Am. Chem. Soc., 119 (1997) 12386-12387. 10.1021/ja973412p
  24. T.H. Zauche, J.H. Espenson, Inorg. Chem., 37 (1998) 6827-6831. 10.1021/ic9806784
  25. Z.-F. Yuan, W.-N. Zhao, Z.-P. Liu, B.-Q. Xu, J. Catal., 353 (2017) 37-43. https://doi.org/10.1016/j.jcat.2017.05.006
  26. W.G. Lloyd, J. Org. Chem., 32 (1967) 2816-2819. 10.1021/jo01284a038
  27. V.V. Torbina, A.A. Vodyankin, S. Ten, G.V. Mamontov, M.A. Salaev, V.I. Sobolev, O.V. Vodyankina, Catalysts, 8 (2018) 447.
  28. L. Chen, J. Tang, L.-N. Song, P. Chen, J. He, C.-T. Au, S.-F. Yin, Applied Catalysis B: Environmental, 242 (2019) 379-388. https://doi.org/10.1016/j.apcatb.2018.10.025
  29. J. Jover, M. García-Ratés, N. López, ACS Catal., 6 (2016) 4135-4143. 10.1021/acscatal.6b00832
  30. M. Li, S. Wu, X. Yang, J. Hu, L. Peng, L. Bai, Q. Huo, J. Guan, Appl. Catal., A, 543 (2017) 61-66. https://doi.org/10.1016/j.apcata.2017.06.018
  31. J. Zhu, K. Kailasam, A. Fischer, A. Thomas, ACS Catal., 1 (2011) 342-347. 10.1021/cs100153a
  32. D. Ramakrishna, B.R. Bhat, Inorg. Chem. Commun., 14 (2011) 690-693. https://doi.org/10.1016/j.inoche.2011.02.007
  33. J.U. Ahmad, M.T. Räisänen, M. Leskelä, T. Repo, Appl. Catal., A, 411-412 (2012) 180-187. https://doi.org/10.1016/j.apcata.2011.10.038
  34. P. Gamez, I.W.C.E. Arends, R.A. Sheldon, J. Reedijk, Adv. Synth. Catal., 346 (2004) 805-811. https://doi.org/10.1002/adsc.200404063
  35. J. Muzart, Tetrahedron, 59 (2003) 5789-5816. https://doi.org/10.1016/S0040-4020(03)00866-4
  36. Y. Tamaru, Y. Yamada, K. Inoue, Y. Yamamoto, Z. Yoshida, J. Org. Chem., 48 (1983) 1286-1292. 10.1021/jo00156a028
  37. G. Xu, L. Dai, M. Du, A. Peng, G. Zeng, H. Chen, R. Yan, W. Li, ACS Sustainable Chemistry & Engineering, 12 (2024) 2751-2760. 10.1021/acssuschemeng.3c07316
  38. H. Targhan, A. Rezaei, A. Aliabadi, A. Ramazani, Z. Zhao, H. Zheng, Sci. Rep., 14 (2024) 536. 10.1038/s41598-023-49526-y
  39. X. Feng, S. Shi, G. Zhu, Y. Wang, J. Cao, J. Xu, ACS Catal., 14 (2024) 776-784. 10.1021/acscatal.3c04779
  40. X. Jiang, Y. Chen, Z. Gao, C. Li, J. Li, X. Huang, Inorg. Chem. Commun., 159 (2024) 111798. https://doi.org/10.1016/j.inoche.2023.111798
  41. N.F. Nunheim, W.R. Thiel, ChemCatChem, 16 (2024) e202301120. https://doi.org/10.1002/cctc.202301120
  42. N. Ganji, B. Karimi, H. Vali, ACS Applied Nano Materials, 7 (2024) 2650-2661. 10.1021/acsanm.3c04780
  43. M.J. da Silva, P.H. da Silva Andrade, T.A. Silva, M.B.T. Diniz, S.O. Ferreira, R.C. da Silva, E.N.D. de Araujo, Catal. Lett., 154 (2024) 1648-1663. 10.1007/s10562-023-04441-9
  44. C. Yu, H. Lv, D.K. Macharia, L. Zhang, H. Liu, C. Lu, W. Jiang, Z. Chen, J. Colloid Interface Sci., 672 (2024) 520-532. https://doi.org/10.1016/j.jcis.2024.05.119
  45. C. Xu, R. Zeng, P.K. Shen, Z. Wei, Electrochim. Acta, 51 (2005) 1031-1035. https://doi.org/10.1016/j.electacta.2005.05.041
  46. M. Hronec, Z. Cvengrošová, J. Kizlink, J. Mol. Catal., 83 (1993) 75-82. https://doi.org/10.1016/0304-5102(93)87008-V
  47. P.K. Shen, C. Xu, Electrochem. Commun., 8 (2006) 184-188. https://doi.org/10.1016/j.elecom.2005.11.013
  48. L. Zhao, O. Akdim, X. Huang, K. Wang, M. Douthwaite, S. Pattisson, R.J. Lewis, R. Lin, B. Yao, D.J. Morgan, G. Shaw, Q. He, D. Bethell, S. McIntosh, C.J. Kiely, G.J. Hutchings, ACS Catal., 13 (2023) 2892-2903. 10.1021/acscatal.2c06284
  49. L. Vanoye, B. Guicheret, C. Rivera-Cárcamo, J. Audevard, J. Navarro-Ruiz, I. del Rosal, I.C. Gerber, C.H. Campos, B.F. Machado, J. Volkman, R. Philippe, P. Serp, A. Favre-Réguillon, J. Catal., 424 (2023) 173-188. https://doi.org/10.1016/j.jcat.2023.05.006
  50. N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, L. Prati, J. Catal., 244 (2006) 113-121. https://doi.org/10.1016/j.jcat.2006.08.019
  51. A. Villa, N. Janjic, P. Spontoni, D. Wang, D.S. Su, L. Prati, Appl. Catal., A, 364 (2009) 221-228. https://doi.org/10.1016/j.apcata.2009.05.059
  52. N. Dimitratos, J.A. Lopez-Sanchez, D. Morgan, A.F. Carley, R. Tiruvalam, C.J. Kiely, D. Bethell, G.J. Hutchings, PCCP, 11 (2009) 5142-5153. 10.1039/B900151B
  53. H. Keypour, J. Kouhdareh, R. Karimi-Nami, S. Alavinia, I. Karakaya, S. Babaei, A. Maryamabadi, New J. Chem., 47 (2023) 6730-6738. 10.1039/D3NJ00307H
  54. A. Ramazani, F. Sadri, A. Massoudi, M. Khoobi, S.W. Joo, L. Dolatyari, N. Dayyani, Iran. J. Catal., 5 (2015) 285-291.
  55. H. Aliyan, R. Fazaeli, A.R. Massah, H.J. Naghash, S. Moradi, Iran. J. Catal., 1 (2011) 19-23.
  56. A. Ramazani, S. Taghavi Fardood, Z. Hosseinzadeh, F. Sadri, S.W. Joo, Iran. J. Catal., 7 (2017) 181-185.
  57. S. Iranfar, H. Ziyadi, M. Hekmati, E. Ghasemi, D. Esmaeili, P. Haghighi, Iran. J. Catal., 11 (2021) 347-354.
  58. M. Tayebani, B. Shafaat, M. Iravani, Iran. J. Catal., 5 (2015) 213-221.
  59. O. Clement, B.M. Rapko, B.P. Hay, Coord. Chem. Rev., 170 (1998) 203-243. https://doi.org/10.1016/S0010-8545(98)00066-6
  60. R.L. Chapman, R.S. Vagg, Inorg. Chim. Acta, 33 (1979) 227-234. https://doi.org/10.1016/S0020-1693(00)89480-3
  61. H. Sigel, R.B. Martin, Chem. Rev., 82 (1982) 385-426. 10.1021/cr00050a003
  62. P.C.A. Bruijnincx, P.J. Sadler, Curr. Opin. Chem. Biol., 12 (2008) 197-206. https://doi.org/10.1016/j.cbpa.2007.11.013
  63. I. Ott, R. Gust, Arch. Pharm., 340 (2007) 117-126. https://doi.org/10.1002/ardp.200600151
  64. M.J. Cleare, Coord. Chem. Rev., 12 (1974) 349-405. https://doi.org/10.1016/S0010-8545(00)82029-9
  65. G. Angajala, V. Aruna, P. Pavan, P. Guruprasad Reddy, Bioorg. Chem., 119 (2022) 105533. https://doi.org/10.1016/j.bioorg.2021.105533
  66. M. Cortes-Clerget, N. Akporji, J. Zhou, F. Gao, P. Guo, M. Parmentier, F. Gallou, J.-Y. Berthon, B.H. Lipshutz, Nature Communications, 10 (2019) 2169. 10.1038/s41467-019-09751-4
  67. M.T. Mohammed, W.N. Al-Sieadi, O.H. Al-jeilawi, Eurasian Chemical Communications, 4 (2022) 481-494. 10.22034/ecc.2022.331659.1340
  68. V.K. Bhovi, K. Bharathi, S.P. Melinmath, V. Basavanna, S. Ningaiah, Biointerface research in applied chemistry, 12 (2021) 3607-3617.
  69. V.S. Fedenko, S.A. Shemet, M. Landi, J. Plant Physiol., 212 (2017) 13-28. https://doi.org/10.1016/j.jplph.2017.02.001
  70. G.A. Gamov, M.N. Zavalishin, V.A. Sharnin, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 206 (2019) 160-164. https://doi.org/10.1016/j.saa.2018.08.009
  71. G. Świderski, A.Z. Wilczewska, R. Świsłocka, M. Kalinowska, W. Lewandowski, J. Therm. Anal. Calorim., 134 (2018) 513-525. 10.1007/s10973-018-7524-0
  72. B. Gu, S.M. Cavaletto, D.R. Nascimento, M. Khalil, N. Govind, S. Mukamel, Chem. Sci., 12 (2021) 8088-8095. 10.1039/D1SC01774H
  73. S. Boumendil, J.-P. Cornard, M. Sekkal-Rahal, A. Moncomble, Chem. Phys. Lett., 636 (2015) 39-45. https://doi.org/10.1016/j.cplett.2015.07.019
  74. B. Zouchoune, L. Mansouri, Struct. Chem., 30 (2019) 691-701. 10.1007/s11224-018-1215-0
  75. J.A. Peck, C.D. Tait, B.I. Swanson, G.E. Brown, Geochim. Cosmochim. Acta, 55 (1991) 671-676. https://doi.org/10.1016/0016-7037(91)90332-Y
  76. G. Kalyuzhny, A. Vaskevich, G. Ashkenasy, A. Shanzer, I. Rubinstein, J. Physic. Chem. B, 104 (2000) 8238-8244. 10.1021/jp0010785
  77. B. Karimi, M. Khorasani, H. Vali, C. Vargas, R. Luque, ACS Catal., 5 (2015) 4189-4200. 10.1021/acscatal.5b00237
  78. F. Li, Q. Zhang, Y. Wang, Appl. Catal., A, 334 (2008) 217-226. https://doi.org/10.1016/j.apcata.2007.10.008
  79. R. Bayan, N. Karak, ACS Omega, 2 (2017) 8868-8876. 10.1021/acsomega.7b01504
  80. M.M. Dell’Anna, M. Mali, P. Mastrorilli, P. Cotugno, A. Monopoli, J. Mol. Catal. A: Chem., 386 (2014) 114-119. https://doi.org/10.1016/j.molcata.2014.02.001
  81. X. Wang, G. Wu, N. Guan, L. Li, Applied Catalysis B: Environmental, 115-116 (2012) 7-15. https://doi.org/10.1016/j.apcatb.2011.12.011
  82. G.-J. Chen, J.-S. Wang, F.-Z. Jin, M.-Y. Liu, C.-W. Zhao, Y.-A. Li, Y.-B. Dong, Inorg. Chem., 55 (2016) 3058-3064. 10.1021/acs.inorgchem.5b02973
  83. J. Wang, S.A. Kondrat, Y. Wang, G.L. Brett, C. Giles, J.K. Bartley, L. Lu, Q. Liu, C.J. Kiely, G.J. Hutchings, ACS Catal., 5 (2015) 3575-3587. 10.1021/acscatal.5b00480
  84. Y. Li, J. Huang, X. Hu, F.L.-Y. Lam, W. Wang, R. Luque, J. Mol. Catal. A: Chem., 425 (2016) 61-67. https://doi.org/10.1016/j.molcata.2016.09.030
  85. V.M. Shinde, E. Skupien, M. Makkee, Catal. Sci. Technol., 5 (2015) 4144-4153. 10.1039/C5CY00563A
  86. S. Ghorbani, R. Parnian, E. Soleimani, J. Organomet. Chem., 952 (2021) 122025. https://doi.org/10.1016/j.jorganchem.2021.122025