10.57647/j.ijc.2025.1503.25

A synthesis, characterization and catalytic application of CNT aerogels for conversion of β-nitrostyrenes to arylhydrazones

  1. Department of Chemistry, Isfahan University of Technology, Isfahan 84156-83111, Iran
A synthesis, characterization and catalytic application of CNT aerogels for conversion of β-nitrostyrenes to arylhydrazones

Received: 2025-04-28

Revised: 2025-06-16

Accepted: 2025-07-10

Published in Issue 2025-07-15

How to Cite

Tavakol, H., & Goodarzi, R. (2025). A synthesis, characterization and catalytic application of CNT aerogels for conversion of β-nitrostyrenes to arylhydrazones. Iranian Journal of Catalysis, 15(3 (September 2025). https://doi.org/10.57647/j.ijc.2025.1503.25

PDF views: 96

Supplementary information views: 13

Abstract

In this study, carbon aerogel was first prepared via the reaction between carbon nanotubes and chitosan. The structure and properties of the prepared carbon aerogel were determined using FESEM, EDS, XRD, FTIR, Raman, TEM, and nitrogen adsorption-desorption isotherm (Based on BET theory). Through the various analyses of the aerogel, due to its mesoporous structure and enriched functional surface, the prepared aerogel was a suitable candidate for catalyzing the reaction. Moreover, there were a few reports on the direct use of carbon-based aerogels as a catalyst. Therefore, the reaction between β-nitrostyrene and hydrazine hydrate was considered for this purpose. This reaction is a retro-aza-Henry type reaction, including non-oxidative C=C double bond cleavage, which is a rare phenomenon in organic reactions. The optimized conditions were obtained using several experiments. Based on these experiments, the best result was obtained using 10 mL ethanol as solvent, 25 oC temperature, 30 mg catalyst, and two mmol hydrazine hydrate solution (80%), and in 3 h. According to our experiments, 11 different derivatives of β-nitrostyrene were successfully converted to the corresponding hydrazone in 95-99% yield. The catalyst showed promising results in the reusability experiments, where after six consecutive runs, the yield was reduced by only 5%.

Highlights

·       Metal-free carbon aerogel was prepared and used as a catalyst

·       The reaction between β-nitrostyrene and hydrazine hydrate was performed

·       This studied reaction includes non-oxidative C=C double bond cleavage

·       The reactions were performed at r.t. and completed in 3 h.  

·       11 derivatives of β-nitrostyrene were converted to the hydrazone in 95-99% yield

Keywords

  • Aerogel,
  • Chitosan,
  • CNT,
  • Catalyst,
  • β-nitrostyrene,
  • Hydrazones

References

  1. A. Du, B. Zhou, Z. Zhang, J. Shen, Mater., 6 (2013) 941-968. doi: 10.3390/ma6030941
  2. S. Chrasekaran, P. G. Campbell, T. F. Baumann, M. A. Worsley, J. Mater. Res., 32 (2017) 4166-4185. doi: 10.1557/jmr.2017.411
  3. S. Lyu, H. Chang, L. Zhang, S. Wang, S. Li, Y. Lu, S. Li, Comp. Part B: Eng., 264 (2023) 110888. doi: 10.1016/j.compositesb.2023.110888
  4. A. G. Niculescu, D. I. Tudorache, M. Bocioagă, D. E. Mihaiescu, T. Hadibarata, A.M. Grumezescu, NanoMater., 14 (2024) 469. doi: 10.3390/nano14050469
  5. H. Gu, X. Huo, J. Chen, S. M. El-Bahy, Z. M. El-Bahy, Food Agrorestry, 10 (2022), 1-9. doi: 10.30919/esfaf782
  6. P. Meti, Q. Wang, D. B. Mahadik, K. Y. Lee, Y. D. Gong, H. H. Park, NanoMater., 13 (2023), 1498. doi: 10.3390/nano13091498
  7. W. Yao, A. Hu, J. Ding, N. Wang, Z. Qin, X. Yang, Y. Li, Adv. Mater., 35 (2023), 2301894. doi: 10.1002/adma.202301894
  8. A. C. Pierre, G. M. Pajonk, Chem. Rev., 102 (2002), 4243-4266.
  9. P. Gu, L. Lu, X. Yang, Z. Hu, X. Zhang, Z. Sun, G. Zu, Adv. Func. Mater., 34 (2024), 2400589. doi: 10.1002/adfm.202400589
  10. A. Yousefi, A. Nezamzadeh-Ejhieh, Iranian J. Catal., 11 (2021). doi: ijc/article/view/3600
  11. L. Keshavarz, M. R. Ghaani, J. D. MacElroy, N. J. English, Chem. Eng. J., 412 (2021), 128604. doi: 10.1016/j.cej.2021.128604
  12. G. Ror, L. Vlcek, M. S. Gruszkiewicz, A. A. Chialvo, L. M. Anovitz, J. L. Banuelos, D. R. Cole, J. Phys. Chem. C, 118 (2014), 15525-15533. doi: 10.1021/jp503739x
  13. W. Yang, Cellulose 26 (2019), 6449-6476. doi: 10.1007/s10570-019-02559-x
  14. Y. Liu, M. Hao, Z. Chen, S. Ramakrishna, Y. Liu, X. Wang, Y. Wei, Fuel, 354 (2023), 129338. doi: 10.1016/j.fuel.2023.129338
  15. J. Paul, S. S. Ahankari, Carbohydr. Pol., 309 (2023), 120677. doi: 10.1016/j.carbpol.2023.120677
  16. R. Ganesamoorthy, V. K. Vadivel, R. Kumar, O. S. Kushwaha, H. J. Mamane, Clean. Product, 329 (2021), 129713. doi: 10.1016/j.jclepro.2021.129713
  17. Y. Wang, Z. Chen, L. Yang, C. Bian, Z. Du, T. Xu, L. He, En. Build., 320 (2024), 114617. doi: 10.1016/j.enbuild.2024.114617
  18. N. Zekri, R. Fareghi-Alamdari, Iran. J. Catal., 14 (2024). doi: 10.57647/j.ijc.2024.1401.02
  19. H. Vahabi, F. Gholami, M. Tomas, E. Movahedifar, M. K. Yazdi, M. R. Saeb, J. Vinyl Additive Techn., 30 (2024), 5-25. doi: 10.1002/vnl.22041
  20. Q. Zhang, Q. Xu, D. Yang, X. Wang, M. Zheng, Z. Liu, Wang, J. Chem. Eng. J., (2024) 157355. doi: 10.1016/j.cej.2024.157355
  21. J. Choi, D. J. Suh, Catal. Surveys Asia, 11 (2007), 123-133. doi: 10.1007/s10563-007-9024-2
  22. C. Kim, K. M. Cho, K. Park, J. Y. Kim, G. T. Yun, F. M. Toma, H. T. Jung, Adv. Func. Mater., 31 (2021), 2102142. doi: 10.1002/adfm.202102142
  23. L. Peles‐Strahl, Y. L. Persky, Elbaz, SusMat, 3 (2023), 44-57. doi: 10.1002/sus2.104
  24. K. Gu, E. J. Kim, S. K. Sharma, P. R. Sharma, S. Bliznakov, B. S. Hsiao, M. H. Rafailovich, Mater. Today En., 19 (2021), 100560. doi: 10.1016/j.mtener.2020.100560
  25. J. H. Lee, S. J. Park, Carbon, 163 (2020), 1-18. doi: 10.1016/j.carbon.2020.02.073
  26. H. Yu, S. Oh, Y. Han, S. Lee, H. S. Jeong, H. J. Hong, Chemosphere, 285 (2021), 131448. doi: 10.1016/j.chemosphere.2021.131448
  27. J. Wang, X. Yang, D. Wu, R. Fu, M. S. Dresselhaus, G. J. Dresselhaus, Power Sources, 185 (2008), 589-594. doi: 10.1016/j.jpowsour.2008.06.070
  28. P. Hao, Z. Zhao, J. Tian, H. Li, Y. Sang, G. Yu, A. Umar, Nanoscale, 6 (2014), 12120-12129. doi: 10.1039/C4NR03574G
  29. O. Lori, N. Zion, H. C. Honig, L. Elbaz, ACS Catal., 11 (2021), 13707-13713. doi: 10.1021/acscatal.1c03332
  30. X. Ding, M. Li, J. Jin, X. Huang, X. Wu, L. Feng, Chin. Chem. Letters, 33 (2022), 2687-2691. doi: 10.1016/j.cclet.2021.09.076
  31. S. Xi, Y. Wang, X. K. Zhang, Cao, J. Su, J. Shen, X. Wang, Pol. Testing, 129 (2023), 108259. doi: 10.1016/j.polymertesting.2023.108259
  32. H. J. Kim, W. I. Kim, T. J. Park, H. S. Park, D. J. Suh, Carbon, 46 (2008), 1393-1400. doi: 10.1016/j.carbon.2008.05.022
  33. A. Smirnova, T. Wender, D. Goberman, Y. L. Hu, M. Aindow, W. Rhine, N. M. Sammes, International J. Hydr. En., 34 (2009), 8992-8997. doi: 10.1016/j.ijhydene.2009.08.055
  34. H. Du, B. Li, F. Kang, R. Fu, Y. Zeng, Carbon, 45 (2007), 429-435. doi: 10.1016/j.carbon.2006.08.023
  35. M. Seredych, K. László, T. J. Bosz, ChemCatChem, 7 (2015), 2924-2931. doi: 10.1002/cctc.201500192
  36. R. Li, T. Gao, P. Wang, W. Qiu, K. Liu, Y. Liu, P. Li, Appl. Catal. B: Environ. l, 331 (2023), 122677. doi: 10.1016/j.apcatb.2023.122677
  37. X. Tian, M. Zhou, C. Tan, M. Li, L. Liang, K. Li, P. Su, Chem. Eng. J., 348 (2018), 775-785. doi: 10.1016/j.cej.2018.05.007
  38. R. Du, N. Zhang, J. Zhu, Y. Wang, C. Xu, Y. Hu, J. Zhang, Small, 11 (2015), 3903-3908. doi: 10.1002/smll.201500587
  39. C. C. Wang, S. Y. Lu, Nanoscale, 7 (2015), 1209-1215. doi: 10.1039/C4NR06118G
  40. M. Darrudi, H. Tavakol, M. M. Momeni, Int. J. Hydr. En., 48 (2023), 3495-3510. doi: 10.1016/j.ijhydene.2022.10.145
  41. M. T. Jafari‐Chermahini, H. Tavakol, W. Salvenmoser, ChemistrySelect, 5 (2020), 968-978. doi: 10.1002/slct.201904310
  42. F. Hassani, H. Tavakol, Full. Nanotub. Carbon Nanostruct., 26 (2018), 479-486. doi: 10.1080/1536383X.2018.1448793
  43. B. Abtahi, H. Tavakol, ChemistrySelect, 5 (2020), 12582-12585. doi: 10.1002/slct.202003442
  44. M. A. Ranjbari, H. Tavakol, M. Manoukian, Res. Chem. Intermed., 47 (2021), 709-721. doi: 10.1007/s11164-020-04294-6
  45. S. Shamsaddinimotlagh, M. A. Ranjbari, H. Tavakol, M. Shi, Synlett, 35 (2024), 1822-1827. doi: 10.1055/a-2239-6819
  46. S. Mallakpour, E. Azadi, C. M. Hussain, New J. Chem., 45 (2021), 3756-3777. doi: 10.1039/D0NJ06035F
  47. A. H. Bashal, K. D. Khalil, A. M. Abu-Dief, M. A. El-Atawy, Int. J. Biol. Macromol., 253 (2023), 126856. doi: 10.1016/j.ijbiomac.2023.126856
  48. K. Li, Q. Liu, H. Cheng, M. Hu, S. Zhang, Spectrochim. Acta A, 249 (2021), 119286. doi: 10.1016/j.saa.2020.119286
  49. A. V. N. Shastin, V. Korotchenko, V. G. Nenajdenko, E. S. Balenkova, Tetrahedron, 56 (2021), 6557-6563. doi: 10.1016/S0040-4020(00)00606-2
  50. H. Tavakol, N. J. Abdollahi, Iran. Chem. Soc., 22 (2025), 877-887. doi: 10.1007/s13738-025-03194-z