10.57647/j.ijc.2025.1503.33

Efficient and greener method synthesis of pyrano [2, 3-c] pyrazole derivatives catalyzed by Fe3O4@L-Cys-SH as reusable catalyst

  1. Rani Channamma University, Belagavi, P-B, NH-4-591156, Karnataka. India
  2. Department of Chemistry, Rani Channamma University, Belagavi, P-B, NH-4-591156, Karnataka, India
Efficient and greener method synthesis of pyrano [2, 3-c] pyrazole derivatives catalyzed by Fe3O4@L-Cys-SH as reusable catalyst

Received: 2025-03-04

Revised: 2025-05-16

Accepted: 2025-06-06

Published in Issue 2025-09-30

Published Online: 2025-07-01

How to Cite

Shekhanavar, R., Khatavi, S. Y., & Kamanna, K. (2025). Efficient and greener method synthesis of pyrano [2, 3-c] pyrazole derivatives catalyzed by Fe3O4@L-Cys-SH as reusable catalyst. Iranian Journal of Catalysis, 15(3 (September 2025). https://doi.org/10.57647/j.ijc.2025.1503.33

PDF views: 176

Abstract

The present work describes the eco-friendly preparation of magnetic nanoparticles Fe3O4 (MNPs), and further functionalized with L-Cysteine amino acid. Various analytical and spectroscopic techniques used for the characterization of prepared MNPs and its functionalized materials. Further demonstrated utility of this functionalized MNPs for four component one-pot synthesis of pyrano [2, 3-c]pyrazole derivatives. The synthetic approach outlined is rapid, eco-friendly, and allows for the simple isolation of the product. After recrystallization of the crude product gave a chromatographically pure product, this method found an inexpensive and recyclable catalyst, which was achieved up to four cycles for the synthesis of bioactive heterocycles. The synthesized derivatives were characterized using FT-IR, 1H- & 13C-NMR, and LC-MS. Additionally, some of the selected derivatives showed moderate antioxidant activity (5a, five h, 5i, 5j, 5k, 5n, 5p, and 5q) against a reference.

Keywords

  • Antioxidant,
  • Eco-friendly,
  • Functionalized,
  • Pyrano [2,3-c] pyrazole,
  • Recyclable

References

  1. D. Y. Lee, H. Li, H. J. Lim, H. J. Lee, R. Jeon, and J. H. Ryu. J. Med. Food, 15 (2012):992-999. DOI: https://doi.org/10.1089/jmf.2012.2275.
  2. H. Lim, K. Kubota, A. Kobayashi, T. Seki, and T. Ariga. Biosci.Biotech.Biochem., 63 (1999):298 301. DOI:https://doi.org/10.1271/bbb.63.298.
  3. E. Mukwevho, Z. Ferreira, and A. Ayeleso. Molecules, 19 (2014):19376-19389. DOI: https://doi.org/10.3390/molecules191219376.
  4. M.S. Subramanian, M.S.G. Nandagopal, S. Amin Nordin, K. Thilakavathy, N.Joseph. Molecules, 25 (2020):4111. DOI:https://doi.org/10.3390/molecules25184111.
  5. I. Fernandez, N. Khiar. Chem. Rev.,103 (2003): 3651–3706. DOI:https://doi.org/10.1021/cr990372u.
  6. K. Khosravi, S. Naserifar, and A. Asgari. Lett. Org. Chem., 13(2016):749–756. DOI: https://doi.org/10.2174/1570178614666161123115100.
  7. A. Padwa, W. H. Bullock, A. D. Dys zlewski. J. Org. Chem., 55(1990):955-964. DOI:https://doi.org/10.1021/jo00290a029.
  8. R. V. Kupwade. J.Chem.Rev.,1(2019):99-113. DOI: https://doi.org/10.33945/SAMI/JCR.2019.1.99113.
  9. A. Taketoshi, P. Concepcion, H. Garcia, A. Corma, M. Haruta. Bull. Chem. Soc. Jap., 86 (2013):1412 1418. DOI:https://doi.org/10.1246/bcsj.20130075.
  10. M. A. Zolfigol, A. Khazaei, M. Safaiee, M .Mokhlesi, R. Rostamian, M. Bagheri, M. Shiri, H. G. Kruger. J. Mole .Catal. A Chem., 370 (2013):80-86. DOI: https://doi.org/10.1016/j.molcata.2012.12.015.
  11. A. Rostami, J. Akradi. Tetrahedron Lett., 51 (2010):3501-3503. DOI: https://doi.org/10.1016/j.tetlet.2010.04.103.
  12. A. Bravo, B. Dordi, F. Fontana, F. Minisci. J. Org. Chem., 66 (2001):3232-3234. DOI: https://doi.org/10.1021/jo0017178.
  13. M. G. Kermanshahi, K. Bahrami. RSC Adv., 9 (2019):36103-36112. DOI: https://doi.org/10.1039/C9RA06221A.
  14. B. Maleki, S. Hemmati, A. Sedrpoushan, S. S. Ashrafi, H.Veisi. RSC. Adv, 4 (2014):40505-40510. DOI: https://doi.org/10.1039/C4RA06132B.
  15. H. Golchoubian, F. Hosse. in poor. Molecules, 12 (2007):304-311. DOI: https://doi.org/10.3390/12030304.
  16. M. S. Mashhoori, R. Sandaroos, A. Z. Moghaddam. Polycycl. Arom.Compd., 42(2022):5067-5085.DOI: https://doi.org/10.1080/10406638.2021.1922470.
  17. R. Sandaroos, B. Maleki, S. Naderi, S. Peiman. Inorg.Chem.Commun.,
  18. S. M. Khatami, M. Khalaj, M. Ghashang. Iran. J. Catal., 13 (2023):475–485. DOI: https://doi.org/10.30495/ijc.2023.1993331.2039.
  19. M. Dehbashi, M. Aliahmad, M.R.M. Shafiee, and M. Ghashang. Phosphorus, Sulfur Relat. Elem., 188 (2013):864-872. DOI: https://doi.org/10.1080/10426507.2012.717139.
  20. B. Karimi, M. Ghoreishi-Nezhad, and J.H. Clark. Org. Lett., 7 (2005):625–628. DOI: https://doi.org/10.1021/ol047635d.
  21. C. Raj Kumar, B. Thirumalraj, S. M. Chen, P. Veerakumar, S.-B. Liu. ACS Appl. Mater. Interfaces, 9 (2017):31794–31805. DOI: https://doi.org/10.1021/acsami.7b07645.
  22. B. Karimi M. Khorasani. ACS Catal, 3 (2013):1657-1664. DOI:https://doi.org/10.1021/cs4003029.
  23. M. Dabiri, H. E. Tavil, N. F. Lehi, S. K. Movahed, A. M. Salmasi, S. Souri. J.Phys.Chem.Solids,162 (2022):110497. DOI:https://doi.org/10.1016/j.jpcs.2021.110497.
  24. F. Rajabi, E.Vessally, R. Luque, L.Voskressen sky. Mol. Catal, 515 (2021):111931. DOI: https://doi.org/10.1016/j.mcat.2021.111931.
  25. M. Jin, J. Wang, B. Wang, Z. Guo, Z. Lv. Micropor. Mesopor. Mat., 277 (2019):84–94. DOI: https://doi.org/10.1016/j.micromeso.2018.10.021.
  26. A. Sedrpoushan, F. Hosseini-Eshbala, F. Mohanazadeh, and M. Heydari. Appl. Organomet. Chem., 32 (2018):e4004. DOI: https://doi.org/10.1002/aoc.4004.
  27. S. H. Hosseini, M. Tavakolizadeh, N. Zohreh, R. Soleyman. Organomet.Chem., 32 (2018):e3953. DOI:https://doi.org/10.1002/aoc.3953.
  28. N. Zohreh, S. H. Hosseini, A. Pourjavadi, R. Soleyman, C. Bennett. J.Indust.Eng.Chem.,44 (2016):73-81. DOI:https://doi.org/10.1016/j.jiec.2016.08.011.
  29. C. M. Tressler, P. Stonehouse, K. S. Kyler. Green Chem., 18 (2016):4875–4878. DOI: https://doi.org/10.1039/C6GC00725B.
  30. S. Iraqui, S. S. Kashyap, M. H. Rashid. Nanoscal. Adv., 2 (2020):5790-5802. DOI: https://doi.org/10.1039/D0NA00591F.
  31. L. Sun, R. Zhang, Z. Wang, L. Ju, E. Cao, and Y. Zhang. J. Mag. Mag. Mater., 421 (2017):65–70. DOI:https://doi.org/10.1016/j.jmmm.2016.08.003.
  32. R. Hajiarab, M. R. M. Shafiee, M. Ghashang. Polycycl. Aromat. Compd., 43 (2023):2032–2043. DOI: https://doi.org/10.1080/10406638.2022.2039231
  33. R. Hajiarab, M. R. M. Shafiee, and M. Ghashang. Org. Prep. Proced. Int., 54 (2022):259-267. DOI:https://doi.org/10.1080/00304948.2022.2033064.
  34. F. Aminsharei, A. Lahijanian, A. Shiehbeigi, S. S. Beiki, and M. Ghashang. Int. J. Biolog. Macromol., 276 (2024):134004. https://doi.org/10.1016/j.ijbiomac.2024.134004.
  35. F. Rezaei, H. Alinezhad, B. Maleki. Sci Rep, 13 (2023):20562. DOI: https://doi.org/10.1038/s41598 023-47794-2.
  36. H. Boroum, H. Alinezhad, B. Maleki, and S. Peiman. Polycyclic Compounds, 43 (2023):7853-7869. Aromatic DOI: https://doi.org/10.1080/10406638.2022.2140683.
  37. R. S. Varma K. P. Naicker. Org. Lett., 1(1999): 189-191. DOI: https://doi.org/10.1021/ol990522n.
  38. Q. Wang, W. Ma, Q. Tong, G. Du, J. Wang, M. Zhang, H. Jiang, H. Yang, Y. Liu, and M. Cheng. Sci. Rep., 7(2017):7209. DOI: https://doi.org/10.1038/s41598 017-07590-1.
  39. A. Bayat, M. S. Fard, N. Ehyaei, and M. Mahmoodi Hashemi. RSC Adv., 4(2014):44274 44281. DOI: https://doi.org/10.1039/C4RA07356H.
  40. Z. Yekke-Ghasemi, M. M. Heravi, M. Malmir, and M. Mirzaei. Sci. Rep., 13 (2023):16752. DOI: https://doi.org/10.1038/s41598-023-43985-z.
  41. I. A. Al-Masoudi, Y. A. Al-Soud, N. J. Al Salihi, and N. A. Al-Masoudi. Chem. Het erocycl. Compd., 42(2006):1377–1403. https://doi.org/10.1007/s10593-006-0255-3.
  42. M. M. Pearson, D. Rogers, J. D. Cleary, and S. W. Chapman. Ann Pharmacotherapy, 37 (2003):420–432. DOI: https://doi.org/10.1345/aph.1C261.
  43. N. D. Greer. Cent., Bayl. 20(2007):188-196. Uni. Med. DOI: https://doi.org/10.1080/08998280.2007.11928283.
  44. I. A. Guralskiy, V. A. Reshetnikov, I. V. Omelchenko, A. Szebesczyk, E. G. Konteckac, and I. O. Fritskya. J. Mol. Struct., 1127(2017):164–168. DOI: https://doi.org/10.1016/j.molstruc.2016.07.094.
  45. Y. L. Fan, X. Ke, and M. Liub. J. Heterocycle. Chem., 55(2018):791–802. DOI: https://doi.org/10.1002/jhet.3112.
  46. M. Onozato, A. Nishigaki, K. Okoshi. Poly. Arom. Comp., 40 ( 2018): 1291-1301. https://doi.org/10.1080/10406638.2018.1540998
  47. L. Z. Fekri, S. Zeinali. Appl. Organomet. Chem., 17 (2020): 20-40 https://doi.org/10.1002/aoc.5629
  48. L. Z. Fekr, K. H. Pour, S. Zeinali. J. Organo. chem., 915 (2020):121232-121245. https://doi.org/10.1016/j.jorganchem.2020.121232
  49. M. N. passand, L. Z. Fekri, R. S. Varma, L. Hassanzadi, F. S. Pashaki. RSC Adv. 12 (2022): 834-844. https://doi.org/10.1039/D1RA08001F
  50. A. Bhardwaj. O.P. P. I., 57 (2024):189-217. doi: 10.1080/00304948.2024.2431378
  51. F. S. Ghahfarokhi, A. Ghaemi, M. R. Kakhki. Inorg. Nano-Metal. Chem., 54 (2023):1179-1186. https://doi.org/10.1080/24701556.2023.2166072
  52. N. Suleymanoglu, R. Ustabas, S. Di, Y. B. Alpasland, Y. Unvere. J. Mol. Struct., 1150(2017):82–87. DOI: https://doi.org/10.1016/j.molstruc.2017.08.075.
  53. R. Kharb, P. C. Sharma, M. S. Yar. J. En zyme. Inhib. Med. Chem., 26 (2017):1-21. DOI: https://doi.org/10.3109/14756360903524304.
  54. K. B. Badiger, Giddaerappa, R. Hanumanthappa, L. K. Sannegowda, K. Kamanna. Chem. Select., March 9 (2022) e202104033. https://doi.org/10.1002/slct.202104033
  55. B. M. Chougala, S. Samundeeswari, M. Holiyachi, L. A. Shastri, S. Dodamani, S. Jalalpure, S. R. Dixit, S. D. Joshi, and V. A. Sunagar. Eur. J. Med. Chem., 125(2017):101–116. DOI: https://doi.org/10.1016/j.ejmech.2016.09.021.
  56. N. Fu, S. Wang, Y. Zhang, C. Zhang, D. Yang, L. Weng, B. Zhao, and L. Wang. Eur. J. Med. Chem., 136(2017):596–602. DOI: https://doi.org/10.1016/j.ejmech.2017.05.001.
  57. K. M. Banu, A. Dinakar, C. A. narayanan. Indian J. Pharm. Sci., 61 (1999): 202–205. URL https://www.ijpsonline.com/articles.
  58. L. Z. Chen, W. W. Sun, L. Bo, J. Q. Wang, C. Xiu, W. J. Tang, J. B. Shi, H. P. Zhou, and X. H. Liu. Eur. J. Med. Chem., 138 (2017):170–181. DOI: https://doi.org/10.1016/j.ejmech.2017.06.044.
  59. J. Akhtar, A. A. Khan, Z. Ali, R. Haider, M. S. Yar. Eur. J. Med. Chem., 125 (2017):143–189. DOI: https://doi.org/10.1016/j.ejmech.2016.09.023.
  60. R. Gujjar, A. Marwaha, J. White, L. White, S. Creason, D. M. Shackle ford, J. Baldwin, W. N. Charman, S. Buckner, F. S. Charman, P. K. Rathod, and M. A. Phillips. J. Med. Chem., 52(2009):1864-1872. DOI: https://doi.org/10.1021/jm801343r.
  61. Y. Q. Hu, C. Gao, S. Zhang, L. Xu, Z. Xu, L. S. Feng, X. Wu, and F. Zhao. Eur. J. Med. Chem., 139 (2017):22-47. https://doi.org/10.1016/j.ejmech.2017.07.061.
  62. A. Duran, H. N. Dogan, and H. Rol las. Farmaco, 57(2002):559-564. DOI: https://doi.org/10.1016/S0014-827X(02)01248 X.
  63. X. Wen, Y. Zhou, J. Zeng, and X. Liu. Curr. Topics. Med. Chem., 20(2020):1441–1460. https://doi.org/10.2174/1568026620666200128143230.