10.57647/j.ijc.2025.1503.31

Facile synthesis of N,N'-alkylidene bisamides catalyzed by trimethyl-tris(4-pyridinium)benzene trifluoroacetate: an efficient and rapid approach

  1. Takin Shimi Sepanta Industries Co, Sirvan Industrial Zone, PO 6958140120, Ilam, Iran
Facile synthesis of N,N'-alkylidene bisamides catalyzed by trimethyl-tris(4-pyridinium)benzene trifluoroacetate: an efficient and rapid approach

Received: 2025-03-08

Revised: 2025-05-11

Accepted: 2025-06-06

Published in Issue 2025-07-01

How to Cite

Kohzadian, A., Filian, H., & Fathollahi, R. (2025). Facile synthesis of N,N’-alkylidene bisamides catalyzed by trimethyl-tris(4-pyridinium)benzene trifluoroacetate: an efficient and rapid approach. Iranian Journal of Catalysis, 15(3 (September 2025). https://doi.org/10.57647/j.ijc.2025.1503.31

PDF views: 47

Abstract

In the current study, a new Brønsted-acidic ionic liquid, namely trimethyl-tris(4-pyridinium)benzene trifluoroacetate ([TMPB][TFA]), was synthesized as a high-performance, reproducible acidic-basic catalyst. The structure of the ionic liquid was characterized by various physicochemical techniques. In continuation, the catalytic effect of [TMPB][TFA] in the production of N, N'-alkylidene bisamides was monitored via a one-pot pseudo three-component condensation of a wide range of aldehydes with benzamide/acetamide. The enhancement of this synthetic pathway was carried out using 10 mol% ionic liquid in ethanol solvent at 60°C. The important features of this process include: the dual function of IL as an acid-base duel in the activation of reactants, comprehensiveness of the protocol in the rapid production of a variety of derivatives in high yields (1a-17a, 85 to 98%, 9 to 30 min), the ability to recover and reuse the IL for up to three cycles while maintaining catalytic efficiency, moderate reaction conditions, easy work-up, producing and characterizing new compounds (8a and 9a), and green reaction environment without using expensive metal precursors, harsh temperature conditions as well as non-benign solvents.

Highlights

• Synthesis and characterization of a novel ionic liquid based on the trifluoroacetate anion.

• Fast and facile synthesis of N,N'-alkylidene bisamides.

• Ability to use ionic liquid up to three runs without significant reduction in catalytic activity.

• Represents advantages: the dual function of IL as an acid-base duel in the activation of reactants, generality, short reaction times, high yields of the products, simple work-up, and good compliance with green chemistry protocols.

 

Keywords

  • Ionic liquid,
  • Aldehydes,
  • Green solvent,
  • N,N'-­alkylidene bisamides

References

  1. S. Kasana, B. Das Kurmi, P. Patel, Current Organic Chemistry. 29 (2025) 713-29. https://doi.org/10.2174/0113852728331797240903101654.
  2. C. Gundogdu Hizliates, S. Oncuoglu, ChemistrySelect. 10 (2025) e202404712. https://doi.org/10.1002/slct.202404712.
  3. ‏ X. Hu, Y. Wang, X. Feng, L. Wang, M. Ouyang, Q. Zhang, Renewable Sustainable Energy Rev. 207 (2025) 114949. https://doi.org/10.1016/j.rser.2024.114949.
  4. H. Kaur, A. Thakur, R.C. Thakur, A. Kumar, Energy Fuels. 39 (2025) 3703-3734. https://doi.org/10.1021/acs.energyfuels.4c05274.
  5. Y. Pei, Y. Zhang, J. Ma, M. Fan, S. Zhang & J. Wang, Mater. Today Nano. 17 (2022.( 100159. https://doi.org/10.1016/j.mtnano.2021.100159.
  6. ‏ M. Elawad, H. Lee, Z. Yu & L. Sun, Phys. B: Condens. Matter. 586 (2020) 412124. https://doi.org/10.1016/j.physb.2020.412124. ‏
  7. P. Patil, S. Kadam, D. Patil, P. More, J. Mol. Liq. 345 (2022) 117867. https://doi.org/10.1016/j.molliq.2021.117867
  8. P. Patil, S. Kadam, D. Patil, P. More, Catal. Commun. 170, (2022) 106500. https://doi.org/10.1016/j.catcom.2022.106500
  9. R. Athavale, S. Gardi, F. Choudhary, D. Patil, N. Chandan, P. More, Appl. Catal., A. 669 (2024) 119505. https://doi.org/10.1016/j.apcata.2023.119505.
  10. A. Zare, A. Kohzadian, H. Filian, M. S. G. Nezhad, A.Karami, Res. Chem. Intermed. 48 (2022) 1631-1644. https://doi.org/10.1007/s11164-022-04683-z.
  11. M. Nasrollahzadeh, Z. Nezafat, F. Momenbeik, Y. Orooji, J. Mol. Liq. 345 (2022) 117811. https://doi.org/10.1016/j.molliq.2021.117811.
  12. L. A. Taib, M. Keshavarz, Res. Chem. Intermed. 47 (2021) 2487-2505. https://doi.org/10.1007/s11164-021-04419-5.
  13. M. Norouzi, M. Khanmoradi, Res. Chem. Intermed. 49 (2023) 4785-4804. https://doi.org/10.1007/s11164-023-05104-5.
  14. S. Das, S. Paul, N. Kashyap, P. Saikia, R. Borah. Chemistry Select. 9 (2024) e202304103. https://doi.org/10.1002/slct.202304103
  15. D.‏ Song, J. Liu, C. Zhang, Y. Guo Catal. Sci. Technol. 11 (2021) 1827-1842. https://doi.org/10.1039/D0CY01941K.
  16. F. Arian, M. Keshavarz, H. Sanaeishoar, N. Hasanzadeh J. Mol. Struct. 1229 (2021) 129599. https://doi.org/10.1016/j.molstruc.2020.129599.
  17. G. Bosica, R. Abdilla, Catalysts. 12 (2022) 725. https://doi.org/10.3390/catal12070725.
  18. H. Filian, A. Ghorbani-Choghamarani, E. Tahanpesar, J. Iran. Chem. Soc. 16 (2019) 2673-2681. https://doi.org/10.1007/s13738-019-01727-x.
  19. A. Ghorbani-Choghamarani, M. Mohammadi, T. Tamoradi, M. Ghadermazi, Polyhedron 158 (2019) 25-35. https://doi.org/10.1016/j.poly.2018.10.054.
  20. P. Paramonova, R. Lebedev, A. Sokolov, D. Dar'in, E. Kanov, R. Murtazina, R. Gainetdinov, S. Kalinin, O. Bakulina, Org. Biomol. Chem. 22 (2024) 8328-8336. https://doi.org/10.1039/D4OB01321B.
  21. M. Tandi, V. Sharma, B. Gopal, S. Sundriyal, RSC Adv. 15 (2025) 1447-1489. doi: 10.1039/D4RA06681B.
  22. A. Kohzadian, H. Filian, Silicon. 15 (2023) 4539-4554. https://doi.org/10.1007/s12633-023-02372-z.
  23. A.V. Velikorodov, A. S. Zukhairaeva, E. N. Kutlalieva, E. A. Shustova, S. B. Nosachev, Russ. J. Org. Chem. 59 (2023) 1-28. https://doi.org/10.1134/S1070428023010013.
  24. D. Duan, L. Song, Org. Chem. Front. 11 (2024) 47-52. doi: 10.1039/D3QO01370G.
  25. K. K. Wang, J.W. Ye, J. Jia, Y.F. Li, W.W. Yao, L.X. Li, S.M. Zhao, Y. Xu, R. Chen, Tetrahedron 150 (2024) 133772. https://doi.org/10.1016/j.tet.2023.133772.
  26. A. Zare, M. Barzegar, E. Rostami, A. R. Moosavi-Zare, RSC Adv. 14 (2024) 25235-25246. doi: 10.1039/D4RA04136D.
  27. D. Dietrich, C. Licht, A. Nuhnen, S. P. Höfert, L. De Laporte, C. Janiak, ACS Appl. Mater. Interfaces. 11 (2019)19654-19667. https://doi.org/10.1021/acsami.9b04659.
  28. F. Tamaddon, E. Ahmadi-AhmadAbadi, J. Polym. Environ. 31 (2023) 406-422. https://doi.org/10.1007/s10924-022-02628-6.
  29. A. Zare, E. Izadi, Res. Chem. Intermed. 51 (2025) 1313-1328. https://doi.org/10.1007/s11164-024-05494-0.
  30. B. Maleki, M. Baghayeri, RSC Adv. 5 (2015) 79746. https://doi.org/10.1039/C5RA16481H.
  31. A. Mouradzadegun, S. Elahi, F. Abadast, RSC Adv. 4 (2014) 31239-31248. https://doi.org/10.1039/C4RA03463E.
  32. ‏ B. B. F. Mirjalili, A. Bamoniri, M. Imani, J. Nanostruct. 13 (2023) 213-222. doi:10.22052/JNS.2023.01.023.
  33. G. Harichandran, S. D. Amalraj, P.J. Shanmugam, Iran. Chem. Soc. 8 (2011) 298-305. https://doi.org/10.1007/BF03246228.
  34. G. Ramachandran, R. araswathi, M. Kumarraja, P. Govindaraj, T. Subramanian, Synth. Commun. 48 (2018) 216-222. https://doi.org/10.1080/00397911.2017.1395888.
  35. A. Jamshidi, F. Mohammadi Zonoz, B. Maleki, Polycyclic Aromat. Compd. 40 (2020) 875-888. https://doi.org/10.1080/10406638.2018.1504094.
  36. B. F. Mirjalili, M. A. Mirhoseini, J. Chem. Sci. 125 (2013) 1481-1486. https://doi.org/10.1007/s12039-013-0519-2.
  37. H. R. Saadati-Moshtaghin, F. M. Zonoz, M. M. Amini, J. Solid State Chem. 260 (2018) 16-22. https://doi.org/10.1016/j.jssc.2018.01.014.
  38. S. Muhammad, Najia, Z. Ali, S. Aziz, M. Hammad Khan, M. Iqbal, U. Hassan, J. Khan, A. Ali, ChemistryOpen, (2024) e202400165. https://doi.org/10.1002/open.202400165.
  39. I. Bryndal, M. Marchewka, M. Wandas, W. Sąsiadek, J. Lorenc, T. Lis, L. Dymińska, E. Kucharska, J. Hanuza, Spectrochim. Acta, Part A. 123 (2014) 342-351. https://doi.org/10.1016/j.saa.2013.12.018.
  40. J. V. Jovita, A. Ramanand, P. Sagayaraj, K. Boopathi, P. Ramasamy, Optik. 126 (2015) 265-269. https://doi.org/10.1016/j.ijleo.2014.08.168.
  41. A. Abebe, K. T. Hilawea, Y. Amlaku, B. D. Tamrat, Cogent Chem. 6 (2020) 1771832. https://doi.org/10.1080/23312009.2020.1771832.
  42. F. Deng, Z. K. Reeder, K. M. Miller, J. Phys. Org. Chem. 27 (2014) 2-9. https://doi.org/10.1002/poc.3198.
  43. M. T. Clough, K. Geyer, P. A. Hunt, J. Mertes, T. Welton, Phys. Chem. Chem. Phys. 15 (2013) 20480-20495.doi: 10.1039/C3CP53648C.
  44. C. Thomazeau, H. Olivier-Bourbigou, L. Magna, S. Luts, B, J. Am. Chem. Soc. 125 (2003) 5264-5265. https://doi.org/10.1021/ja0297382.
  45. J. Ouyang, L. Zhou, Z. Liu, S. Xiao, X. Huang, J. Y. Heng, J. Mol. Liq. 286 (2019) 110885. https://doi.org/10.1016/j.molliq.2019.110885.
  46. A. S Amarasekara, Chem. Rev. 116 (2016) 6133-6183. https://doi.org/10.1021/acs.chemrev.5b00763