Synthesis of MXene as a Modifier of Screen-Printed Carbon Electrode for the Measurement of Clonazepam as an Anesthetic Drug
- School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Department of Chemistry, Faculty of Science, Electrochemical Sensors Research Laboratory, Shahid Rajaee Teacher Training University, Lavizan, Tehran, Iran
- Autoimmune diseases research center, Kashan University of Medical Sciences, Kashan, Iran
- Department of Environmental Health, School of Health Kashan University of Medical Sciences, Kashan, Iran
- Institute of Electronic and Sensor Materials, TU Bergakademie, Freiberg, Germany
- Research Center for Biochemistry and Nutrition in Metabolic Diseases, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
- Department of Surgery, School of Medicine, Kashan University of Medical Sciences, Kashan, Iran
- Physiology Research Center, Institute for Basic Sciences, Kashan University of Medical Sciences, Kashan, Iran
Received: 2024-11-08
Revised: 2025-04-25
Accepted: 2026-06-01
Published in Issue 2025-07-01
Copyright (c) 2025 Mahbobe Eghbali, Esmail Sohouli, Amin Moradi-hsanabad, Gholamreza Mostafai, Mehdi Rahiminasarabadi, Reza Hosseiniara, Maryam Akbari, Amir Hossein Mohammadi, Ali Sobhani nasab (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 62
Abstract
Benzodiazepines are psychoactive compounds with sedative, hypnotic, anti-anxiety, anticonvulsant, muscle relaxant, and anti-inflammatory effects. The increasing use of benzodiazepine anesthetics in recent years highlights the importance of analyzing these drugs in biological fluids to ensure therapeutic effectiveness, monitor concentrations, identify toxic levels, minimize negative effects, and enhance understanding of their function in biological matrices. In this study, we present the fabrication and electrochemical assessment of a novel sensing platform with high sensitivity to the drug clonazepam (CLZP). The synthesized electrode modifier, comprising MXE, was characterized using Fourier transform infrared spectrometry, scanning electron microscopy, and XRD techniques. The electrode modifier was applied to a screen-printed carbon electrode surface using the drop-casting method. The modification of the electrode with the proposed nanocomposite led to an increase in the current observed during the reduction of clonazepam and a decrease in the peak potential required for reduction. This enhancement in the electrochemical response to clonazepam reduction suggests a synergistic effect between MXE and the screen-printed carbon electrode. In optimal circumstances, the developed sensor displayed a direct relationship between the reduction peak current and CLZP concentrations within the 1 to 100 μM range, achieving a detection limit of 0.3 μM. The sensor was successfully employed for the accurate measurement of CLZP in human serum and pharmaceutical samples, demonstrating excellent sensitivity, enduring stability, and consistent reproducibility.
Highlights
· A novel MXE-based sensor was developed for the sensitive electrochemical detection of clonazepam.
· The SPE/MXE platform demonstrated excellent conductivity, stability, and biocompatibility for CLZP analysis.
· The fabricated sensor showed a wide linear detection range (1–100 µM) and a low detection limit (0.3 µM).
· The method was successfully applied for the quantification of CLZP in pharmaceutical tablets and human serum samples.
· This approach provides a fast, cost-effective, and reliable strategy for the real-time monitoring of anesthetic drugs.
Keywords
- Anesthetic drugs,
- Benzodiazepine,
- Clonazepam,
- Magzen,
- Printed carbon electrode
References
- C.P. Walker and S. Deb. J. Pharm. Pract., 34 (2021) 648–652. DOI: https://doi.org/10.1177/0897190019882880
- A.L. D’Orazio, A.L. Mohr, A. Chan-Hosokawa, C. Harper, M.A. Huestis, J.F. Limoges, A.K. Miles, C.E. Scarneo, S. Kerrigan, L.J. Liddicoat, and K.S. Scott. J. Anal. Toxicol., 45 (2021) 529–536. DOI: https://doi.org/10.1093/jat/bkab064
- H. Basit and C.I. Kahwaji. Clonazepam, StatPearls (2020).
- O. Nguele. Pharm. Pract., 19 (2021) 1-12.
- K. Jeanne Dit Fouque, C.E. Ramirez, R.L. Lewis, J.P. Koelmel, T.J. Garrett, R.A. Yost, and F. Fernandez-Lima. Anal. Chem., 91 (2019) 5021–5027. DOI: https://doi.org/10.1021/acs.analchem.8b04979
- J. Zhu, Y. Niu, and Z. Xiao. Food Chem., 339 (2021) 128136. DOI: https://doi.org/10.1016/j.foodchem.2020.128136
- G. Corso, O. D'Apolito, M. Gelzo, G. Paglia, and A.D. Russo. Bioanalysis, 2 (2010) 1883-1891. DOI: https://doi.org/10.4155/bio.10.149
- S. Nanaware, A. Nayak, and A.P. Jain. J. Adv. Sci. Res., 12 (2021) 166–170.
- N.M. Fayek, M.A. Farag, A.R. Abdel Monem, M.Y. Moussa, S.M. Abd-Elwahab, and N.D. El-Tanbouly. J. Chromatogr. Sci., 57 (2019) 349–360. DOI: https://doi.org/10.1093/chromsci/bmz006
- M. Shyamsundar, S.K. Chauthe, L. Subramani, M.A. Subbaiah, A. Gupta, L. Bajpai, M. Bagadi, and A. Mathur. Sep. Sci. Plus., 4 (2021) 16–23. DOI: https://doi.org/10.1002/sscp.202000046
- J.M. van den Ouweland, and I.P. Kema. J. Chromatogr., B 883 (2012) 18–32. DOI: https://doi.org/10.1016/j.jchromb.2011.11.044
- S. Lotfi. and H. Veisi. Mater. Sci. Eng. C., 103 (2019) 109754. DOI: https://doi.org/10.1016/j.msec.2019.109754
- Z. Jahromi, M. Afzali, A. Mostafavi, R. Nekooie, and M. Mohamadi. Iran. Polym. J., 29 (2020) 241–251. DOI: https://doi.org/10.1007/s13726-020-00788-7
- H. Ashrafi, M. Hasanzadeh, K. Ansarin, S.A. Ozkan, and A. Jouyban. Int. J. Biol. Macromol., 120 (2018) 2466–2481. DOI: https://doi.org/10.1016/j.ijbiomac.2018.09.017
- H. Boulaiz, P.J. Alvarez, A. Ramirez, J.A. Marchal, J. Prados, F. Rodríguez-Serrano, M. Perán, C. Melguizo, and A. Aranega. Int. J. Mol. Sci., 12 (2011) 3303–3321. DOI: https://doi.org/10.3390/ijms12053303
- X. Zhang, X. Cheng, and Q. Zhang. J. Energy Chem., 25 (2016) 967–984. DOI: https://doi.org/10.1016/j.jechem.2016.11.003
- F.D. Guerra, M.F. Attia, D.C. Whitehead, and F. Alexis. Molecules, 23 (2018) 1760. DOI: https://doi.org/10.3390/molecules23071760
- S.S. Hussain, M.S. Kamal, and M.K. Hossain. J. Nanomater., 2019 (2019) 1–17. DOI: https://doi.org/10.1155/2019/1562130
- V. Torres-Costa. Nanomaterials, 12 (2022) 1820. DOI: https://doi.org/10.3390/nano12111820
- A. Khoshroo, L. Hosseinzadeh, A. Sobhani-Nasab, M. Rahimi-Nasrabadi, and F. Ahmadi. Microchem. J., 145 (2019) 1185–1190. DOI: https://doi.org/10.1016/j.microc.2018.12.049
- Z. Wang and Z. Dai. Nanoscale, 7 (2015) 6420–6431. DOI: https://doi.org/10.1039/C5NR00585J
- X. Luo, A. Morrin, A.J. Killard, and M.R. Smyth. Electroanalysis, 18 (2006) 319–326. DOI: https://doi.org/10.1002/elan.200503415
- A.A. Ansari, M. Alhoshan, M.S. Alsalhi, and A.S. Aldwayyan. Biosens. Bioelectron., 26 (2010) 23–46. DOI: https://doi.org/10.5772/7201
- J. Zhao, G. Chen, L. Zhu, and G. Li. Electrochem. Commun., 13 (2011) 31–33. DOI: https://doi.org/10.1016/j.elecom.2010.11.005
- V.S. Manikandan, B. Adhikari, and A. Chen. Analyst, 143 (2018) 4537–4554. DOI: https://doi.org/10.1039/C8AN00497H
- M. Khan, O. Ozalp, M. Khan, and M. Soylak. J. Mol. Liq., 368 (2022) 120685. DOI: https://doi.org/10.1016/j.molliq.2022.120685
- G. Kholafazadehastamal, M. Khan, M. Soylak, and N. Erk. Carbon Lett., 34 (2024) 929–940. DOI: https://doi.org/10.1007/s42823-023-00611-2
- M. Khan and M. Soylak. Microchem. J., 185 (2023) 108200. DOI: https://doi.org/10.1016/j.microc.2022.108200
- Q. Wang, N. Han, Z. Shen, X. Li, Z. Chen, Y. Cao, W. Si, F. Wang, B.J. Ni, and V.K. Thakur. Nano Mater. Sci., 5 (2023) 39–52. DOI: https://doi.org/10.1016/j.nanoms.2022.07.003
- X. Wu, P. Ma, Y. Sun, F. Du, D. Song, and G. Xu. Electroanalysis, 33 (2021) 1827–1851. DOI: https://doi.org/10.1002/elan.202100192
- T.B. Limbu, B. Chitara, J.D. Orlando, M.Y. Cervantes, S. Kumari, Q. Li, Y. Tang, and F. Yan. J. Mater. Chem. C., 8 (2020) 4722–4731. DOI: https://doi.org/10.1039/C9TC06984D
- Z. Khorablou, F. Shahdost-Fard, and H. Razmi. Microchem. J., 193 (2023) 109216. DOI: https://doi.org/10.1016/j.microc.2023.109216
- T. Anusha, K.S. Bhavani, J.S. Kumar, A. Bonanni, and P.K. Brahman. Microchem. J., 161 (2021) 105789. DOI: https://doi.org/10.1016/j.microc.2020.105789
- P.K. Brahman, R.A. Dar, and K.S. Pitre. Arab. J. Chem., 9 (2016) S1884–S1888. DOI: https://doi.org/10.1016/j.arabjc.2012.08.007
- P.K. Kalambate, Dhanjai, A. Sinha, Y. Li, Y. Shen, and Y. Huang. Microchim. Acta., 187 (2020) 1–12. DOI: https://doi.org/10.1007/s00604-020-04366-9
- A.L. Lavanya, K.G. Bala Kumari, K.R. Prasad, and P.K. Brahman. Int. J. Environ. Anal. Chem., 102 (2022) 720–735. DOI: https://doi.org/10.1080/03067319.2020.1726333
- A.L. Lavanya, K.G. Kumari, K.R. Prasad, and P.K. Brahman. Electroanalysis, 33 (2021) 1096–1106. DOI: https://doi.org/10.1002/elan.202060524
- W. Niamsi, N. Larpant, P.K. Kalambate, V. Primpray, C. Karuwan, N. Rodthongkum, and W. Laiwattanapaisal. Biosensors, 12 (2022) 852. DOI: https://doi.org/10.3390/bios12100852
- K. Thongprasom, M. Carrozzo, S. Furness, and G. Lodi. Cochrane Database Syst. Rev., 2011 (7). DOI: https://doi.org/10.1002/14651858.CD001168.pub2
- K.C. Honeychurch. Biosensors, 9 (2019) 130. DOI: https://doi.org/10.3390/bios9040130
- C.M. dos Santos, V. Famila, and S.M. Gonçalves. Anal. Bioanal. Chem., 374 (2002) 1074–1081. DOI: https://doi.org/10.1007/s00216-002-1535-0
- C. Latorre, M.H. Blanco, E.L. Abad, J. Vicente, and L. Hernández. Analyst, 113 (1988) 317–319. DOI: https://doi.org/10.1039/AN9881300317
- A. Zapardiel, J.A. Pérez López, E. Bermejo, L. Hernandez, and A.G. Espartero. Anal. Lett., 24 (1991) 233–248. DOI: ttps://doi.org/10.1080/00032719108052900
- M.E. Lozano-Chaves, J.M. Palacios-Santander, L.M. Cubillana-Aguilera, I. Naranjo-Rodríguez, and J.L. Hidalgo-Hidalgo-de-Cisneros. Sens. Actuators B Chem., 115 (2006) 575–583. DOI: https://doi.org/10.1016/j.snb.2005.10.021