Preparation and characterization of UV-light-driven Pd/ZnWO4 nanocomposites for enhanced efficiency in photocatalytic degradation of rhodamine B
- Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
- Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Advanced Scientific Instruments Unit, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
- Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
Received: 2024-09-16
Revised: 2024-12-26
Accepted: 2025-04-20
Published in Issue 2025-05-03
Copyright (c) -1 Anukorn Phuruangrat, Yothin Chimupala, Budsabong Kuntalue, Titipun Thongtem, Somchai Thongtem (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 125
Abstract
UV-light-driven ZnWO4 photocatalysts loaded with different weight contents of Pd were prepared by a sonochemical-assisted deposition method for the degradation of rhodamine B (RhB) under UV light irradiation. Phase, oxidation state, composition, surface area and morphology of ZnWO4 and Pd/ZnWO4 were analyzed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy and mass spectroscopy. Upon loading with fine dispersed Pd nanoparticles with a size of 8–10 nm on the surface of ZnWO4 nanorods, heterojunctions of metallic Pd nanoparticles–ZnWO4 nanorods were clearly detected. The reaction rate constant for RhB degradation was increased from 1.87x10–3 min–1 for ZnWO4 to 0.0246 min–1 for 5% Pd/ZnWO4 nanocomposites within 150 min under UV light irradiation because the Pd nanoparticles–ZnWO4 nanorods Schottky barriers played the role in promoting charge separation of electron–hole pairs and preventing the recombination of charge carrier pairs. The trapping experiment showed that h+ and ●OH were the main active species for the photocatalytic reaction of RhB under UV light irradiation.
Research Highlights
- Pd/ZnWO4 nanocomposites were prepared by sonochemical-assisted deposition method.
- The nanocomposites played the role in degrading rhodamine B under UV radiation.
- The promising material used for wastewater treatment.
Keywords
- Pd/ZnWO4 nanocomposites,
- UV-light-driven photocatalyst,
- Spectroscopy
References
- . R. Koutavarapu, B. Babu, C.V. Reddy, K. Yoo, M. Cho, J. Shim, J. Mater. Sci., 55: 1170-1183, (2020). https://doi.org/10.1007/s10853-019-04022-5
- . V. Faka, S. Tsoumachidou, M. Moschogiannaki, G. Kiriakidis, I. Poulios, V. Binas, J. Photochem. Photobiol. A, 406: 113002, (2021). https://doi.org/10.1016/j.jphotochem.2020.113002
- . F.A. Alharthi, H.S. Alanazi, K.M. Alotaibi, N. Ahmad, J. Nanopart. Res., 24: 125, (2022). https://doi.org/10.1007/s11051-022-05510-7
- . Z. Mehrabadi, H. Faghihian, Mater. Res. Bull., 119: 110569, (2019). https://doi.org/10.1016/j.materresbull.2019.110569
- . H. Derikvandi, A. Nezamzadeh-Ejhieh, Solid State Sci., 101: 106127, (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106127
- . S. Zinatloo-Ajabshir, S. Rakhshani, Z. Mehrabadi, M. Farsadrooh, M. Feizi-Dehnayebi, S. Rakhshani, M. Dušek, V. Eigner, S. Rtimi,T.M. Aminabhavi, J. Environ. Manage., 350: 119545, (2024). https://doi.org/10.1016/j.jenvman.2023.119545S.
- . Rahnamaeiyan, M. Nasiri, A. Alborzi, S.M. Tabatabaei, J. Mater. Sci.: Mater. Electron., 27: 1113-1117, (2016). https://doi.org/10.1007/s10854-015-3859-5
- . Z. Li, K. Wang, J. Zhang, Y. Chang, E. Kowalska, Z. Wei, Catalysts, 12: 130, (2022). https://doi.org/10.3390/catal12020130
- . Z. Mehrabadi, H. Faghihian, J. Photochem. Photobiol. A, 356: 102-111, (2018). https://doi.org/10.1016/j.jphotochem.2017.12.042
- . Z. Mehrabadi, H. Faghihian, Spectrochim. Acta A, 204: 248-259, (2018). https://doi.org/10.1016/j.saa.2018.06.047
- . S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. B, 183: 107712, (2020). https://doi.org/10.1016/j.compositesb.2019.107712
- . A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal., 11: 247-259, (2021).
- . R. Sheikhsamany, A. Nezamzadeh-Ejhieh, R. Ensandoost, B. Kakavandi, J. Mol. Liq., 403: 124850, (2024). https://doi.org/10.1016/j.molliq.2024.124850
- . A. Sobhani-Nasab, M. Eghbali-Arani, S.M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran. J. Catal., 10: 91-99, (2020).
- . M. Li, Q. Zhu, J.G. Li, B.N. Kim, Appl. Surf. Sci., 515: 146011, (2020). https://doi.org/10.1016/j.apsusc.2020.146011
- . C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, ACS Appl. Mater. Interfaces, 6: 14423-14432, (2014). https://dx.doi.org/10.1021/am503696b
- . X. Zhao, Y. Zhu, Environ. Sci. Technol., 40: 3367-3372, (2006). https://doi.org/10.1021/es052029e
- . J. Yan, Y. Shen, F. Li, T. Li, Sci. World J., 2013: 458106, (2013). http://dx.doi.org/10.1155/2013/458106
- . G.V. Geetha, R. Sivakumar, C. Sanjeeviraja, V. Ganesh, J. Sol-Gel Sci. Technol., 97: 572-580, (2021). https://doi.org/10.1007/s10971-021-05480-7
- . G.V. Geetha, R. Sivakumar, Y. Slimani, Y. Kuroki, C. Sanjeeviraja, J. Mater. Sci.: Mater. Electron., 34: 1154: (2023). https://doi.org/10.1007/s10854-023-10566-9
- . H. Eranjaneya, G.T. Chandrappa, Trans. Indian Ceram. Soc., 75: 133-137, (2016). http://dx.doi.org/10.1080/0371750X.2016.1181990
- . G. Huang, S. Zhang, T. Xu, Y. Zhu, Environ. Sci. Technol., 42: 8516-8521, (2008). https://doi.org/10.1021/es801672a
- . N. Su, F. Zhou, React. Kinet. Mech. Catal., 129: 1077-1089, (2020). https://doi.org/10.1007/s11144-020-01729-4
- . J. Zhu, M. Liu, Y. Tang, T. Sun, J. Ding, L. Han, M. Wang, Mater. Lett., 190: 60-63, (2017). http://dx.doi.org/10.1016/j.matlet.2016.12.056
- . L. Chang, G. Zhu, Q.U. Hassan, B. Cao, S. Li, Y. Jia, J. Gao, F. Zhang, Q. Wang, Langmuir, 35: 11265-11274, (2019). https://doi.org/10.1021/acs.langmuir.9b01323
- . D. Patil, M.B. Sridhara, J. Manjanna, S. Sabale, Iran. J. Catal., 13: 157-167, (2023). https://doi.org/10.30495/ijc.2023.1975703.1985
- . M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Ecotoxicol. Environ. Saf., 269: 115927, (2024). https://doi.org/10.1016/j.ecoenv.2024.115927
- . M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Energy Fuel., 38: 7637-7664, (2024). https://doi.org/10.1021/acs.energyfuels.4c00325
- . B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S.K. Samdarshi, J. Mater. Sci.: Mater. Electron., 25: 2969-2973, (2014). https://doi.org/10.1007/s10854-014-1968-1
- . P. Dumrongrojthanath, A. Phuruangrat, S. Thongtem, T. Thongtem, Rare Met., 38: 601-608, (2019). https://doi.org/10.1007/s12598-019-01255-w
- . C. Yu, J.C. Yu, Mater. Sci. Eng. B, 164: 16-22, (2009). https://doi.org/10.1016/j.mseb.2009.06.008
- . N. Perkas, G. Amirian, C. Rottman, F. Vega, A. Gedanken, Ultrason. Sonochem., 16: 132-135, (2009). https://doi.org/10.1016/j.ultsonch.2008.04.014
- . W. Li, J. Lee, M. Ashokkumar, L.F. Dumée, Ultrason. Sonochem., 109: 107017, (2024). https://doi.org/10.1016/j.ultsonch.2024.107017
- . V.G. Pol, D.N. Srivastava, O. Palchik, V. Palchik, M.A. Slifkin, A.M. Weiss, A. Gedanken, Langmuir, 18: 3352-3357, (2002). https://doi.org/10.1021/la0155552
- . N.S. Satdeve, R.P. Ugwekar, B.A. Bhanvase, J. Mol. Liq., 291: 111313, (2019). https://doi.org/10.1016/j.molliq.2019.111313
- . E. Luévano-Hipólito, L.M. Torres-Martínez, Mater. Sci. Eng. B, 226: 223-233, (2017). https://doi.org/10.1016/j.mseb.2017.09.023
- . Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, 12 Campus Blvd., Newtown Square, PA 19073–3273, U.S.A. (2004).
- . K.S. Al‑Namshah, Appl. Nanosci., 9: 461-467, (2019). https://doi.org/10.1007/s13204-018-0900-z
- . Q. Yousefi, A. Nezamzadeh-Ejhieh, Solid State Sci., 154: 107584, (2024). https://doi.org/10.1016/j.solidstatesciences.2024.107584
- . B. Manikandan, K.R. Murali, R. John, Iran. J. Catal., 11: 1-11, (2021).
- . T. Seyedi-Chokanlou, S. Aghabeygi, N. Molahasani, F. Abrinaei, Iran. J. Catal., 11: 49-58, (2021).
- . R. Jindal, M.M. Sinha, H.C. Gupta, Turk. J. Phys., 37: 107-112, (2013). https://doi.org/10.3906/fiz-1205-7
- . J. Arin, P. Dumrongrojthanath, O. Yayapao, A. Phuruangrat, S. Thongtem, T. Thongtem, Superlatt. Microstruct., 67: 197-206, (2014). http://dx.doi.org/10.1016/j.spmi.2013.12.024
- . D. Errandonea, F.J. Manjón, N. Garro, P. Rodríguez-Hernández, S. Radescu, A. Mujica, A. Muñoz, C.Y. Tu, Phys. Rev. B, 78: 054116, (2008). https://doi.org/10.1103/PhysRevB.78.054116
- . P. Siriwong, T. Thongtem, A. Phuruangrat, S. Thongtem, CrystEngComm, 13: 1564-1569, (2011). https://doi.org/10.1039/c0ce00402b
- . L.P.A. Guerrero-Ortega, E. Ramı´rez-Meneses, R. Cabrera-Sierra, L.M. Palacios-Romero, K. Philippot, C.R. Santiago-Ramirez, L. Lartundo-Rojas, A. Manzo-Robledo, Mater. Sci., 54: 13694-13714, (2019). https://doi.org/10.1007/s10853-019-03843-8
- . Y. Li, L. Xiao, F. Liu, Y. Dou, S. Liu, Y. Fan, G. Cheng, W. Song, J. Zhou, J. Nanopart. Res., 21: 28, (2019). https://doi.org/10.1007/s11051-019-4467-8
- . L.S. Kibis, A.I. Titkov, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Appl. Surf. Sci., 255: 9248-9254, (2009). http://doi.org/10.1016/j.apsusc.2009.07.011
- . T. Bunluesak, A. Phuruangrat, S. Thongtem, T. Thongtem, Res. Chem. Intermed., 47: 4157-4171, (2021). https://doi.org/10.1007/s11164-021-04511-w
- . A. Phuruangrat, A. Nunpradit, T. Sakhon, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, J. Aust. Ceram. Soc., 57: 1521-1530, (2021). https://doi.org/10.1007/s41779-021-00642-w
- . F. Zhan, G. Wen, R. Li, C. Feng, Y. Liu, Y. Liu, M. Zhu, Y. Zheng, Y. Zhao, P. La, Phys. Chem. Chem. Phys., 26: 11182-11207 (2024). https://doi.org/10.1039/D3CP06126D
- . E.C. Severo, E.R. Abaide, C.G. Anchieta, V.S. Foletto, C.T. Weber, T.B. Garlet, G.C. Collazzo, M.A. Mazutti, A. Gündel, R.C. Kuhn, E.L. Foletto, Mater. Res., 19: 781-785, (2016). http://dx.doi.org/10.1590/1980-5373-MR-2015-0100
- . N. Mehrabanpour, A. Nezamzadeh-Ejhieh, S. Ghattavi, A. Ershadi, Appl. Surf. Sci., 614: 156252, (2023). https://doi.org/10.1016/j.apsusc.2022.156252
- . X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, J. Phys. Chem. B, 110: 26012-26018, (2006). https://doi.org/10.1021/jp063588q
- . Y. Fan, G. Chen, D. Li, Y. Luo, N. Lock, A.P. Jensen, A. Mamakhel, J. Mi, S.B. Iversen, Q. Meng, B.B. Iversen, Inter. J. Photoenergy, 2012: 173865 (2012). https://doi.org/10.1155/2012/173865
- . K. Spilarewicz-Stanek, A. Jakimińska, A. Kisielewska, D. Batory, I. Piwoński, Materials, 13: 4653, (2020). http://dx.doi.org/10.3390/ma13204653
- . M. Selvamani, A. Alsulmi, A. Sundaramoorthy, S. Vadivel, A.V. Kesavan, J. Mater. Sci.: Mater. Electron., 34: 2094, (2023). https://doi.org/10.1007/s10854-023-11513-4
- . Y. Li, D. Jin, X. Jian-yu, D. Yu, Z. Xiao-zhuang, W. Wei-long, Z. Yan, 2011 International Symposium on Water Resource and Environmental Protection, Xi'an, 3167-3169, (2011). https://doi.org/10.1109/ISWREP.2011.5893552.
- . V. Faka, S. Tsoumachidou, M. Moschogiannaki, G. Kiriakidis, I. Poulios, V. Binas, J. Photochem. Photobiol. A, 406: 113002, (2021). https://doi.org/10.1016/j.jphotochem.2020.113002
- . C.B. Anucha, I. Altin, Z. Biyiklioglu, E. Bacaksiz, I. Polat, V.N. Stathopoulos, Nanomaterials, 10: 2139, (2020). http://dx.doi.org/10.3390/nano10112139
- . C.W. Tsao, M.J. Fang, Y.J. Hsu, Coord. Chemi. Rev., 438: 213876, (2021). https://doi.org/10.1016/j.ccr.2021.213876
- . H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Environ. Sci. Pollut. Res., 27: 27582-27597, (2020). https://doi.org/10.1007/s11356-020-08817-x
- . H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy, 46: 2049-2064, (2021). https://doi.org/10.1016/j.ijhydene.2020.10.065
- . F. Soleimani, A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol., 9: 16237-16251, (2020). https://doi.org/10.1016/j.jmrt.2020.11.091
- . S. Salesi, A. Nezamzadeh‑Ejhieh, Environ. Sc. Pollut. Res., 29: 90191-90206, (2022). https://doi.org/10.1007/s11356-022-22100-1
- . M. Balakrishnan, R. John, Iran. J. Catal., 10: 1-16, (2020).
- . S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal., 8: 143-150, (2018).
- . A. Phuruangrat, S. Thamsukho, S. Thungprasert, T. Sakhon, T. Thongtem, S. Thongtem, J. Ovonic Res., 18: 149-158, (2022). https://doi.org/10.15251/JOR.2022.182.149
- . Y. Li, Y. Liu, X. Liu, X. Li, React. Chem. Eng., 9: 186-198, (2024). https://doi.org/10.1039/d3re00407d
- . N. Omrani, A. Nezamzadeh-Ejhieh, J. Water Process Eng., 33: 101094 (2020). https://doi.org/10.1016/j.jwpe.2019.101094
- . Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Catalysts, 9: 430, (2019). http://dx.doi.org/10.3390/catal9050430
- . I. Majeed, A. Arif, A. Idrees, H. Ullah, H. Ali, A. Mehmood, A. Rashid, M.A. Nadeem, M.A. Nadeem, Hydrogen, 4: 192-209, (2023). https://doi.org/10.3390/hydrogen4010014
- . Z. Sun, X. Yang, X.F. Yu, Li. Xia, Y. Peng, Z. Li, Y. Zhang, J. Cheng, K. Zhang, J. Yu, Appl. Catal. B, 285: 119790, (2021). https://doi.org/10.1016/j.apcatb.2020.119790
- . Z. Wang, L. Xia, J. Chen, L. Ji, Y. Zhou, Y. Wang, L. Cai, J. Guo, W. Song, Catalysts, 10: 1130, (2020). http://dx.doi.org/10.3390/catal10101130
- . Y. He, S. Zhou, Y. Wang, G. Jiang, F. Jiao, J. Mater. Sci.: Mater. Electron., 32: 21880-21896, (2021). https://doi.org/10.1007/s10854-021-06532-y
- . S.T.U. Din, H. Lee, W. Yang, Nanomaterials, 12: 767, (2022). https://doi.org/10.3390/nano12050767
- . J.S. Oliveira, M. Brondani, E.S. Mallmann, S.L. Jahn, E.L. Foletto, S. Silvestri, Water Air Soil. Pollut., 229: 386, (2018). https://doi.org/10.1007/s11270-018-4038-0