10.57647/j.ijc.2025.1502.19

Preparation and characterization of UV-light-driven Pd/ZnWO4 nanocomposites for enhanced efficiency in photocatalytic degradation of rhodamine B

  1. Division of Physical Science, Faculty of Science, Prince of Songkla University, Hat Yai, Songkhla, Thailand
  2. Department of Industrial Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
  3. Advanced Scientific Instruments Unit, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
  4. Materials Science Research Center, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
  5. Department of Chemistry, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
  6. Department of Physics and Materials Science, Faculty of Science, Chiang Mai University, Chiang Mai, Thailand
Preparation and characterization of UV-light-driven Pd/ZnWO4 nanocomposites for enhanced efficiency in photocatalytic degradation of rhodamine B

Received: 2024-09-16

Revised: 2024-12-26

Accepted: 2025-04-20

Published in Issue 2025-05-03

How to Cite

Phuruangrat, A., Chimupala, Y., Kuntalue, B., Thongtem, T., & Thongtem, S. (2025). Preparation and characterization of UV-light-driven Pd/ZnWO4 nanocomposites for enhanced efficiency in photocatalytic degradation of rhodamine B. Iranian Journal of Catalysis, 15(2 (June 2025). https://doi.org/10.57647/j.ijc.2025.1502.19

PDF views: 125

Abstract

UV-light-driven ZnWO4 photocatalysts loaded with different weight contents of Pd were prepared by a sonochemical-assisted deposition method for the degradation of rhodamine B (RhB) under UV light irradiation. Phase, oxidation state, composition, surface area and morphology of ZnWO4 and Pd/ZnWO4 were analyzed by X-ray powder diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Raman spectroscopy, Brunauer–Emmett–Teller (BET) surface area analysis, scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray photoelectron spectroscopy (XPS), UV-visible spectroscopy and mass spectroscopy. Upon loading with fine dispersed Pd nanoparticles with a size of 8–10 nm on the surface of ZnWO4 nanorods, heterojunctions of metallic Pd nanoparticles–ZnWO4 nanorods were clearly detected. The reaction rate constant for RhB degradation was increased from 1.87x10–3 min–1 for ZnWO4 to 0.0246 min–1 for 5% Pd/ZnWO4 nanocomposites within 150 min under UV light irradiation because the Pd nanoparticles–ZnWO4 nanorods Schottky barriers played the role in promoting charge separation of electron–hole pairs and preventing the recombination of charge carrier pairs. The trapping experiment showed that h+ and OH were the main active species for the photocatalytic reaction of RhB under UV light irradiation.

Research Highlights

  • Pd/ZnWO4 nanocomposites were prepared by sonochemical-assisted deposition method.
  • The nanocomposites played the role in degrading rhodamine B under UV radiation.
  • The promising material used for wastewater treatment.

Keywords

  • Pd/ZnWO4 nanocomposites,
  • UV-light-driven photocatalyst,
  • Spectroscopy

References

  1. . R. Koutavarapu, B. Babu, C.V. Reddy, K. Yoo, M. Cho, J. Shim, J. Mater. Sci., 55: 1170-1183, (2020). https://doi.org/10.1007/s10853-019-04022-5
  2. . V. Faka, S. Tsoumachidou, M. Moschogiannaki, G. Kiriakidis, I. Poulios, V. Binas, J. Photochem. Photobiol. A, 406: 113002, (2021). https://doi.org/10.1016/j.jphotochem.2020.113002
  3. . F.A. Alharthi, H.S. Alanazi, K.M. Alotaibi, N. Ahmad, J. Nanopart. Res., 24: 125, (2022). https://doi.org/10.1007/s11051-022-05510-7
  4. . Z. Mehrabadi, H. Faghihian, Mater. Res. Bull., 119: 110569, (2019). https://doi.org/10.1016/j.materresbull.2019.110569
  5. . H. Derikvandi, A. Nezamzadeh-Ejhieh, Solid State Sci., 101: 106127, (2020). https://doi.org/10.1016/j.solidstatesciences.2020.106127
  6. . S. Zinatloo-Ajabshir, S. Rakhshani, Z. Mehrabadi, M. Farsadrooh, M. Feizi-Dehnayebi, S. Rakhshani, M. Dušek, V. Eigner, S. Rtimi,T.M. Aminabhavi, J. Environ. Manage., 350: 119545, (2024). https://doi.org/10.1016/j.jenvman.2023.119545S.
  7. . Rahnamaeiyan, M. Nasiri, A. Alborzi, S.M. Tabatabaei, J. Mater. Sci.: Mater. Electron., 27: 1113-1117, (2016). https://doi.org/10.1007/s10854-015-3859-5
  8. . Z. Li, K. Wang, J. Zhang, Y. Chang, E. Kowalska, Z. Wei, Catalysts, 12: 130, (2022). https://doi.org/10.3390/catal12020130
  9. . Z. Mehrabadi, H. Faghihian, J. Photochem. Photobiol. A, 356: 102-111, (2018). https://doi.org/10.1016/j.jphotochem.2017.12.042
  10. . Z. Mehrabadi, H. Faghihian, Spectrochim. Acta A, 204: 248-259, (2018). https://doi.org/10.1016/j.saa.2018.06.047
  11. . S. Ghattavi, A. Nezamzadeh-Ejhieh, Compos. B, 183: 107712, (2020). https://doi.org/10.1016/j.compositesb.2019.107712
  12. . A. Yousefi, A. Nezamzadeh-Ejhieh, Iran. J. Catal., 11: 247-259, (2021).
  13. . R. Sheikhsamany, A. Nezamzadeh-Ejhieh, R. Ensandoost, B. Kakavandi, J. Mol. Liq., 403: 124850, (2024). https://doi.org/10.1016/j.molliq.2024.124850
  14. . A. Sobhani-Nasab, M. Eghbali-Arani, S.M. Hosseinpour-Mashkani, F. Ahmadi, M. Rahimi-Nasrabadi, V. Ameri, Iran. J. Catal., 10: 91-99, (2020).
  15. . M. Li, Q. Zhu, J.G. Li, B.N. Kim, Appl. Surf. Sci., 515: 146011, (2020). https://doi.org/10.1016/j.apsusc.2020.146011
  16. . C. Zhang, H. Zhang, K. Zhang, X. Li, Q. Leng, C. Hu, ACS Appl. Mater. Interfaces, 6: 14423-14432, (2014). https://dx.doi.org/10.1021/am503696b
  17. . X. Zhao, Y. Zhu, Environ. Sci. Technol., 40: 3367-3372, (2006). https://doi.org/10.1021/es052029e
  18. . J. Yan, Y. Shen, F. Li, T. Li, Sci. World J., 2013: 458106, (2013). http://dx.doi.org/10.1155/2013/458106
  19. . G.V. Geetha, R. Sivakumar, C. Sanjeeviraja, V. Ganesh, J. Sol-Gel Sci. Technol., 97: 572-580, (2021). https://doi.org/10.1007/s10971-021-05480-7
  20. . G.V. Geetha, R. Sivakumar, Y. Slimani, Y. Kuroki, C. Sanjeeviraja, J. Mater. Sci.: Mater. Electron., 34: 1154: (2023). https://doi.org/10.1007/s10854-023-10566-9
  21. . H. Eranjaneya, G.T. Chandrappa, Trans. Indian Ceram. Soc., 75: 133-137, (2016). http://dx.doi.org/10.1080/0371750X.2016.1181990
  22. . G. Huang, S. Zhang, T. Xu, Y. Zhu, Environ. Sci. Technol., 42: 8516-8521, (2008). https://doi.org/10.1021/es801672a
  23. . N. Su, F. Zhou, React. Kinet. Mech. Catal., 129: 1077-1089, (2020). https://doi.org/10.1007/s11144-020-01729-4
  24. . J. Zhu, M. Liu, Y. Tang, T. Sun, J. Ding, L. Han, M. Wang, Mater. Lett., 190: 60-63, (2017). http://dx.doi.org/10.1016/j.matlet.2016.12.056
  25. . L. Chang, G. Zhu, Q.U. Hassan, B. Cao, S. Li, Y. Jia, J. Gao, F. Zhang, Q. Wang, Langmuir, 35: 11265-11274, (2019). https://doi.org/10.1021/acs.langmuir.9b01323
  26. . D. Patil, M.B. Sridhara, J. Manjanna, S. Sabale, Iran. J. Catal., 13: 157-167, (2023). https://doi.org/10.30495/ijc.2023.1975703.1985
  27. . M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Ecotoxicol. Environ. Saf., 269: 115927, (2024). https://doi.org/10.1016/j.ecoenv.2024.115927
  28. . M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Energy Fuel., 38: 7637-7664, (2024). https://doi.org/10.1021/acs.energyfuels.4c00325
  29. . B.M. Rajbongshi, A. Ramchiary, B.M. Jha, S.K. Samdarshi, J. Mater. Sci.: Mater. Electron., 25: 2969-2973, (2014). https://doi.org/10.1007/s10854-014-1968-1
  30. . P. Dumrongrojthanath, A. Phuruangrat, S. Thongtem, T. Thongtem, Rare Met., 38: 601-608, (2019). https://doi.org/10.1007/s12598-019-01255-w
  31. . C. Yu, J.C. Yu, Mater. Sci. Eng. B, 164: 16-22, (2009). https://doi.org/10.1016/j.mseb.2009.06.008
  32. . N. Perkas, G. Amirian, C. Rottman, F. Vega, A. Gedanken, Ultrason. Sonochem., 16: 132-135, (2009). https://doi.org/10.1016/j.ultsonch.2008.04.014
  33. . W. Li, J. Lee, M. Ashokkumar, L.F. Dumée, Ultrason. Sonochem., 109: 107017, (2024). https://doi.org/10.1016/j.ultsonch.2024.107017
  34. . V.G. Pol, D.N. Srivastava, O. Palchik, V. Palchik, M.A. Slifkin, A.M. Weiss, A. Gedanken, Langmuir, 18: 3352-3357, (2002). https://doi.org/10.1021/la0155552
  35. . N.S. Satdeve, R.P. Ugwekar, B.A. Bhanvase, J. Mol. Liq., 291: 111313, (2019). https://doi.org/10.1016/j.molliq.2019.111313
  36. . E. Luévano-Hipólito, L.M. Torres-Martínez, Mater. Sci. Eng. B, 226: 223-233, (2017). https://doi.org/10.1016/j.mseb.2017.09.023
  37. . Powder Diffract. File, JCPDS Internat. Centre Diffract. Data, 12 Campus Blvd., Newtown Square, PA 19073–3273, U.S.A. (2004).
  38. . K.S. Al‑Namshah, Appl. Nanosci., 9: 461-467, (2019). https://doi.org/10.1007/s13204-018-0900-z
  39. . Q. Yousefi, A. Nezamzadeh-Ejhieh, Solid State Sci., 154: 107584, (2024). https://doi.org/10.1016/j.solidstatesciences.2024.107584
  40. . B. Manikandan, K.R. Murali, R. John, Iran. J. Catal., 11: 1-11, (2021).
  41. . T. Seyedi-Chokanlou, S. Aghabeygi, N. Molahasani, F. Abrinaei, Iran. J. Catal., 11: 49-58, (2021).
  42. . R. Jindal, M.M. Sinha, H.C. Gupta, Turk. J. Phys., 37: 107-112, (2013). https://doi.org/10.3906/fiz-1205-7
  43. . J. Arin, P. Dumrongrojthanath, O. Yayapao, A. Phuruangrat, S. Thongtem, T. Thongtem, Superlatt. Microstruct., 67: 197-206, (2014). http://dx.doi.org/10.1016/j.spmi.2013.12.024
  44. . D. Errandonea, F.J. Manjón, N. Garro, P. Rodríguez-Hernández, S. Radescu, A. Mujica, A. Muñoz, C.Y. Tu, Phys. Rev. B, 78: 054116, (2008). https://doi.org/10.1103/PhysRevB.78.054116
  45. . P. Siriwong, T. Thongtem, A. Phuruangrat, S. Thongtem, CrystEngComm, 13: 1564-1569, (2011). https://doi.org/10.1039/c0ce00402b
  46. . L.P.A. Guerrero-Ortega, E. Ramı´rez-Meneses, R. Cabrera-Sierra, L.M. Palacios-Romero, K. Philippot, C.R. Santiago-Ramirez, L. Lartundo-Rojas, A. Manzo-Robledo, Mater. Sci., 54: 13694-13714, (2019). https://doi.org/10.1007/s10853-019-03843-8
  47. . Y. Li, L. Xiao, F. Liu, Y. Dou, S. Liu, Y. Fan, G. Cheng, W. Song, J. Zhou, J. Nanopart. Res., 21: 28, (2019). https://doi.org/10.1007/s11051-019-4467-8
  48. . L.S. Kibis, A.I. Titkov, A.I. Stadnichenko, S.V. Koscheev, A.I. Boronin, Appl. Surf. Sci., 255: 9248-9254, (2009). http://doi.org/10.1016/j.apsusc.2009.07.011
  49. . T. Bunluesak, A. Phuruangrat, S. Thongtem, T. Thongtem, Res. Chem. Intermed., 47: 4157-4171, (2021). https://doi.org/10.1007/s11164-021-04511-w
  50. . A. Phuruangrat, A. Nunpradit, T. Sakhon, P. Dumrongrojthanath, N. Ekthammathat, S. Thongtem, T. Thongtem, J. Aust. Ceram. Soc., 57: 1521-1530, (2021). https://doi.org/10.1007/s41779-021-00642-w
  51. . F. Zhan, G. Wen, R. Li, C. Feng, Y. Liu, Y. Liu, M. Zhu, Y. Zheng, Y. Zhao, P. La, Phys. Chem. Chem. Phys., 26: 11182-11207 (2024). https://doi.org/10.1039/D3CP06126D
  52. . E.C. Severo, E.R. Abaide, C.G. Anchieta, V.S. Foletto, C.T. Weber, T.B. Garlet, G.C. Collazzo, M.A. Mazutti, A. Gündel, R.C. Kuhn, E.L. Foletto, Mater. Res., 19: 781-785, (2016). http://dx.doi.org/10.1590/1980-5373-MR-2015-0100
  53. . N. Mehrabanpour, A. Nezamzadeh-Ejhieh, S. Ghattavi, A. Ershadi, Appl. Surf. Sci., 614: 156252, (2023). https://doi.org/10.1016/j.apsusc.2022.156252
  54. . X. Hu, T. Mohamood, W. Ma, C. Chen, J. Zhao, J. Phys. Chem. B, 110: 26012-26018, (2006). https://doi.org/10.1021/jp063588q
  55. . Y. Fan, G. Chen, D. Li, Y. Luo, N. Lock, A.P. Jensen, A. Mamakhel, J. Mi, S.B. Iversen, Q. Meng, B.B. Iversen, Inter. J. Photoenergy, 2012: 173865 (2012). https://doi.org/10.1155/2012/173865
  56. . K. Spilarewicz-Stanek, A. Jakimińska, A. Kisielewska, D. Batory, I. Piwoński, Materials, 13: 4653, (2020). http://dx.doi.org/10.3390/ma13204653
  57. . M. Selvamani, A. Alsulmi, A. Sundaramoorthy, S. Vadivel, A.V. Kesavan, J. Mater. Sci.: Mater. Electron., 34: 2094, (2023). https://doi.org/10.1007/s10854-023-11513-4
  58. . Y. Li, D. Jin, X. Jian-yu, D. Yu, Z. Xiao-zhuang, W. Wei-long, Z. Yan, 2011 International Symposium on Water Resource and Environmental Protection, Xi'an, 3167-3169, (2011). https://doi.org/10.1109/ISWREP.2011.5893552.
  59. . V. Faka, S. Tsoumachidou, M. Moschogiannaki, G. Kiriakidis, I. Poulios, V. Binas, J. Photochem. Photobiol. A, 406: 113002, (2021). https://doi.org/10.1016/j.jphotochem.2020.113002
  60. . C.B. Anucha, I. Altin, Z. Biyiklioglu, E. Bacaksiz, I. Polat, V.N. Stathopoulos, Nanomaterials, 10: 2139, (2020). http://dx.doi.org/10.3390/nano10112139
  61. . C.W. Tsao, M.J. Fang, Y.J. Hsu, Coord. Chemi. Rev., 438: 213876, (2021). https://doi.org/10.1016/j.ccr.2021.213876
  62. . H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Environ. Sci. Pollut. Res., 27: 27582-27597, (2020). https://doi.org/10.1007/s11356-020-08817-x
  63. . H. Derikvandi, M. Vosough, A. Nezamzadeh-Ejhieh, Inter. J. Hydrogen Energy, 46: 2049-2064, (2021). https://doi.org/10.1016/j.ijhydene.2020.10.065
  64. . F. Soleimani, A. Nezamzadeh-Ejhieh, J. Mater. Res. Technol., 9: 16237-16251, (2020). https://doi.org/10.1016/j.jmrt.2020.11.091
  65. . S. Salesi, A. Nezamzadeh‑Ejhieh, Environ. Sc. Pollut. Res., 29: 90191-90206, (2022). https://doi.org/10.1007/s11356-022-22100-1
  66. . M. Balakrishnan, R. John, Iran. J. Catal., 10: 1-16, (2020).
  67. . S.D. Khairnar, M.R. Patil, V.S. Shrivastava, Iran. J. Catal., 8: 143-150, (2018).
  68. . A. Phuruangrat, S. Thamsukho, S. Thungprasert, T. Sakhon, T. Thongtem, S. Thongtem, J. Ovonic Res., 18: 149-158, (2022). https://doi.org/10.15251/JOR.2022.182.149
  69. . Y. Li, Y. Liu, X. Liu, X. Li, React. Chem. Eng., 9: 186-198, (2024). https://doi.org/10.1039/d3re00407d
  70. . N. Omrani, A. Nezamzadeh-Ejhieh, J. Water Process Eng., 33: 101094 (2020). https://doi.org/10.1016/j.jwpe.2019.101094
  71. . Y.H. Chiu, T.F.M. Chang, C.Y. Chen, M. Sone, Y.J. Hsu, Catalysts, 9: 430, (2019). http://dx.doi.org/10.3390/catal9050430
  72. . I. Majeed, A. Arif, A. Idrees, H. Ullah, H. Ali, A. Mehmood, A. Rashid, M.A. Nadeem, M.A. Nadeem, Hydrogen, 4: 192-209, (2023). https://doi.org/10.3390/hydrogen4010014
  73. . Z. Sun, X. Yang, X.F. Yu, Li. Xia, Y. Peng, Z. Li, Y. Zhang, J. Cheng, K. Zhang, J. Yu, Appl. Catal. B, 285: 119790, (2021). https://doi.org/10.1016/j.apcatb.2020.119790
  74. . Z. Wang, L. Xia, J. Chen, L. Ji, Y. Zhou, Y. Wang, L. Cai, J. Guo, W. Song, Catalysts, 10: 1130, (2020). http://dx.doi.org/10.3390/catal10101130
  75. . Y. He, S. Zhou, Y. Wang, G. Jiang, F. Jiao, J. Mater. Sci.: Mater. Electron., 32: 21880-21896, (2021). https://doi.org/10.1007/s10854-021-06532-y
  76. . S.T.U. Din, H. Lee, W. Yang, Nanomaterials, 12: 767, (2022). https://doi.org/10.3390/nano12050767
  77. . J.S. Oliveira, M. Brondani, E.S. Mallmann, S.L. Jahn, E.L. Foletto, S. Silvestri, Water Air Soil. Pollut., 229: 386, (2018). https://doi.org/10.1007/s11270-018-4038-0