Recent Development for Application of Functionalized Graphene for CO2 Capture: A Review
- Department of Biochemistry, College of Medicine Massan University, Missan, Iraq
- College of Medicine, University of Al-Ameed, Karbala, Iraq
- Radiology Techniques Department, College of Health and Medical Techniques, Al-mustaqbal University, Babylon, Iraq
- Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala, AND Department of Anesthesia Techniques and Intensive Care, Al-Taff university college, Karbala, Iraq
- Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
- College of Chemistry and Chemical Engineering, China University of Petroleum, Beijing, China
Received: 2024-12-13
Revised: 2025-03-12
Accepted: 2025-03-15
Published 2025-03-16
Copyright (c) -1 Raed Muslim Mhaibes, Abdul Amir H. Kadhum, Taif Abdulhasan, Mustafa Mudhafar, Qais R. Lahhob, Guang Shu (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 70
Abstract
The rising levels of carbon dioxide (CO2) in the atmosphere present a serious challenge to global climate stability, highlighting the urgent need for effective carbon capture technologies. Among the various materials investigated for CO2 capture, functionalized graphene has shown considerable promise due to its remarkable characteristics, such as a high surface area, robust mechanical properties, and adjustable chemical functionalities. This review article offers a thorough examination of the latest developments in the use of functionalized graphene for CO2 capture, focusing on its improved adsorption capacity, selectivity, and reusability. We explore innovative methods of functionalization, the combination of functionalized graphene with advanced materials like metal-organic frameworks (MOFs) and zeolites, and the critical role of environmental and economic sustainability in the advancement of these materials. Additionally, we stress the importance of real-world applications and pilot studies to evaluate the practical feasibility of functionalized graphene in industrial contexts. By consolidating current research and outlining future pathways, this paper seeks to aid ongoing initiatives aimed at combating climate change through effective CO2 capture methods, ultimately facilitating the shift towards a sustainable low-carbon economy.
Research Highlights
- In this review the application of functionalized graphene for CO2 capture was reviewed.
- Functionalized graphene presents a highly effective solution for CO2
- The application of nanotechnology in carbon capture is still in the experimental phase.
- To enhance the performance of functionalized graphene for CO2 capture, advancements in functionalization methods are essential.
Keywords
- CO2 capture,
- Graphene,
- Functionalization,
- Catalyst,
- Environmental chemistry
References
- S.V. Ollinger, C.L. Goodale, K. Hayhoe, J.P. Jenkins, Mitigation and Adaptation Strategies for Global Change, 13 (2008) 467-485. 10.1007/s11027-007-9128-z
- Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Adv. Mater., 29 (2017) 1605891. https://doi.org/10.1002/adma.201605891
- K.L. Kadam, Energy Convers. Manage., 38 (1997) S505-S510. https://doi.org/10.1016/S0196-8904(96)00318-4
- C. Cao, H. Liu, Z. Hou, F. Mehmood, J. Liao, W. Feng, Energies, 13 (2020) 600.
- P. Kelemen, S.M. Benson, H. Pilorgé, P. Psarras, J. Wilcox, Frontiers in Climate, 1 (2019). 10.3389/fclim.2019.00009
- N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nature Climate Change, 7 (2017) 243-249. 10.1038/nclimate3231
- J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, International Journal of Greenhouse Gas Control, 2 (2008) 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1
- B. Li, Y. Duan, D. Luebke, B. Morreale, Applied Energy, 102 (2013) 1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009
- S. Valluri, V. Claremboux, S. Kawatra, Journal of Environmental Sciences, 113 (2022) 322-344. https://doi.org/10.1016/j.jes.2021.05.043
- E. Alper, O. Yuksel Orhan, Petroleum, 3 (2017) 109-126. https://doi.org/10.1016/j.petlm.2016.11.003
- N. Li, L. Mo, C. Unluer, Journal of CO2 Utilization, 65 (2022) 102237. https://doi.org/10.1016/j.jcou.2022.102237
- A. Gulzar, A. Gulzar, M.B. Ansari, F. He, S. Gai, P. Yang, Chemical Engineering Journal Advances, 3 (2020) 100013. https://doi.org/10.1016/j.ceja.2020.100013
- J.F. Brennecke, B.E. Gurkan, The Journal of Physical Chemistry Letters, 1 (2010) 3459-3464. 10.1021/jz1014828
- P. Bains, P. Psarras, J. Wilcox, Prog. Energy Combust. Sci., 63 (2017) 146-172. https://doi.org/10.1016/j.pecs.2017.07.001
- A. Stangeland, International Journal of Greenhouse Gas Control, 1 (2007) 418-429. https://doi.org/10.1016/S1750-5836(07)00087-4
- D. Ma, J. Deng, Z. Zhang, Atmos. Environ., 81 (2013) 188-198. https://doi.org/10.1016/j.atmosenv.2013.09.012
- V. Jiménez, A. Ramírez-Lucas, J.A. Díaz, P. Sánchez, A. Romero, Environ. Sci. Technol., 46 (2012) 7407-7414. 10.1021/es2046553
- S. Vasudevan, S. Farooq, I.A. Karimi, M. Saeys, M.C.G. Quah, R. Agrawal, Energy, 103 (2016) 709-714. https://doi.org/10.1016/j.energy.2016.02.154
- A. Sodiq, Y. Abdullatif, B. Aissa, A. Ostovar, N. Nassar, M. El-Naas, A. Amhamed, Environmental Technology & Innovation, 29 (2023) 102991. https://doi.org/10.1016/j.eti.2022.102991
- T. Lockwood, Energy Procedia, 114 (2017) 2658-2670. https://doi.org/10.1016/j.egypro.2017.03.1850
- D.J. Beerling, E.P. Kantzas, M.R. Lomas, P. Wade, R.M. Eufrasio, P. Renforth, B. Sarkar, M.G. Andrews, R.H. James, C.R. Pearce, J.-F. Mercure, H. Pollitt, P.B. Holden, N.R. Edwards, M. Khanna, L. Koh, S. Quegan, N.F. Pidgeon, I.A. Janssens, J. Hansen, S.A. Banwart, Nature, 583 (2020) 242-248. 10.1038/s41586-020-2448-9
- F. Meng, Y. Meng, T. Ju, S. Han, L. Lin, J. Jiang, Renewable and Sustainable Energy Reviews, 168 (2022) 112902. https://doi.org/10.1016/j.rser.2022.112902
- S.A. Mazari, L. Ghalib, A. Sattar, M.M. Bozdar, A. Qayoom, I. Ahmed, A. Muhammad, R. Abro, A. Abdulkareem, S. Nizamuddin, H. Baloch, N.M. Mubarak, International Journal of Greenhouse Gas Control, 96 (2020) 103010. https://doi.org/10.1016/j.ijggc.2020.103010
- A. Brunetti, E. Drioli, Y.M. Lee, G. Barbieri, J. Membr. Sci., 454 (2014) 305-315. https://doi.org/10.1016/j.memsci.2013.12.037
- W.D. Jones, J. Am. Chem. Soc., 142 (2020) 4955-4957. 10.1021/jacs.0c02356
- M. Bui, M. Fajardy, N. Mac Dowell, Fuel, 213 (2018) 164-175. https://doi.org/10.1016/j.fuel.2017.10.100
- S. Abuelgasim, W. Wang, A. Abdalazeez, Sci. Total Environ., 764 (2021) 142892. https://doi.org/10.1016/j.scitotenv.2020.142892
- C. Font-Palma, D. Cann, C. Udemu, C, 7 (2021) 58.
- Y.T. Youns, A.K. Manshad, J.A. Ali, Fuel, 349 (2023) 128680. https://doi.org/10.1016/j.fuel.2023.128680
- L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, Z. Huang, Y. Wang, J. Li, P. Xu, Journal of CO2 Utilization, 66 (2022) 102260. https://doi.org/10.1016/j.jcou.2022.102260
- J. Pei, J. Chen, J. Wang, Z. Li, N. Li, J. Kan, Frontiers in Chemistry, 12 (2024). 10.3389/fchem.2024.1448881
- N.S. Sifat, Y. Haseli, Energies, 12 (2019) 4143.
- J. Yu, L.-H. Xie, J.-R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev., 117 (2017) 9674-9754. 10.1021/acs.chemrev.6b00626
- S. Kumar, R. Srivastava, J. Koh, Journal of CO2 Utilization, 41 (2020) 101251. https://doi.org/10.1016/j.jcou.2020.101251
- P. Kumar, K.-H. Kim, Applied Energy, 172 (2016) 383-397. https://doi.org/10.1016/j.apenergy.2016.03.095
- P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T.E. Müller, Energy Environ. Sci., 5 (2012) 7281-7305. 10.1039/C2EE03403D
- M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Energy Fuels, 38 (2024) 8406-8436. 10.1021/acs.energyfuels.4c00160
- M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Ecotoxicol. Environ. Saf., 269 (2024) 115927. https://doi.org/10.1016/j.ecoenv.2024.115927
- S.A. Ali, W.U. Mulk, A.U. Khan, H.S. Bhatti, M. Hadeed, J. Ahmad, K. Habib, S.N. Shah, M. Younas, Energy Fuels, 38 (2024) 18330-18366. 10.1021/acs.energyfuels.4c03305
- S.A. Ali, A.U. Khan, W.U. Mulk, H. Khan, S. Nasir Shah, A. Zahid, K. Habib, M.U.H. Shah, M.H.D. Othman, S. Rahman, Energy Fuels, 37 (2023) 15394-15428. 10.1021/acs.energyfuels.3c02377
- W.U. Mulk, S.A. Ali, S.N. Shah, M.U.H. Shah, Q.-J. Zhang, M. Younas, A. Fatehizadeh, M. Sheikh, M. Rezakazemi, Journal of CO2 Utilization, 75 (2023) 102555. https://doi.org/10.1016/j.jcou.2023.102555
- W.U. Mulk, M.U. Hassan Shah, S.N. Shah, Q.-J. Zhang, A.L. Khan, M. Sheikh, M. Younas, M. Rezakazemi, Environ. Res., 237 (2023) 116879. https://doi.org/10.1016/j.envres.2023.116879
- S.A. Ali, S.N. Shah, M.U.H. Shah, M. Younas, Chemosphere, 311 (2023) 136913. https://doi.org/10.1016/j.chemosphere.2022.136913
- S.A. Ali, W.U. Mulk, Z. Ullah, H. Khan, A. Zahid, M.U.H. Shah, S.N. Shah, Energies, 15 (2022) 9098.
- W. Wei, X. Qu, Small, 8 (2012) 2138-2151. https://doi.org/10.1002/smll.201200104
- M.F. Craciun, I. Khrapach, M.D. Barnes, S. Russo, J. Phys.: Condens. Matter, 25 (2013) 423201. 10.1088/0953-8984/25/42/423201
- C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Acc. Chem. Res., 46 (2013) 2211-2224. 10.1021/ar300159f
- P. Avouris, C. Dimitrakopoulos, Mater. Today, 15 (2012) 86-97. https://doi.org/10.1016/S1369-7021(12)70044-5
- X. Wan, Y. Huang, Y. Chen, Acc. Chem. Res., 45 (2012) 598-607. 10.1021/ar200229q
- O. Mohammadi, M. Golestanzadeh, M. Abdouss, New J. Chem., 41 (2017) 11471-11497. 10.1039/C7NJ02515G
- R. Balasubramanian, S. Chowdhury, J. Mater. Chem. A, 3 (2015) 21968-21989. 10.1039/C5TA04822B
- J. Li, M. Hou, Y. Chen, W. Cen, Y. Chu, S. Yin, Appl. Surf. Sci., 399 (2017) 420-425. https://doi.org/10.1016/j.apsusc.2016.11.157
- L. An, S. Liu, L. Wang, J. Wu, Z. Wu, C. Ma, Q. Yu, X. Hu, Indust. Eng. Chem. Res., 58 (2019) 3349-3358. 10.1021/acs.iecr.8b06122
- A. Taheri Najafabadi, Renewable and Sustainable Energy Reviews, 41 (2015) 1515-1545. https://doi.org/10.1016/j.rser.2014.09.022
- A.I. Osman, M. Hefny, M.I.A. Abdel Maksoud, A.M. Elgarahy, D.W. Rooney, Environ. Chem. Lett., 19 (2021) 797-849. 10.1007/s10311-020-01133-3
- N. Hsan, P.K. Dutta, S. Kumar, J. Koh, Journal of CO2 Utilization, 59 (2022) 101958. https://doi.org/10.1016/j.jcou.2022.101958
- G. Mishra, A. Warda, S.P. Shah, Journal of Building Engineering, 62 (2022) 105356. https://doi.org/10.1016/j.jobe.2022.105356
- A.M. Varghese, K.S.K. Reddy, N. Bhoria, S. Singh, J. Pokhrel, G.N. Karanikolos, Chem. Eng. J., 420 (2021) 129677. https://doi.org/10.1016/j.cej.2021.129677
- A.H. Berger, A.S. Bhown, Energy Procedia, 4 (2011) 562-567. https://doi.org/10.1016/j.egypro.2011.01.089
- S. Schaefer, V. Fierro, A. Szczurek, M.T. Izquierdo, A. Celzard, Int. J. Hydrogen Energy, 41 (2016) 17442-17452. https://doi.org/10.1016/j.ijhydene.2016.07.262
- J. Jin, Z. Wen, S. Li, J. Huang, Greenhouse Gases: Science and Technology, 13 (2023) 357-368. https://doi.org/10.1002/ghg.2201
- M. Wang, Z. Zhang, Y. Gong, S. Zhou, J. Wang, Z. Wang, S. Wei, W. Guo, X. Lu, Appl. Surf. Sci., 502 (2020) 144067. https://doi.org/10.1016/j.apsusc.2019.144067
- N. Tit, K. Said, N.M. Mahmoud, S. Kouser, Z.H. Yamani, Appl. Surf. Sci., 394 (2017) 219-230. https://doi.org/10.1016/j.apsusc.2016.10.052
- R.M. Firdaus, A. Desforges, M. Emo, A.R. Mohamed, B. Vigolo, Nanomaterials, 11 (2021) 2419.
- S. Chowdhury, R. Balasubramanian, Indust. Eng. Chem. Res., 55 (2016) 7906-7916. 10.1021/acs.iecr.5b04052
- B. Luan, B. Elmegreen, M.A. Kuroda, Z. Gu, G. Lin, S. Zeng, ACS Nano, 16 (2022) 6274-6281. 10.1021/acsnano.2c00213
- R. Navik, E. Wang, X. Ding, H. Yunyi, Y. Liu, J. Li, J. Energ. Chem., 100 (2025) 653-664. https://doi.org/10.1016/j.jechem.2024.09.019
- Y. Khadiri, A. Legrand, C. Volkringer, A. Anouar, S. Royer, A. El Kadib, T. Loiseau, J. Dhainaut, Materials Today Sustainability, 28 (2024) 100998. https://doi.org/10.1016/j.mtsust.2024.100998
- E. Safaei, Z. Talebi, V. Ghafarinia, Journal of the Taiwan Institute of Chemical Engineers, (2024) 105352. https://doi.org/10.1016/j.jtice.2024.105352
- F. Yang, Y. Jin, J. Liu, H. Zhu, R. Xu, F. Xiangli, G. Liu, W. Jin, Chin. J. Chem. Eng., 67 (2024) 257-267. https://doi.org/10.1016/j.cjche.2023.11.012
- R. Kumar Jha, H. Bhunia, S. Basu, Chem. Eng. Sci., 285 (2024) 119572. https://doi.org/10.1016/j.ces.2023.119572
- L. Zhang, Y. Zhao, H. Yu, L. Chen, X. Liu, A. Zhang, Z. Deng, J.Z. Ou, Chem. Eng. J., 494 (2024) 153250. https://doi.org/10.1016/j.cej.2024.153250
- S. Saha, G. Mohan Das, G. Vadivel, Colloids Surf. Physicochem. Eng. Aspects, 687 (2024) 133415. https://doi.org/10.1016/j.colsurfa.2024.133415
- B. Yao, Y. Wang, Z. Fang, Y. Hu, Z. Ye, X. Peng, Microporous Mesoporous Mater., 361 (2023) 112758. https://doi.org/10.1016/j.micromeso.2023.112758
- I. Barbarin, M. Fidanchevska, N. Politakos, L. Serrano-Cantador, J.A. Cecilia, D. Martín, O. Sanz, R. Tomovska, Indust. Eng. Chem. Res., 63 (2024) 7073-7087. 10.1021/acs.iecr.3c02989
- A.I. Pruna, A. Cárcel, A. Benedito, E. Giménez, International Journal of Molecular Sciences, 24 (2023) 3865.
- Z.-J. Liu, W.-H. Zhang, M.-J. Yin, Y.-H. Ren, Q.-F. An, Sep. Purif. Technol., 312 (2023) 123448. https://doi.org/10.1016/j.seppur.2023.123448
- Z. Gu, Z. Cai, B. Elmegreen, M. Steiner, B. Luan, Chem. Eng. J., 474 (2023) 145778. https://doi.org/10.1016/j.cej.2023.145778
- S. Roy, B. Dasgupta Ghosh, K. Lim Goh, H. Jun Ahn, Y.-W. Chang, Chem. Eng. J., 466 (2023) 143326. https://doi.org/10.1016/j.cej.2023.143326
- I. Barbarin, N. Politakos, L. Serrano-Cantador, J.A. Cecilia, O. Sanz, R. Tomovska, Microporous Mesoporous Mater., 337 (2022) 111907. https://doi.org/10.1016/j.micromeso.2022.111907
- H. Zhao, D. Bahamon, M. Khaleel, L.F. Vega, Chem. Eng. J., 449 (2022) 137884. https://doi.org/10.1016/j.cej.2022.137884
- C.-C. Hu, H.-H. Yeh, C.-P. Hu, R.L.G. Lecaros, C.-C. Cheng, W.-S. Hung, H.-A. Tsai, K.-R. Lee, J.-Y. Lai, Journal of the Taiwan Institute of Chemical Engineers, 135 (2022) 104379. https://doi.org/10.1016/j.jtice.2022.104379
- J. Wang, S. Cui, Z. Li, S. Wen, P. Ning, S. Lu, P. Lu, L. Huang, Q. Wang, Chem. Eng. J., 415 (2021) 128859. https://doi.org/10.1016/j.cej.2021.128859
- Z. Shen, Y. Song, C. Yin, X. Luo, Y. Wang, X. Li, Microporous Mesoporous Mater., 322 (2021) 111158. https://doi.org/10.1016/j.micromeso.2021.111158
- K. Xia, R. Xiong, Y. Chen, D. Liu, Q. Tian, Q. Gao, B. Han, C. Zhou, Colloids Surf. Physicochem. Eng. Aspects, 622 (2021) 126640. https://doi.org/10.1016/j.colsurfa.2021.126640
- N. Politakos, I. Barbarin, L.S. Cantador, J.A. Cecilia, E. Mehravar, R. Tomovska, Indust. Eng. Chem. Res., 59 (2020) 8612-8621. 10.1021/acs.iecr.9b06998
- N. Politakos, I. Barbarin, T. Cordero-Lanzac, A. Gonzalez, R. Zangi, R. Tomovska, Polymers, 12 (2020) 936.
- A.M. Varghese, K.S.K. Reddy, S. Singh, G.N. Karanikolos, Chem. Eng. J., 386 (2020) 124022. https://doi.org/10.1016/j.cej.2020.124022
- S. Shang, Z. Tao, C. Yang, A. Hanif, L. Li, D.C.W. Tsang, Q. Gu, J. Shang, Chem. Eng. J., 393 (2020) 124666. https://doi.org/10.1016/j.cej.2020.124666
- D. Xia, H. Li, J. Mannering, P. Huang, X. Zheng, A. Kulak, D. Baker, D. Iruretagoyena, R. Menzel, Adv. Funct. Mater., 30 (2020) 2002788. https://doi.org/10.1002/adfm.202002788
- J. Heo, M. Choi, D. Choi, H. Jeong, H.Y. Kim, H. Jeon, S.W. Kang, J. Hong, J. Membr. Sci., 601 (2020) 117905. https://doi.org/10.1016/j.memsci.2020.117905
- E. Thomou, E.K. Diamanti, A. Enotiadis, K. Spyrou, E. Mitsari, L.G. Boutsika, A. Sapalidis, E. Moretón Alfonsín, O. De Luca, D. Gournis, Frontiers in Chemistry, 8 (2020) 564838. https://doi.org/10.3389/fchem.2020.564838
- A. Pruna, A.C. Cárcel, A. Benedito, E. Giménez, Appl. Surf. Sci., 487 (2019) 228-235. https://doi.org/10.1016/j.apsusc.2019.05.098
- F. Zhou, H.N. Tien, Q. Dong, W.L. Xu, H. Li, S. Li, M. Yu, J. Membr. Sci., 573 (2019) 184-191. https://doi.org/10.1016/j.memsci.2018.11.080
- S. Nazari Kudahi, A. Noorpoor, N.M. Mahmoodi, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38 (2019) 293-307.
- G. Qin, Q. Cui, W. Wang, P. Li, A. Du, Q. Sun, Chemphyschem, 19 (2018) 2788-2795. https://doi.org/10.1002/cphc.201800385
- Y. He, F. Wang, J. Mater. Chem. A, 6 (2018) 22619-22625. 10.1039/C8TA08785G
- G. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, B. Ghalei, J. Membr. Sci., 565 (2018) 370-379. https://doi.org/10.1016/j.memsci.2018.08.026
- M. Sarfraz, M. Ba-Shammakh, Polym. Bull., 75 (2018) 5039-5059. 10.1007/s00289-018-2301-6
- S. Park, H. Bae, J. Ahn, H. Lee, Y. Kwon, ACS Omega, 3 (2018) 10554-10563. 10.1021/acsomega.8b01371
- R. Rea, S. Ligi, M. Christian, V. Morandi, M. Giacinti Baschetti, M.G. De Angelis, Polymers, 10 (2018) 129.
- P. Li, H.C. Zeng, Environ. Sci. Technol., 51 (2017) 12998-13007. 10.1021/acs.est.7b03308
- F. Zhou, H.N. Tien, W.L. Xu, J.-T. Chen, Q. Liu, E. Hicks, M. Fathizadeh, S. Li, M. Yu, Nature Communications, 8 (2017) 2107. 10.1038/s41467-017-02318-1
- X. Tan, H.A. Tahini, S.C. Smith, Chem. Phys., 478 (2016) 139-144. https://doi.org/10.1016/j.chemphys.2016.04.001
- M. Karunakaran, L.F. Villalobos, M. Kumar, R. Shevate, F.H. Akhtar, K.V. Peinemann, J. Mater. Chem. A, 5 (2017) 649-656. 10.1039/C6TA08858A
- Y. Dai, X. Ruan, Z. Yan, K. Yang, M. Yu, H. Li, W. Zhao, G. He, Sep. Purif. Technol., 166 (2016) 171-180. https://doi.org/10.1016/j.seppur.2016.04.038
- E. Haque, M.M. Islam, E. Pourazadi, S. Sarkar, A.T. Harris, A.I. Minett, E. Yanmaz, S.M. Alshehri, Y. Ide, K.C.-W. Wu, Y.V. Kaneti, Y. Yamauchi, M.S.A. Hossain, Chemistry – An Asian Journal, 12 (2017) 283-288. https://doi.org/10.1002/asia.201601442
- Y. Wang, Q. Yang, C. Zhong, J. Li, J. Physic. Chem. C, 120 (2016) 28782-28788. 10.1021/acs.jpcc.6b08529
- G. Dong, Y. Zhang, J. Hou, J. Shen, V. Chen, Indust. Eng. Chem. Res., 55 (2016) 5403-5414. 10.1021/acs.iecr.6b01005
- F. Liu, K. Huang, S. Ding, S. Dai, J. Mater. Chem. A, 4 (2016) 14567-14571. 10.1039/C6TA06583J
- P. Bhanja, S.K. Das, A.K. Patra, A. Bhaumik, RSC Adv., 6 (2016) 72055-72068. 10.1039/C6RA13590K
- G.S. Rao, T. Hussain, M.S. Islam, M. Sagynbaeva, D. Gupta, P. Panigrahi, R. Ahuja, Nanotechnology, 27 (2016) 015502. 10.1088/0957-4484/27/1/015502
- F.-Q. Liu, W. Li, J. Zhao, W.-H. Li, D.-M. Chen, L.-S. Sun, L. Wang, R.-X. Li, J. Mater. Chem. A, 3 (2015) 12252-12258. 10.1039/C5TA01536G
- S.A. Tawfik, X.Y. Cui, S.P. Ringer, C. Stampfl, RSC Adv., 5 (2015) 50975-50982. 10.1039/C5RA09876A
- S. Chowdhury, G.K. Parshetti, R. Balasubramanian, Chem. Eng. J., 263 (2015) 374-384. https://doi.org/10.1016/j.cej.2014.11.037
- Y. Shen, H. Wang, J. Liu, Y. Zhang, ACS Sustainable Chemistry & Engineering, 3 (2015) 1819-1829. 10.1021/acssuschemeng.5b00409
- G.K. Parshetti, S. Chowdhury, R. Balasubramanian, RSC Adv., 4 (2014) 44634-44643. 10.1039/C4RA05522E
- J. Shen, G. Liu, K. Huang, W. Jin, K.R. Lee, N. Xu, Angew. Chem., 127 (2015) 588-592. https://doi.org/10.1002/ange.201409563
- A.A. Alhwaige, T. Agag, H. Ishida, S. Qutubuddin, RSC Adv., 3 (2013) 16011-16020. 10.1039/C3RA42022A
- V. Chandra, S.U. Yu, S.H. Kim, Y.S. Yoon, D.Y. Kim, A.H. Kwon, M. Meyyappan, K.S. Kim, Chem. Commun., 48 (2012) 735-737. 10.1039/C1CC15599G
- Y. Jiao, A. Du, Z. Zhu, V. Rudolph, G.Q. Lu, S.C. Smith, Catal. Today, 175 (2011) 271-275. https://doi.org/10.1016/j.cattod.2011.02.043
- M.O. Aquatar, J.S. Mankar, U. Bhatia, S.S. Rayalu, R.J. Krupadam, Journal of Environmental Chemical Engineering, 9 (2021) 105839. https://doi.org/10.1016/j.jece.2021.105839
- A.H. Ruhaimi, C.N.C. Hitam, M.A.A. Aziz, N.H.A. Hamid, H.D. Setiabudi, L.P. Teh, Renewable and Sustainable Energy Reviews, 167 (2022) 112840. https://doi.org/10.1016/j.rser.2022.112840
- S. Chakraborty, R. Saha, S. Saha, Environ. Sci. Pollut. Res., 31 (2024) 67633-67663. 10.1007/s11356-023-30093-8
- W. Yu, L. Sisi, Y. Haiyan, L. Jie, RSC Adv., 10 (2020) 15328-15345. 10.1039/D0RA01068E
- F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano, 5 (2011) 26-41. 10.1021/nn102598m
- V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Chem. Rev., 116 (2016) 5464-5519. 10.1021/acs.chemrev.5b00620
- E.-Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, J. Mater. Chem., 20 (2010) 1907-1912. 10.1039/B919074K
- J.A. Mann, W.R. Dichtel, The Journal of Physical Chemistry Letters, 4 (2013) 2649-2657. 10.1021/jz4010448
- Z. Zhou, E. Davoudi, B. Vaferi, Journal of Environmental Chemical Engineering, 9 (2021) 106202. https://doi.org/10.1016/j.jece.2021.106202
- Y. Liu, B. Sajjadi, W.-Y. Chen, R. Chatterjee, Fuel, 247 (2019) 10-18. https://doi.org/10.1016/j.fuel.2019.03.011
- B. Yoon, G.A. Voth, J. Am. Chem. Soc., 145 (2023) 15663-15667. 10.1021/jacs.3c03613
- X. Yang, R.J. Rees, W. Conway, G. Puxty, Q. Yang, D.A. Winkler, Chem. Rev., 117 (2017) 9524-9593. 10.1021/acs.chemrev.6b00662
- K. Iida, D. Yokogawa, A. Ikeda, H. Sato, S. Sakaki, PCCP, 11 (2009) 8556-8559. 10.1039/B906912G
- X.E. Hu, Q. Yu, F. Barzagli, C.e. Li, M. Fan, K.A.M. Gasem, X. Zhang, E. Shiko, M. Tian, X. Luo, Z. Zeng, Y. Liu, R. Zhang, ACS Sustainable Chemistry & Engineering, 8 (2020) 6173-6193. 10.1021/acssuschemeng.9b07823
- B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y.J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Angew. Chem. Int. Ed., 51 (2012) 1412-1415. https://doi.org/10.1002/anie.201105966
- M. Oschatz, M. Antonietti, Energy Environ. Sci., 11 (2018) 57-70. 10.1039/C7EE02110K
- C. Zhang, W. Song, G. Sun, L. Xie, J. Wang, K. Li, C. Sun, H. Liu, C.E. Snape, T. Drage, Energy Fuels, 27 (2013) 4818-4823. 10.1021/ef400499k
- S. Park, H.-M. Lee, Y.-S. Lee, S. An, J. Yang, J. Kim, ACS Applied Nano Materials, 6 (2023) 19611-19621. 10.1021/acsanm.3c02943
- G. Lim, K.B. Lee, H.C. Ham, J. Physic. Chem. C, 120 (2016) 8087-8095. 10.1021/acs.jpcc.5b12090
- N. Li, M. Almarri, X.-l. Ma, Q.-f. Zha, New Carbon Materials, 26 (2011) 470-478. https://doi.org/10.1016/S1872-5805(11)60093-0
- N. Li, J. Zhu, X. Ma, Q. Zha, C. Song, AlChE J., 59 (2013) 1236-1244. https://doi.org/10.1002/aic.13886
- B. Ray, S.R. Churipard, S.C. Peter, J. Mater. Chem. A, 9 (2021) 26498-26527. 10.1039/D1TA08862A
- R. Barker, Y. Hua, A. Neville, Int. Mater. Rev., 62 (2017) 1-31. 10.1080/09506608.2016.1176306
- Z. Xu, Z. Zhang, J. Huang, K. Yu, G. Zhong, F. Chen, X. Chen, W. Yang, Y. Wang, Construction and Building Materials, 346 (2022) 128399. https://doi.org/10.1016/j.conbuildmat.2022.128399
- J. Ai, Z. Bacsik, K. Hallstensson, J. Yuan, A. Sugunan, N. Hedin, Chem. Eng. J., 506 (2025) 159963. https://doi.org/10.1016/j.cej.2025.159963
- I. Nicotera, A. Enotiadis, C. Simari, Small, 20 (2024) 2401303. https://doi.org/10.1002/smll.202401303
- R. Lawal, M.M. Hossain, Arabian Journal for Science and Engineering, (2025). 10.1007/s13369-025-09966-2
- M.N. Naseer, A.A. Zaidi, K. Dutta, Y.A. Wahab, J. Jaafar, R. Nusrat, I. Ullah, B. Kim, Energy Reports, 8 (2022) 4252-4264. https://doi.org/10.1016/j.egyr.2022.02.301
- B. Dziejarski, J. Serafin, K. Andersson, R. Krzyżyńska, Materials Today Sustainability, 24 (2023) 100483. https://doi.org/10.1016/j.mtsust.2023.100483
- F. Pazani, M. Salehi Maleh, M. Shariatifar, M. Jalaly, M. Sadrzadeh, M. Rezakazemi, Renewable and Sustainable Energy Reviews, 160 (2022) 112294. https://doi.org/10.1016/j.rser.2022.112294
- V. Ramar, A. Balraj, Energy Fuels, 36 (2022) 13479-13505. 10.1021/acs.energyfuels.2c02585
- M.S. Sorayani Bafqi, N. Aliyeva, H. Baskan-Bayrak, S. Dogan, B. Saner Okan, Nano Futures, 8 (2024) 022002. 10.1088/2399-1984/ad4fd5
- F. Raganati, P. Ammendola, Energy Fuels, 38 (2024) 13858-13905. 10.1021/acs.energyfuels.4c02513
- Z.L. Ooi, P.Y. Tan, L.S. Tan, S.P. Yeap, Chin. J. Chem. Eng., 28 (2020) 1357-1367. https://doi.org/10.1016/j.cjche.2020.02.029
- D. Loachamin, J. Casierra, V. Calva, A. Palma-Cando, E.E. Ávila, M. Ricaurte, ChemEngineering, 8 (2024) 129.
- U. Zahid, F.N. Al Rowaili, M.K. Ayodeji, U. Ahmed, International Journal of Greenhouse Gas Control, 57 (2017) 42-51. https://doi.org/10.1016/j.ijggc.2016.12.016
- C. Yu, H. Ling, W. Cao, F. Deng, Y. Zhao, D. Cao, M. Tie, X. Hu, Chem. Eng. J., 495 (2024) 153402. https://doi.org/10.1016/j.cej.2024.153402
- M. Yu, S. Zhang, H. Wu, Z. Lian, M. Zhang, Q. Zhong, Indust. Eng. Chem. Res., 63 (2024) 15735-15744. 10.1021/acs.iecr.4c01581
- Z. Khoshraftar, Sci. Rep., 15 (2025) 1800. 10.1038/s41598-025-86144-2
- S.C. Tiwari, K.K. Pant, S. Upadhyayula, Indust. Eng. Chem. Res., 63 (2024) 7578-7592. 10.1021/acs.iecr.4c00192
- Z. Wang, Z. Han, D. Liu, X. Yang, Z. Zhou, X. Wu, S. Lu, Sep. Purif. Technol., 357 (2025) 130150. https://doi.org/10.1016/j.seppur.2024.130150
- S. Zhou, Y. Zhu, H. Xi, Z. Hao, Z. Han, C. Sun, Chem. Eng. J., 485 (2024) 149790. https://doi.org/10.1016/j.cej.2024.149790
- L. Li, H. Yu, G. Puxty, S. Zhou, W. Conway, P. Feron, Indust. Eng. Chem. Res., 63 (2024) 16019-16028. 10.1021/acs.iecr.4c02064
- S. Jia, Y. Jiang, Y. Li, W. Chen, J. Huang, K. Wang, X.-Q. Liu, P. Cui, Chem. Eng. J., 493 (2024) 152561. https://doi.org/10.1016/j.cej.2024.152561
- B.J. Drewry, T. Mikoviny, A. Wisthaler, G.T. Rochelle, C. Stevens, K. Erickson, Indust. Eng. Chem. Res., (2025). 10.1021/acs.iecr.4c03763
- Z. Liang, K. Fu, R. Idem, P. Tontiwachwuthikul, Chin. J. Chem. Eng., 24 (2016) 278-288. https://doi.org/10.1016/j.cjche.2015.06.013
- A.B. Rao, E.S. Rubin, D.W. Keith, M. Granger Morgan, Energy Policy, 34 (2006) 3765-3772. https://doi.org/10.1016/j.enpol.2005.08.004
- N. Hüser, O. Schmitz, E.Y. Kenig, Chem. Eng. Sci., 157 (2017) 221-231. https://doi.org/10.1016/j.ces.2016.06.027
- M. Sharif, T. Han, T. Wang, X. Shi, M. Fang, D. Shuming, R. Meng, X. Gao, Chem. Eng. Res. Des., 204 (2024) 524-535. https://doi.org/10.1016/j.cherd.2024.03.005
- W. Andreoni, F. Pietrucci, J. Phys.: Condens. Matter, 28 (2016) 503003. 10.1088/0953-8984/28/50/503003
- L.B. Hamdy, C. Goel, J.A. Rudd, A.R. Barron, E. Andreoli, Materials Advances, 2 (2021) 5843-5880. 10.1039/D1MA00360G
- B. Dutcher, M. Fan, A.G. Russell, ACS Appl. Mater. Inter., 7 (2015) 2137-2148. 10.1021/am507465f
- H. Dashti, L. Zhehao Yew, X. Lou, Journal of Natural Gas Science and Engineering, 23 (2015) 195-207. https://doi.org/10.1016/j.jngse.2015.01.033
- G. Pandey, T. Poothia, A. Kumar, Applied Energy, 326 (2022) 119900. https://doi.org/10.1016/j.apenergy.2022.119900
- G. Xu, L. Li, Y. Yang, L. Tian, T. Liu, K. Zhang, Energy, 42 (2012) 522-529. https://doi.org/10.1016/j.energy.2012.02.048
- A.M. Yousef, W.M. El-Maghlany, Y.A. Eldrainy, A. Attia, Energy, 156 (2018) 328-351. https://doi.org/10.1016/j.energy.2018.05.106
- M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, Y. Ding, Sep. Purif. Technol., 299 (2022) 121734. https://doi.org/10.1016/j.seppur.2022.121734
- X.-b. Zhang, J.-y. Chen, L. Yao, Y.-h. Huang, X.-j. Zhang, L.-m. Qiu, Journal of Zhejiang University SCIENCE A, 15 (2014) 309-322. 10.1631/jzus.A1400063
- K. Maqsood, A. Mullick, A. Ali, K. Kargupta, S. Ganguly, Rev. Chem. Eng., 30 (2014) 453-477. doi:10.1515/revce-2014-0009
- A.F. Young, H.G.D. Villardi, L.S. Araujo, L.S.C. Raptopoulos, M.S. Dutra, Indust. Eng. Chem. Res., 60 (2021) 14830-14844. 10.1021/acs.iecr.1c02818
- C. Song, Q. Liu, S. Deng, H. Li, Y. Kitamura, Renewable and Sustainable Energy Reviews, 101 (2019) 265-278. https://doi.org/10.1016/j.rser.2018.11.018
- L. Zhang, K. Ye, Y. Wang, W. Han, M. Xie, L. Chen, Energy, 290 (2024) 129867. https://doi.org/10.1016/j.energy.2023.129867
- Y. Lee, H. Kim, W. Lee, D.W. Kang, J.W. Lee, Y.-H. Ahn, Journal of Environmental Chemical Engineering, 11 (2023) 110933. https://doi.org/10.1016/j.jece.2023.110933
- X. Lang, S. Fan, Y. Wang, Journal of Natural Gas Chemistry, 19 (2010) 203-209. https://doi.org/10.1016/S1003-9953(09)60079-7
- P. Babu, P. Linga, R. Kumar, P. Englezos, Energy, 85 (2015) 261-279. https://doi.org/10.1016/j.energy.2015.03.103
- S.K. Viswanadhan, A. Singh, H.P. Veluswamy, Gas Science and Engineering, 131 (2024) 205465. https://doi.org/10.1016/j.jgsce.2024.205465
- J. He, Y. Liu, Z. Ma, S. Deng, R. Zhao, L. Zhao, Energy Procedia, 105 (2017) 4090-4097. https://doi.org/10.1016/j.egypro.2017.03.867
- A. Hassanpouryouzband, E. Joonaki, M. Vasheghani Farahani, S. Takeya, C. Ruppel, J. Yang, N.J. English, J.M. Schicks, K. Edlmann, H. Mehrabian, Z.M. Aman, B. Tohidi, Chem. Soc. Rev., 49 (2020) 5225-5309. 10.1039/C8CS00989A
- A. Katare, S. Kumar, S. Kundu, S. Sharma, L.M. Kundu, B. Mandal, ACS Omega, 8 (2023) 17511-17522. 10.1021/acsomega.3c01666
- S. Kanehashi, C.A. Scholes, Frontiers of Chemical Science and Engineering, 14 (2020) 460-469. 10.1007/s11705-019-1881-5
- X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Inter., 7 (2015) 5528-5537. 10.1021/acsami.5b00106
- E. Okumus, T. Gurkan, L. Yilmaz, Sep. Sci. Technol., 29 (1994) 2451-2473. 10.1080/01496399408002203
- M.-T. Vu, R. Lin, H. Diao, Z. Zhu, S.K. Bhatia, S. Smart, J. Membr. Sci., 587 (2019) 117157. https://doi.org/10.1016/j.memsci.2019.05.081
- H. Vinh-Thang, S. Kaliaguine, Chem. Rev., 113 (2013) 4980-5028. 10.1021/cr3003888
- R. Mahajan, R. Burns, M. Schaeffer, W.J. Koros, J. Appl. Polym. Sci., 86 (2002) 881-890. https://doi.org/10.1002/app.10998
- Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, J. Membr. Sci., 350 (2010) 117-123. https://doi.org/10.1016/j.memsci.2009.12.018
- Y.C. Hudiono, T.K. Carlisle, A.L. LaFrate, D.L. Gin, R.D. Noble, J. Membr. Sci., 370 (2011) 141-148. https://doi.org/10.1016/j.memsci.2011.01.012
- M. Rezakazemi, A. Ebadi Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, Prog. Polym. Sci., 39 (2014) 817-861. https://doi.org/10.1016/j.progpolymsci.2014.01.003
- R.D. Noble, J. Membr. Sci., 378 (2011) 393-397. https://doi.org/10.1016/j.memsci.2011.05.031
- Y. Seo, Y.-C. Jung, M.-S. Park, D.-W. Kim, J. Membr. Sci., 603 (2020) 117995. https://doi.org/10.1016/j.memsci.2020.117995
- I. Pinnau, L.G. Toy, J. Membr. Sci., 184 (2001) 39-48. https://doi.org/10.1016/S0376-7388(00)00603-7
- A. Das, M. Hazarika, N. Deka, T. Jana, ACS Applied Nano Materials, 7 (2024) 8081-8092. 10.1021/acsanm.4c00560
- B. Oh, Y.R. Kim, Solid State Ionics, 124 (1999) 83-89. https://doi.org/10.1016/S0167-2738(99)00129-0
- S. Leaper, A. Abdel-Karim, B. Faki, J.M. Luque-Alled, M. Alberto, A. Vijayaraghavan, S.M. Holmes, G. Szekely, M.I. Badawy, N. Shokri, P. Gorgojo, J. Membr. Sci., 554 (2018) 309-323. https://doi.org/10.1016/j.memsci.2018.03.013
- R. Castro-Muñoz, V. Fíla, C.T. Dung, Chem. Eng. Commun., 204 (2017) 295-309. 10.1080/00986445.2016.1273832
- M. Alizamir, A. Keshavarz, F. Abdollahi, A. Khosravi, S. Karagöz, Sep. Purif. Technol., 325 (2023) 124689. https://doi.org/10.1016/j.seppur.2023.124689
- S. Li, Y.-J. Sun, Z.-X. Wang, C.-G. Jin, M.-J. Yin, Q.-F. An, Small, 19 (2023) 2208177. https://doi.org/10.1002/smll.202208177
- C. Ma, S. Sarmad, J.-P. Mikkola, X. Ji, Energy Procedia, 142 (2017) 3320-3325. https://doi.org/10.1016/j.egypro.2017.12.464
- T.J. Trivedi, J.H. Lee, H.J. Lee, Y.K. Jeong, J.W. Choi, Green Chem., 18 (2016) 2834-2842. 10.1039/C5GC02319J
- M. Francisco, A. van den Bruinhorst, M.C. Kroon, Angew. Chem. Int. Ed., 52 (2013) 3074-3085. https://doi.org/10.1002/anie.201207548
- A. Krishnan, K.P. Gopinath, D.-V.N. Vo, R. Malolan, V.M. Nagarajan, J. Arun, Environ. Chem. Lett., 18 (2020) 2031-2054. 10.1007/s10311-020-01057-y
- Y.R. Tao, H.J. Xu, Appl. Therm. Eng., 236 (2024) 121504. https://doi.org/10.1016/j.applthermaleng.2023.121504
- C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nature Reviews Materials, 2 (2017) 17045. 10.1038/natrevmats.2017.45
- Y. Lin, C. Kong, Q. Zhang, L. Chen, Advanced Energy Materials, 7 (2017) 1601296. https://doi.org/10.1002/aenm.201601296
- J.G. Vitillo, M. Savonnet , G. Ricchiardi, S. Bordiga, ChemSusChem, 4 (2011) 1281-1290. https://doi.org/10.1002/cssc.201000458
- Z. Xiang, S. Leng, D. Cao, J. Physic. Chem. C, 116 (2012) 10573-10579. 10.1021/jp3018875
- K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev., 112 (2012) 724-781. 10.1021/cr2003272
- D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, Langmuir, 28 (2012) 12094-12099. 10.1021/la302223m
- S. Gaikwad, Y. Kim, R. Gaikwad, S. Han, Journal of Environmental Chemical Engineering, 9 (2021) 105523. https://doi.org/10.1016/j.jece.2021.105523
- M. Yin, L. Wang, S. Tang, ACS Appl. Mater. Inter., 14 (2022) 55674-55685. 10.1021/acsami.2c18226
- T.S. Nguyen, N.A. Dogan, H. Lim, C.T. Yavuz, Acc. Chem. Res., 56 (2023) 2642-2652. 10.1021/acs.accounts.3c00367
- T. Wang, F. Liu, W. Tang, S. Xu, H. Dong, Z. Chen, X. Gao, Chem. Eng. J., 490 (2024) 151426. https://doi.org/10.1016/j.cej.2024.151426
- X. Shi, G.A. Lee, S. Liu, D. Kim, A. Alahmed, A. Jamal, L. Wang, A.-H.A. Park, Mater. Today, 65 (2023) 207-226. https://doi.org/10.1016/j.mattod.2023.03.004
- J.Y. Yong, R.Y. Xie, Q. Huang, X.J. Zhang, B. Li, P.F. Xie, C.F. Wu, L. Jiang, Sep. Purif. Technol., 328 (2024) 125018. https://doi.org/10.1016/j.seppur.2023.125018
- L.A. Darunte, K.S. Walton, D.S. Sholl, C.W. Jones, Current Opinion in Chemical Engineering, 12 (2016) 82-90. https://doi.org/10.1016/j.coche.2016.03.002
- P. Li, J. Chen, J. Zhang, X. Wang, Separation & Purification Reviews, 44 (2015) 19-27. 10.1080/15422119.2014.884507
- H. Lin, Y. Yang, Y.-C. Hsu, J. Zhang, C. Welton, I. Afolabi, M. Loo, H.-C. Zhou, Adv. Mater., 36 (2024) 2209073. https://doi.org/10.1002/adma.202209073
- K.M. Gupta, Y. Chen, J. Jiang, J. Physic. Chem. C, 117 (2013) 5792-5799. 10.1021/jp312404k
- M. Kang, J.E. Kim, D.W. Kang, H.Y. Lee, D. Moon, C.S. Hong, J. Mater. Chem. A, 7 (2019) 8177-8183. 10.1039/C8TA07965J
- L. Xing, K. Wei, Y. Li, Z. Fang, Q. Li, T. Qi, S. An, S. Zhang, L. Wang, Environ. Sci. Technol., 55 (2021) 11216-11224. 10.1021/acs.est.1c02452
- J.F. Kurisingal, Y. Rachuri, A.S. Palakkal, R.S. Pillai, Y. Gu, Y. Choe, D.-W. Park, ACS Appl. Mater. Inter., 11 (2019) 41458-41471. 10.1021/acsami.9b16834
- J. Sun, Q. Li, G. Chen, J. Duan, G. Liu, W. Jin, Sep. Purif. Technol., 217 (2019) 229-239. https://doi.org/10.1016/j.seppur.2019.02.036
- M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Chem. Soc. Rev., 48 (2019) 2783-2828. 10.1039/C8CS00829A
- D. Saha, Z. Bao, F. Jia, S. Deng, Environ. Sci. Technol., 44 (2010) 1820-1826. 10.1021/es9032309
- H. Demir, G.O. Aksu, H.C. Gulbalkan, S. Keskin, Carbon Capture Science & Technology, 2 (2022) 100026. https://doi.org/10.1016/j.ccst.2021.100026
- S. Bose, D. Sengupta, T.M. Rayder, X. Wang, K.O. Kirlikovali, A.K. Sekizkardes, T. Islamoglu, O.K. Farha, Adv. Funct. Mater., 34 (2024) 2307478. https://doi.org/10.1002/adfm.202307478
- M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Chemical Engineering and Processing: Process Intensification, 49 (2010) 313-322. https://doi.org/10.1016/j.cep.2010.03.008
- F. Karadas, M. Atilhan, S. Aparicio, Energy Fuels, 24 (2010) 5817-5828. 10.1021/ef1011337
- M. Ramdin, T.W. de Loos, T.J.H. Vlugt, Indust. Eng. Chem. Res., 51 (2012) 8149-8177. 10.1021/ie3003705
- W. Jiang, X. Li, G. Gao, F. Wu, C. Luo, L. Zhang, Chem. Eng. J., 445 (2022) 136767. https://doi.org/10.1016/j.cej.2022.136767
- W. Faisal Elmobarak, F. Almomani, M. Tawalbeh, A. Al-Othman, R. Martis, K. Rasool, Fuel, 344 (2023) 128102. https://doi.org/10.1016/j.fuel.2023.128102
- D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Chem. Eng. J., 390 (2020) 124509. https://doi.org/10.1016/j.cej.2020.124509
- X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Energy Environ. Sci., 5 (2012) 6668-6681. 10.1039/C2EE21152A
- R. Zhang, Q. Ke, Z. Zhang, B. Zhou, G. Cui, H. Lu, International Journal of Molecular Sciences, 23 (2022) 11401.
- J. Sun, Y. Sato, Y. Sakai, Y. Kansha, Journal of Cleaner Production, 414 (2023) 137695. https://doi.org/10.1016/j.jclepro.2023.137695
- K. Wang, Z. Zhang, S. Wang, L. Jiang, H. Li, C. Wang, ChemSusChem, 17 (2024) e202301951. https://doi.org/10.1002/cssc.202301951
- Y. Zhao, X. Wang, Z. Li, H. Wang, Y. Zhao, J. Qiu, J. Physic. Chem. B, 128 (2024) 1079-1090. 10.1021/acs.jpcb.3c06510
- J. Yang, D. Gao, H. Zhang, Q. Yi, Fuel, 366 (2024) 131351. https://doi.org/10.1016/j.fuel.2024.131351
- H. Karim, S. Sardar, H. Bibi, F. Perveen, M. Arfan, A. Mumtaz, J. Mol. Liq., 405 (2024) 125079. https://doi.org/10.1016/j.molliq.2024.125079
- A.R. Shaikh, A. Grillo, M.C. D’Alterio, J.J. Pajski, S.I. Amran, H. Karim, M. Chawla, G. Talarico, A. Poater, L. Cavallo, J. Mol. Liq., 424 (2025) 127084. https://doi.org/10.1016/j.molliq.2025.127084
- Z. Lei, C. Dai, J. Hallett, M. Shiflett, Chem. Rev., 124 (2024) 7533-7535. 10.1021/acs.chemrev.4c00291
- X. Yang, C. Zhu, T. Fu, Y. Ma, Int. J. Heat Mass Transfer, 222 (2024) 125210. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125210
- S. Hussain, H. Dong, H. Duan, X. Ji, H.M. Asif, W. Liu, X. Zhang, Langmuir, 40 (2024) 8636-8644. 10.1021/acs.langmuir.4c00412
- I. Roppolo, M. Zanatta, G. Colucci, R. Scipione, J.M. Cameron, G.N. Newton, V. Sans, A. Chiappone, React. Funct. Polym., 202 (2024) 105962. https://doi.org/10.1016/j.reactfunctpolym.2024.105962
- M. Zhang, R. Semiat, X. He, Sep. Purif. Technol., 345 (2024) 127281. https://doi.org/10.1016/j.seppur.2024.127281
- Y.-R. Xue, C. Liu, H.-C. Yang, H.-Q. Liang, C. Zhang, Z.-K. Xu, Small, 20 (2024) 2310092. https://doi.org/10.1002/smll.202310092
- Z. Turakulov, A. Kamolov, A. Norkobilov, M. Variny, G. Díaz-Sainz, L. Gómez-Coma, M. Fallanza, J. Chem. Technol. Biotechnol., 99 (2024) 1291-1307. https://doi.org/10.1002/jctb.7606
- P. Wang, Z. Liu, Z. Pan, J. González-Arias, L. Shang, Y. Wang, Z. Zhang, Sep. Purif. Technol., 346 (2024) 127252. https://doi.org/10.1016/j.seppur.2024.127252
- N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell, Energy Environ. Sci., 3 (2010) 1645-1669. 10.1039/C004106H
- J. Shen, G. Liu, K. Huang, W. Jin, K.-R. Lee, N. Xu, Angew. Chem. Int. Ed., 54 (2015) 578-582. https://doi.org/10.1002/anie.201409563