10.57647/j.ijc.2025.1501.02

Recent Development for Application of Functionalized Graphene for CO2 Capture: A Review

  1. Department of Biochemistry, College of Medicine Massan University, Missan, Iraq
  2. College of Medicine, University of Al-Ameed, Karbala, Iraq
  3. Radiology Techniques Department, College of Health and Medical Techniques, Al-mustaqbal University, Babylon, Iraq
  4. Department of Medical Physics, Faculty of Medical Applied Sciences, University of Kerbala,  AND  Department of Anesthesia Techniques and Intensive Care, Al-Taff university college, Karbala, Iraq
  5. Collage of Pharmacy, National University of Science and Technology, Dhi Qar, Iraq
  6. College of Chemistry and Chemical Engineering, China University of Petroleum, Beijing, China
Recent Development for Application of Functionalized Graphene for CO2 Capture: A Review

Received: 2024-12-13

Revised: 2025-03-12

Accepted: 2025-03-15

Published 2025-03-16

How to Cite

Mhaibes, R. M. ., Kadhum, A. A. H. ., Abdulhasan, T. ., Mudhafar, M. ., Lahhob, Q. R. ., & Shu, G. . (2025). Recent Development for Application of Functionalized Graphene for CO2 Capture: A Review. Iranian Journal of Catalysis, 15(1 (March 2025). https://doi.org/10.57647/j.ijc.2025.1501.02

PDF views: 70

Abstract

The rising levels of carbon dioxide (CO2) in the atmosphere present a serious challenge to global climate stability, highlighting the urgent need for effective carbon capture technologies. Among the various materials investigated for CO2 capture, functionalized graphene has shown considerable promise due to its remarkable characteristics, such as a high surface area, robust mechanical properties, and adjustable chemical functionalities. This review article offers a thorough examination of the latest developments in the use of functionalized graphene for CO2 capture, focusing on its improved adsorption capacity, selectivity, and reusability. We explore innovative methods of functionalization, the combination of functionalized graphene with advanced materials like metal-organic frameworks (MOFs) and zeolites, and the critical role of environmental and economic sustainability in the advancement of these materials. Additionally, we stress the importance of real-world applications and pilot studies to evaluate the practical feasibility of functionalized graphene in industrial contexts. By consolidating current research and outlining future pathways, this paper seeks to aid ongoing initiatives aimed at combating climate change through effective CO2 capture methods, ultimately facilitating the shift towards a sustainable low-carbon economy.

Research Highlights

  • In this review the application of functionalized graphene for CO2 capture was reviewed.
  • Functionalized graphene presents a highly effective solution for CO2
  • The application of nanotechnology in carbon capture is still in the experimental phase.
  • To enhance the performance of functionalized graphene for CO2 capture, advancements in functionalization methods are essential.

Keywords

  • CO2 capture,
  • Graphene,
  • Functionalization,
  • Catalyst,
  • Environmental chemistry

References

  1. S.V. Ollinger, C.L. Goodale, K. Hayhoe, J.P. Jenkins, Mitigation and Adaptation Strategies for Global Change, 13 (2008) 467-485. 10.1007/s11027-007-9128-z
  2. Z. Xie, X. Zhang, Z. Zhang, Z. Zhou, Adv. Mater., 29 (2017) 1605891. https://doi.org/10.1002/adma.201605891
  3. K.L. Kadam, Energy Convers. Manage., 38 (1997) S505-S510. https://doi.org/10.1016/S0196-8904(96)00318-4
  4. C. Cao, H. Liu, Z. Hou, F. Mehmood, J. Liao, W. Feng, Energies, 13 (2020) 600.
  5. P. Kelemen, S.M. Benson, H. Pilorgé, P. Psarras, J. Wilcox, Frontiers in Climate, 1 (2019). 10.3389/fclim.2019.00009
  6. N. Mac Dowell, P.S. Fennell, N. Shah, G.C. Maitland, Nature Climate Change, 7 (2017) 243-249. 10.1038/nclimate3231
  7. J.D. Figueroa, T. Fout, S. Plasynski, H. McIlvried, R.D. Srivastava, International Journal of Greenhouse Gas Control, 2 (2008) 9-20. https://doi.org/10.1016/S1750-5836(07)00094-1
  8. B. Li, Y. Duan, D. Luebke, B. Morreale, Applied Energy, 102 (2013) 1439-1447. https://doi.org/10.1016/j.apenergy.2012.09.009
  9. S. Valluri, V. Claremboux, S. Kawatra, Journal of Environmental Sciences, 113 (2022) 322-344. https://doi.org/10.1016/j.jes.2021.05.043
  10. E. Alper, O. Yuksel Orhan, Petroleum, 3 (2017) 109-126. https://doi.org/10.1016/j.petlm.2016.11.003
  11. N. Li, L. Mo, C. Unluer, Journal of CO2 Utilization, 65 (2022) 102237. https://doi.org/10.1016/j.jcou.2022.102237
  12. A. Gulzar, A. Gulzar, M.B. Ansari, F. He, S. Gai, P. Yang, Chemical Engineering Journal Advances, 3 (2020) 100013. https://doi.org/10.1016/j.ceja.2020.100013
  13. J.F. Brennecke, B.E. Gurkan, The Journal of Physical Chemistry Letters, 1 (2010) 3459-3464. 10.1021/jz1014828
  14. P. Bains, P. Psarras, J. Wilcox, Prog. Energy Combust. Sci., 63 (2017) 146-172. https://doi.org/10.1016/j.pecs.2017.07.001
  15. A. Stangeland, International Journal of Greenhouse Gas Control, 1 (2007) 418-429. https://doi.org/10.1016/S1750-5836(07)00087-4
  16. D. Ma, J. Deng, Z. Zhang, Atmos. Environ., 81 (2013) 188-198. https://doi.org/10.1016/j.atmosenv.2013.09.012
  17. V. Jiménez, A. Ramírez-Lucas, J.A. Díaz, P. Sánchez, A. Romero, Environ. Sci. Technol., 46 (2012) 7407-7414. 10.1021/es2046553
  18. S. Vasudevan, S. Farooq, I.A. Karimi, M. Saeys, M.C.G. Quah, R. Agrawal, Energy, 103 (2016) 709-714. https://doi.org/10.1016/j.energy.2016.02.154
  19. A. Sodiq, Y. Abdullatif, B. Aissa, A. Ostovar, N. Nassar, M. El-Naas, A. Amhamed, Environmental Technology & Innovation, 29 (2023) 102991. https://doi.org/10.1016/j.eti.2022.102991
  20. T. Lockwood, Energy Procedia, 114 (2017) 2658-2670. https://doi.org/10.1016/j.egypro.2017.03.1850
  21. D.J. Beerling, E.P. Kantzas, M.R. Lomas, P. Wade, R.M. Eufrasio, P. Renforth, B. Sarkar, M.G. Andrews, R.H. James, C.R. Pearce, J.-F. Mercure, H. Pollitt, P.B. Holden, N.R. Edwards, M. Khanna, L. Koh, S. Quegan, N.F. Pidgeon, I.A. Janssens, J. Hansen, S.A. Banwart, Nature, 583 (2020) 242-248. 10.1038/s41586-020-2448-9
  22. F. Meng, Y. Meng, T. Ju, S. Han, L. Lin, J. Jiang, Renewable and Sustainable Energy Reviews, 168 (2022) 112902. https://doi.org/10.1016/j.rser.2022.112902
  23. S.A. Mazari, L. Ghalib, A. Sattar, M.M. Bozdar, A. Qayoom, I. Ahmed, A. Muhammad, R. Abro, A. Abdulkareem, S. Nizamuddin, H. Baloch, N.M. Mubarak, International Journal of Greenhouse Gas Control, 96 (2020) 103010. https://doi.org/10.1016/j.ijggc.2020.103010
  24. A. Brunetti, E. Drioli, Y.M. Lee, G. Barbieri, J. Membr. Sci., 454 (2014) 305-315. https://doi.org/10.1016/j.memsci.2013.12.037
  25. W.D. Jones, J. Am. Chem. Soc., 142 (2020) 4955-4957. 10.1021/jacs.0c02356
  26. M. Bui, M. Fajardy, N. Mac Dowell, Fuel, 213 (2018) 164-175. https://doi.org/10.1016/j.fuel.2017.10.100
  27. S. Abuelgasim, W. Wang, A. Abdalazeez, Sci. Total Environ., 764 (2021) 142892. https://doi.org/10.1016/j.scitotenv.2020.142892
  28. C. Font-Palma, D. Cann, C. Udemu, C, 7 (2021) 58.
  29. Y.T. Youns, A.K. Manshad, J.A. Ali, Fuel, 349 (2023) 128680. https://doi.org/10.1016/j.fuel.2023.128680
  30. L. Fu, Z. Ren, W. Si, Q. Ma, W. Huang, K. Liao, Z. Huang, Y. Wang, J. Li, P. Xu, Journal of CO2 Utilization, 66 (2022) 102260. https://doi.org/10.1016/j.jcou.2022.102260
  31. J. Pei, J. Chen, J. Wang, Z. Li, N. Li, J. Kan, Frontiers in Chemistry, 12 (2024). 10.3389/fchem.2024.1448881
  32. N.S. Sifat, Y. Haseli, Energies, 12 (2019) 4143.
  33. J. Yu, L.-H. Xie, J.-R. Li, Y. Ma, J.M. Seminario, P.B. Balbuena, Chem. Rev., 117 (2017) 9674-9754. 10.1021/acs.chemrev.6b00626
  34. S. Kumar, R. Srivastava, J. Koh, Journal of CO2 Utilization, 41 (2020) 101251. https://doi.org/10.1016/j.jcou.2020.101251
  35. P. Kumar, K.-H. Kim, Applied Energy, 172 (2016) 383-397. https://doi.org/10.1016/j.apenergy.2016.03.095
  36. P. Markewitz, W. Kuckshinrichs, W. Leitner, J. Linssen, P. Zapp, R. Bongartz, A. Schreiber, T.E. Müller, Energy Environ. Sci., 5 (2012) 7281-7305. 10.1039/C2EE03403D
  37. M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Energy Fuels, 38 (2024) 8406-8436. 10.1021/acs.energyfuels.4c00160
  38. M. Rezaei, A. Nezamzadeh-Ejhieh, A.R. Massah, Ecotoxicol. Environ. Saf., 269 (2024) 115927. https://doi.org/10.1016/j.ecoenv.2024.115927
  39. S.A. Ali, W.U. Mulk, A.U. Khan, H.S. Bhatti, M. Hadeed, J. Ahmad, K. Habib, S.N. Shah, M. Younas, Energy Fuels, 38 (2024) 18330-18366. 10.1021/acs.energyfuels.4c03305
  40. S.A. Ali, A.U. Khan, W.U. Mulk, H. Khan, S. Nasir Shah, A. Zahid, K. Habib, M.U.H. Shah, M.H.D. Othman, S. Rahman, Energy Fuels, 37 (2023) 15394-15428. 10.1021/acs.energyfuels.3c02377
  41. W.U. Mulk, S.A. Ali, S.N. Shah, M.U.H. Shah, Q.-J. Zhang, M. Younas, A. Fatehizadeh, M. Sheikh, M. Rezakazemi, Journal of CO2 Utilization, 75 (2023) 102555. https://doi.org/10.1016/j.jcou.2023.102555
  42. W.U. Mulk, M.U. Hassan Shah, S.N. Shah, Q.-J. Zhang, A.L. Khan, M. Sheikh, M. Younas, M. Rezakazemi, Environ. Res., 237 (2023) 116879. https://doi.org/10.1016/j.envres.2023.116879
  43. S.A. Ali, S.N. Shah, M.U.H. Shah, M. Younas, Chemosphere, 311 (2023) 136913. https://doi.org/10.1016/j.chemosphere.2022.136913
  44. S.A. Ali, W.U. Mulk, Z. Ullah, H. Khan, A. Zahid, M.U.H. Shah, S.N. Shah, Energies, 15 (2022) 9098.
  45. W. Wei, X. Qu, Small, 8 (2012) 2138-2151. https://doi.org/10.1002/smll.201200104
  46. M.F. Craciun, I. Khrapach, M.D. Barnes, S. Russo, J. Phys.: Condens. Matter, 25 (2013) 423201. 10.1088/0953-8984/25/42/423201
  47. C. Chung, Y.-K. Kim, D. Shin, S.-R. Ryoo, B.H. Hong, D.-H. Min, Acc. Chem. Res., 46 (2013) 2211-2224. 10.1021/ar300159f
  48. P. Avouris, C. Dimitrakopoulos, Mater. Today, 15 (2012) 86-97. https://doi.org/10.1016/S1369-7021(12)70044-5
  49. X. Wan, Y. Huang, Y. Chen, Acc. Chem. Res., 45 (2012) 598-607. 10.1021/ar200229q
  50. O. Mohammadi, M. Golestanzadeh, M. Abdouss, New J. Chem., 41 (2017) 11471-11497. 10.1039/C7NJ02515G
  51. R. Balasubramanian, S. Chowdhury, J. Mater. Chem. A, 3 (2015) 21968-21989. 10.1039/C5TA04822B
  52. J. Li, M. Hou, Y. Chen, W. Cen, Y. Chu, S. Yin, Appl. Surf. Sci., 399 (2017) 420-425. https://doi.org/10.1016/j.apsusc.2016.11.157
  53. L. An, S. Liu, L. Wang, J. Wu, Z. Wu, C. Ma, Q. Yu, X. Hu, Indust. Eng. Chem. Res., 58 (2019) 3349-3358. 10.1021/acs.iecr.8b06122
  54. A. Taheri Najafabadi, Renewable and Sustainable Energy Reviews, 41 (2015) 1515-1545. https://doi.org/10.1016/j.rser.2014.09.022
  55. A.I. Osman, M. Hefny, M.I.A. Abdel Maksoud, A.M. Elgarahy, D.W. Rooney, Environ. Chem. Lett., 19 (2021) 797-849. 10.1007/s10311-020-01133-3
  56. N. Hsan, P.K. Dutta, S. Kumar, J. Koh, Journal of CO2 Utilization, 59 (2022) 101958. https://doi.org/10.1016/j.jcou.2022.101958
  57. G. Mishra, A. Warda, S.P. Shah, Journal of Building Engineering, 62 (2022) 105356. https://doi.org/10.1016/j.jobe.2022.105356
  58. A.M. Varghese, K.S.K. Reddy, N. Bhoria, S. Singh, J. Pokhrel, G.N. Karanikolos, Chem. Eng. J., 420 (2021) 129677. https://doi.org/10.1016/j.cej.2021.129677
  59. A.H. Berger, A.S. Bhown, Energy Procedia, 4 (2011) 562-567. https://doi.org/10.1016/j.egypro.2011.01.089
  60. S. Schaefer, V. Fierro, A. Szczurek, M.T. Izquierdo, A. Celzard, Int. J. Hydrogen Energy, 41 (2016) 17442-17452. https://doi.org/10.1016/j.ijhydene.2016.07.262
  61. J. Jin, Z. Wen, S. Li, J. Huang, Greenhouse Gases: Science and Technology, 13 (2023) 357-368. https://doi.org/10.1002/ghg.2201
  62. M. Wang, Z. Zhang, Y. Gong, S. Zhou, J. Wang, Z. Wang, S. Wei, W. Guo, X. Lu, Appl. Surf. Sci., 502 (2020) 144067. https://doi.org/10.1016/j.apsusc.2019.144067
  63. N. Tit, K. Said, N.M. Mahmoud, S. Kouser, Z.H. Yamani, Appl. Surf. Sci., 394 (2017) 219-230. https://doi.org/10.1016/j.apsusc.2016.10.052
  64. R.M. Firdaus, A. Desforges, M. Emo, A.R. Mohamed, B. Vigolo, Nanomaterials, 11 (2021) 2419.
  65. S. Chowdhury, R. Balasubramanian, Indust. Eng. Chem. Res., 55 (2016) 7906-7916. 10.1021/acs.iecr.5b04052
  66. B. Luan, B. Elmegreen, M.A. Kuroda, Z. Gu, G. Lin, S. Zeng, ACS Nano, 16 (2022) 6274-6281. 10.1021/acsnano.2c00213
  67. R. Navik, E. Wang, X. Ding, H. Yunyi, Y. Liu, J. Li, J. Energ. Chem., 100 (2025) 653-664. https://doi.org/10.1016/j.jechem.2024.09.019
  68. Y. Khadiri, A. Legrand, C. Volkringer, A. Anouar, S. Royer, A. El Kadib, T. Loiseau, J. Dhainaut, Materials Today Sustainability, 28 (2024) 100998. https://doi.org/10.1016/j.mtsust.2024.100998
  69. E. Safaei, Z. Talebi, V. Ghafarinia, Journal of the Taiwan Institute of Chemical Engineers, (2024) 105352. https://doi.org/10.1016/j.jtice.2024.105352
  70. F. Yang, Y. Jin, J. Liu, H. Zhu, R. Xu, F. Xiangli, G. Liu, W. Jin, Chin. J. Chem. Eng., 67 (2024) 257-267. https://doi.org/10.1016/j.cjche.2023.11.012
  71. R. Kumar Jha, H. Bhunia, S. Basu, Chem. Eng. Sci., 285 (2024) 119572. https://doi.org/10.1016/j.ces.2023.119572
  72. L. Zhang, Y. Zhao, H. Yu, L. Chen, X. Liu, A. Zhang, Z. Deng, J.Z. Ou, Chem. Eng. J., 494 (2024) 153250. https://doi.org/10.1016/j.cej.2024.153250
  73. S. Saha, G. Mohan Das, G. Vadivel, Colloids Surf. Physicochem. Eng. Aspects, 687 (2024) 133415. https://doi.org/10.1016/j.colsurfa.2024.133415
  74. B. Yao, Y. Wang, Z. Fang, Y. Hu, Z. Ye, X. Peng, Microporous Mesoporous Mater., 361 (2023) 112758. https://doi.org/10.1016/j.micromeso.2023.112758
  75. I. Barbarin, M. Fidanchevska, N. Politakos, L. Serrano-Cantador, J.A. Cecilia, D. Martín, O. Sanz, R. Tomovska, Indust. Eng. Chem. Res., 63 (2024) 7073-7087. 10.1021/acs.iecr.3c02989
  76. A.I. Pruna, A. Cárcel, A. Benedito, E. Giménez, International Journal of Molecular Sciences, 24 (2023) 3865.
  77. Z.-J. Liu, W.-H. Zhang, M.-J. Yin, Y.-H. Ren, Q.-F. An, Sep. Purif. Technol., 312 (2023) 123448. https://doi.org/10.1016/j.seppur.2023.123448
  78. Z. Gu, Z. Cai, B. Elmegreen, M. Steiner, B. Luan, Chem. Eng. J., 474 (2023) 145778. https://doi.org/10.1016/j.cej.2023.145778
  79. S. Roy, B. Dasgupta Ghosh, K. Lim Goh, H. Jun Ahn, Y.-W. Chang, Chem. Eng. J., 466 (2023) 143326. https://doi.org/10.1016/j.cej.2023.143326
  80. I. Barbarin, N. Politakos, L. Serrano-Cantador, J.A. Cecilia, O. Sanz, R. Tomovska, Microporous Mesoporous Mater., 337 (2022) 111907. https://doi.org/10.1016/j.micromeso.2022.111907
  81. H. Zhao, D. Bahamon, M. Khaleel, L.F. Vega, Chem. Eng. J., 449 (2022) 137884. https://doi.org/10.1016/j.cej.2022.137884
  82. C.-C. Hu, H.-H. Yeh, C.-P. Hu, R.L.G. Lecaros, C.-C. Cheng, W.-S. Hung, H.-A. Tsai, K.-R. Lee, J.-Y. Lai, Journal of the Taiwan Institute of Chemical Engineers, 135 (2022) 104379. https://doi.org/10.1016/j.jtice.2022.104379
  83. J. Wang, S. Cui, Z. Li, S. Wen, P. Ning, S. Lu, P. Lu, L. Huang, Q. Wang, Chem. Eng. J., 415 (2021) 128859. https://doi.org/10.1016/j.cej.2021.128859
  84. Z. Shen, Y. Song, C. Yin, X. Luo, Y. Wang, X. Li, Microporous Mesoporous Mater., 322 (2021) 111158. https://doi.org/10.1016/j.micromeso.2021.111158
  85. K. Xia, R. Xiong, Y. Chen, D. Liu, Q. Tian, Q. Gao, B. Han, C. Zhou, Colloids Surf. Physicochem. Eng. Aspects, 622 (2021) 126640. https://doi.org/10.1016/j.colsurfa.2021.126640
  86. N. Politakos, I. Barbarin, L.S. Cantador, J.A. Cecilia, E. Mehravar, R. Tomovska, Indust. Eng. Chem. Res., 59 (2020) 8612-8621. 10.1021/acs.iecr.9b06998
  87. N. Politakos, I. Barbarin, T. Cordero-Lanzac, A. Gonzalez, R. Zangi, R. Tomovska, Polymers, 12 (2020) 936.
  88. A.M. Varghese, K.S.K. Reddy, S. Singh, G.N. Karanikolos, Chem. Eng. J., 386 (2020) 124022. https://doi.org/10.1016/j.cej.2020.124022
  89. S. Shang, Z. Tao, C. Yang, A. Hanif, L. Li, D.C.W. Tsang, Q. Gu, J. Shang, Chem. Eng. J., 393 (2020) 124666. https://doi.org/10.1016/j.cej.2020.124666
  90. D. Xia, H. Li, J. Mannering, P. Huang, X. Zheng, A. Kulak, D. Baker, D. Iruretagoyena, R. Menzel, Adv. Funct. Mater., 30 (2020) 2002788. https://doi.org/10.1002/adfm.202002788
  91. J. Heo, M. Choi, D. Choi, H. Jeong, H.Y. Kim, H. Jeon, S.W. Kang, J. Hong, J. Membr. Sci., 601 (2020) 117905. https://doi.org/10.1016/j.memsci.2020.117905
  92. E. Thomou, E.K. Diamanti, A. Enotiadis, K. Spyrou, E. Mitsari, L.G. Boutsika, A. Sapalidis, E. Moretón Alfonsín, O. De Luca, D. Gournis, Frontiers in Chemistry, 8 (2020) 564838. https://doi.org/10.3389/fchem.2020.564838
  93. A. Pruna, A.C. Cárcel, A. Benedito, E. Giménez, Appl. Surf. Sci., 487 (2019) 228-235. https://doi.org/10.1016/j.apsusc.2019.05.098
  94. F. Zhou, H.N. Tien, Q. Dong, W.L. Xu, H. Li, S. Li, M. Yu, J. Membr. Sci., 573 (2019) 184-191. https://doi.org/10.1016/j.memsci.2018.11.080
  95. S. Nazari Kudahi, A. Noorpoor, N.M. Mahmoodi, Iranian Journal of Chemistry and Chemical Engineering (IJCCE), 38 (2019) 293-307.
  96. G. Qin, Q. Cui, W. Wang, P. Li, A. Du, Q. Sun, Chemphyschem, 19 (2018) 2788-2795. https://doi.org/10.1002/cphc.201800385
  97. Y. He, F. Wang, J. Mater. Chem. A, 6 (2018) 22619-22625. 10.1039/C8TA08785G
  98. G. Huang, A.P. Isfahani, A. Muchtar, K. Sakurai, B.B. Shrestha, D. Qin, D. Yamaguchi, E. Sivaniah, B. Ghalei, J. Membr. Sci., 565 (2018) 370-379. https://doi.org/10.1016/j.memsci.2018.08.026
  99. M. Sarfraz, M. Ba-Shammakh, Polym. Bull., 75 (2018) 5039-5059. 10.1007/s00289-018-2301-6
  100. S. Park, H. Bae, J. Ahn, H. Lee, Y. Kwon, ACS Omega, 3 (2018) 10554-10563. 10.1021/acsomega.8b01371
  101. R. Rea, S. Ligi, M. Christian, V. Morandi, M. Giacinti Baschetti, M.G. De Angelis, Polymers, 10 (2018) 129.
  102. P. Li, H.C. Zeng, Environ. Sci. Technol., 51 (2017) 12998-13007. 10.1021/acs.est.7b03308
  103. F. Zhou, H.N. Tien, W.L. Xu, J.-T. Chen, Q. Liu, E. Hicks, M. Fathizadeh, S. Li, M. Yu, Nature Communications, 8 (2017) 2107. 10.1038/s41467-017-02318-1
  104. X. Tan, H.A. Tahini, S.C. Smith, Chem. Phys., 478 (2016) 139-144. https://doi.org/10.1016/j.chemphys.2016.04.001
  105. M. Karunakaran, L.F. Villalobos, M. Kumar, R. Shevate, F.H. Akhtar, K.V. Peinemann, J. Mater. Chem. A, 5 (2017) 649-656. 10.1039/C6TA08858A
  106. Y. Dai, X. Ruan, Z. Yan, K. Yang, M. Yu, H. Li, W. Zhao, G. He, Sep. Purif. Technol., 166 (2016) 171-180. https://doi.org/10.1016/j.seppur.2016.04.038
  107. E. Haque, M.M. Islam, E. Pourazadi, S. Sarkar, A.T. Harris, A.I. Minett, E. Yanmaz, S.M. Alshehri, Y. Ide, K.C.-W. Wu, Y.V. Kaneti, Y. Yamauchi, M.S.A. Hossain, Chemistry – An Asian Journal, 12 (2017) 283-288. https://doi.org/10.1002/asia.201601442
  108. Y. Wang, Q. Yang, C. Zhong, J. Li, J. Physic. Chem. C, 120 (2016) 28782-28788. 10.1021/acs.jpcc.6b08529
  109. G. Dong, Y. Zhang, J. Hou, J. Shen, V. Chen, Indust. Eng. Chem. Res., 55 (2016) 5403-5414. 10.1021/acs.iecr.6b01005
  110. F. Liu, K. Huang, S. Ding, S. Dai, J. Mater. Chem. A, 4 (2016) 14567-14571. 10.1039/C6TA06583J
  111. P. Bhanja, S.K. Das, A.K. Patra, A. Bhaumik, RSC Adv., 6 (2016) 72055-72068. 10.1039/C6RA13590K
  112. G.S. Rao, T. Hussain, M.S. Islam, M. Sagynbaeva, D. Gupta, P. Panigrahi, R. Ahuja, Nanotechnology, 27 (2016) 015502. 10.1088/0957-4484/27/1/015502
  113. F.-Q. Liu, W. Li, J. Zhao, W.-H. Li, D.-M. Chen, L.-S. Sun, L. Wang, R.-X. Li, J. Mater. Chem. A, 3 (2015) 12252-12258. 10.1039/C5TA01536G
  114. S.A. Tawfik, X.Y. Cui, S.P. Ringer, C. Stampfl, RSC Adv., 5 (2015) 50975-50982. 10.1039/C5RA09876A
  115. S. Chowdhury, G.K. Parshetti, R. Balasubramanian, Chem. Eng. J., 263 (2015) 374-384. https://doi.org/10.1016/j.cej.2014.11.037
  116. Y. Shen, H. Wang, J. Liu, Y. Zhang, ACS Sustainable Chemistry & Engineering, 3 (2015) 1819-1829. 10.1021/acssuschemeng.5b00409
  117. G.K. Parshetti, S. Chowdhury, R. Balasubramanian, RSC Adv., 4 (2014) 44634-44643. 10.1039/C4RA05522E
  118. J. Shen, G. Liu, K. Huang, W. Jin, K.R. Lee, N. Xu, Angew. Chem., 127 (2015) 588-592. https://doi.org/10.1002/ange.201409563
  119. A.A. Alhwaige, T. Agag, H. Ishida, S. Qutubuddin, RSC Adv., 3 (2013) 16011-16020. 10.1039/C3RA42022A
  120. V. Chandra, S.U. Yu, S.H. Kim, Y.S. Yoon, D.Y. Kim, A.H. Kwon, M. Meyyappan, K.S. Kim, Chem. Commun., 48 (2012) 735-737. 10.1039/C1CC15599G
  121. Y. Jiao, A. Du, Z. Zhu, V. Rudolph, G.Q. Lu, S.C. Smith, Catal. Today, 175 (2011) 271-275. https://doi.org/10.1016/j.cattod.2011.02.043
  122. M.O. Aquatar, J.S. Mankar, U. Bhatia, S.S. Rayalu, R.J. Krupadam, Journal of Environmental Chemical Engineering, 9 (2021) 105839. https://doi.org/10.1016/j.jece.2021.105839
  123. A.H. Ruhaimi, C.N.C. Hitam, M.A.A. Aziz, N.H.A. Hamid, H.D. Setiabudi, L.P. Teh, Renewable and Sustainable Energy Reviews, 167 (2022) 112840. https://doi.org/10.1016/j.rser.2022.112840
  124. S. Chakraborty, R. Saha, S. Saha, Environ. Sci. Pollut. Res., 31 (2024) 67633-67663. 10.1007/s11356-023-30093-8
  125. W. Yu, L. Sisi, Y. Haiyan, L. Jie, RSC Adv., 10 (2020) 15328-15345. 10.1039/D0RA01068E
  126. F. Banhart, J. Kotakoski, A.V. Krasheninnikov, ACS Nano, 5 (2011) 26-41. 10.1021/nn102598m
  127. V. Georgakilas, J.N. Tiwari, K.C. Kemp, J.A. Perman, A.B. Bourlinos, K.S. Kim, R. Zboril, Chem. Rev., 116 (2016) 5464-5519. 10.1021/acs.chemrev.5b00620
  128. E.-Y. Choi, T.H. Han, J. Hong, J.E. Kim, S.H. Lee, H.W. Kim, S.O. Kim, J. Mater. Chem., 20 (2010) 1907-1912. 10.1039/B919074K
  129. J.A. Mann, W.R. Dichtel, The Journal of Physical Chemistry Letters, 4 (2013) 2649-2657. 10.1021/jz4010448
  130. Z. Zhou, E. Davoudi, B. Vaferi, Journal of Environmental Chemical Engineering, 9 (2021) 106202. https://doi.org/10.1016/j.jece.2021.106202
  131. Y. Liu, B. Sajjadi, W.-Y. Chen, R. Chatterjee, Fuel, 247 (2019) 10-18. https://doi.org/10.1016/j.fuel.2019.03.011
  132. B. Yoon, G.A. Voth, J. Am. Chem. Soc., 145 (2023) 15663-15667. 10.1021/jacs.3c03613
  133. X. Yang, R.J. Rees, W. Conway, G. Puxty, Q. Yang, D.A. Winkler, Chem. Rev., 117 (2017) 9524-9593. 10.1021/acs.chemrev.6b00662
  134. K. Iida, D. Yokogawa, A. Ikeda, H. Sato, S. Sakaki, PCCP, 11 (2009) 8556-8559. 10.1039/B906912G
  135. X.E. Hu, Q. Yu, F. Barzagli, C.e. Li, M. Fan, K.A.M. Gasem, X. Zhang, E. Shiko, M. Tian, X. Luo, Z. Zeng, Y. Liu, R. Zhang, ACS Sustainable Chemistry & Engineering, 8 (2020) 6173-6193. 10.1021/acssuschemeng.9b07823
  136. B. Li, Z. Zhang, Y. Li, K. Yao, Y. Zhu, Z. Deng, F. Yang, X. Zhou, G. Li, H. Wu, N. Nijem, Y.J. Chabal, Z. Lai, Y. Han, Z. Shi, S. Feng, J. Li, Angew. Chem. Int. Ed., 51 (2012) 1412-1415. https://doi.org/10.1002/anie.201105966
  137. M. Oschatz, M. Antonietti, Energy Environ. Sci., 11 (2018) 57-70. 10.1039/C7EE02110K
  138. C. Zhang, W. Song, G. Sun, L. Xie, J. Wang, K. Li, C. Sun, H. Liu, C.E. Snape, T. Drage, Energy Fuels, 27 (2013) 4818-4823. 10.1021/ef400499k
  139. S. Park, H.-M. Lee, Y.-S. Lee, S. An, J. Yang, J. Kim, ACS Applied Nano Materials, 6 (2023) 19611-19621. 10.1021/acsanm.3c02943
  140. G. Lim, K.B. Lee, H.C. Ham, J. Physic. Chem. C, 120 (2016) 8087-8095. 10.1021/acs.jpcc.5b12090
  141. N. Li, M. Almarri, X.-l. Ma, Q.-f. Zha, New Carbon Materials, 26 (2011) 470-478. https://doi.org/10.1016/S1872-5805(11)60093-0
  142. N. Li, J. Zhu, X. Ma, Q. Zha, C. Song, AlChE J., 59 (2013) 1236-1244. https://doi.org/10.1002/aic.13886
  143. B. Ray, S.R. Churipard, S.C. Peter, J. Mater. Chem. A, 9 (2021) 26498-26527. 10.1039/D1TA08862A
  144. R. Barker, Y. Hua, A. Neville, Int. Mater. Rev., 62 (2017) 1-31. 10.1080/09506608.2016.1176306
  145. Z. Xu, Z. Zhang, J. Huang, K. Yu, G. Zhong, F. Chen, X. Chen, W. Yang, Y. Wang, Construction and Building Materials, 346 (2022) 128399. https://doi.org/10.1016/j.conbuildmat.2022.128399
  146. J. Ai, Z. Bacsik, K. Hallstensson, J. Yuan, A. Sugunan, N. Hedin, Chem. Eng. J., 506 (2025) 159963. https://doi.org/10.1016/j.cej.2025.159963
  147. I. Nicotera, A. Enotiadis, C. Simari, Small, 20 (2024) 2401303. https://doi.org/10.1002/smll.202401303
  148. R. Lawal, M.M. Hossain, Arabian Journal for Science and Engineering, (2025). 10.1007/s13369-025-09966-2
  149. M.N. Naseer, A.A. Zaidi, K. Dutta, Y.A. Wahab, J. Jaafar, R. Nusrat, I. Ullah, B. Kim, Energy Reports, 8 (2022) 4252-4264. https://doi.org/10.1016/j.egyr.2022.02.301
  150. B. Dziejarski, J. Serafin, K. Andersson, R. Krzyżyńska, Materials Today Sustainability, 24 (2023) 100483. https://doi.org/10.1016/j.mtsust.2023.100483
  151. F. Pazani, M. Salehi Maleh, M. Shariatifar, M. Jalaly, M. Sadrzadeh, M. Rezakazemi, Renewable and Sustainable Energy Reviews, 160 (2022) 112294. https://doi.org/10.1016/j.rser.2022.112294
  152. V. Ramar, A. Balraj, Energy Fuels, 36 (2022) 13479-13505. 10.1021/acs.energyfuels.2c02585
  153. M.S. Sorayani Bafqi, N. Aliyeva, H. Baskan-Bayrak, S. Dogan, B. Saner Okan, Nano Futures, 8 (2024) 022002. 10.1088/2399-1984/ad4fd5
  154. F. Raganati, P. Ammendola, Energy Fuels, 38 (2024) 13858-13905. 10.1021/acs.energyfuels.4c02513
  155. Z.L. Ooi, P.Y. Tan, L.S. Tan, S.P. Yeap, Chin. J. Chem. Eng., 28 (2020) 1357-1367. https://doi.org/10.1016/j.cjche.2020.02.029
  156. D. Loachamin, J. Casierra, V. Calva, A. Palma-Cando, E.E. Ávila, M. Ricaurte, ChemEngineering, 8 (2024) 129.
  157. U. Zahid, F.N. Al Rowaili, M.K. Ayodeji, U. Ahmed, International Journal of Greenhouse Gas Control, 57 (2017) 42-51. https://doi.org/10.1016/j.ijggc.2016.12.016
  158. C. Yu, H. Ling, W. Cao, F. Deng, Y. Zhao, D. Cao, M. Tie, X. Hu, Chem. Eng. J., 495 (2024) 153402. https://doi.org/10.1016/j.cej.2024.153402
  159. M. Yu, S. Zhang, H. Wu, Z. Lian, M. Zhang, Q. Zhong, Indust. Eng. Chem. Res., 63 (2024) 15735-15744. 10.1021/acs.iecr.4c01581
  160. Z. Khoshraftar, Sci. Rep., 15 (2025) 1800. 10.1038/s41598-025-86144-2
  161. S.C. Tiwari, K.K. Pant, S. Upadhyayula, Indust. Eng. Chem. Res., 63 (2024) 7578-7592. 10.1021/acs.iecr.4c00192
  162. Z. Wang, Z. Han, D. Liu, X. Yang, Z. Zhou, X. Wu, S. Lu, Sep. Purif. Technol., 357 (2025) 130150. https://doi.org/10.1016/j.seppur.2024.130150
  163. S. Zhou, Y. Zhu, H. Xi, Z. Hao, Z. Han, C. Sun, Chem. Eng. J., 485 (2024) 149790. https://doi.org/10.1016/j.cej.2024.149790
  164. L. Li, H. Yu, G. Puxty, S. Zhou, W. Conway, P. Feron, Indust. Eng. Chem. Res., 63 (2024) 16019-16028. 10.1021/acs.iecr.4c02064
  165. S. Jia, Y. Jiang, Y. Li, W. Chen, J. Huang, K. Wang, X.-Q. Liu, P. Cui, Chem. Eng. J., 493 (2024) 152561. https://doi.org/10.1016/j.cej.2024.152561
  166. B.J. Drewry, T. Mikoviny, A. Wisthaler, G.T. Rochelle, C. Stevens, K. Erickson, Indust. Eng. Chem. Res., (2025). 10.1021/acs.iecr.4c03763
  167. Z. Liang, K. Fu, R. Idem, P. Tontiwachwuthikul, Chin. J. Chem. Eng., 24 (2016) 278-288. https://doi.org/10.1016/j.cjche.2015.06.013
  168. A.B. Rao, E.S. Rubin, D.W. Keith, M. Granger Morgan, Energy Policy, 34 (2006) 3765-3772. https://doi.org/10.1016/j.enpol.2005.08.004
  169. N. Hüser, O. Schmitz, E.Y. Kenig, Chem. Eng. Sci., 157 (2017) 221-231. https://doi.org/10.1016/j.ces.2016.06.027
  170. M. Sharif, T. Han, T. Wang, X. Shi, M. Fang, D. Shuming, R. Meng, X. Gao, Chem. Eng. Res. Des., 204 (2024) 524-535. https://doi.org/10.1016/j.cherd.2024.03.005
  171. W. Andreoni, F. Pietrucci, J. Phys.: Condens. Matter, 28 (2016) 503003. 10.1088/0953-8984/28/50/503003
  172. L.B. Hamdy, C. Goel, J.A. Rudd, A.R. Barron, E. Andreoli, Materials Advances, 2 (2021) 5843-5880. 10.1039/D1MA00360G
  173. B. Dutcher, M. Fan, A.G. Russell, ACS Appl. Mater. Inter., 7 (2015) 2137-2148. 10.1021/am507465f
  174. H. Dashti, L. Zhehao Yew, X. Lou, Journal of Natural Gas Science and Engineering, 23 (2015) 195-207. https://doi.org/10.1016/j.jngse.2015.01.033
  175. G. Pandey, T. Poothia, A. Kumar, Applied Energy, 326 (2022) 119900. https://doi.org/10.1016/j.apenergy.2022.119900
  176. G. Xu, L. Li, Y. Yang, L. Tian, T. Liu, K. Zhang, Energy, 42 (2012) 522-529. https://doi.org/10.1016/j.energy.2012.02.048
  177. A.M. Yousef, W.M. El-Maghlany, Y.A. Eldrainy, A. Attia, Energy, 156 (2018) 328-351. https://doi.org/10.1016/j.energy.2018.05.106
  178. M. Shen, L. Tong, S. Yin, C. Liu, L. Wang, W. Feng, Y. Ding, Sep. Purif. Technol., 299 (2022) 121734. https://doi.org/10.1016/j.seppur.2022.121734
  179. X.-b. Zhang, J.-y. Chen, L. Yao, Y.-h. Huang, X.-j. Zhang, L.-m. Qiu, Journal of Zhejiang University SCIENCE A, 15 (2014) 309-322. 10.1631/jzus.A1400063
  180. K. Maqsood, A. Mullick, A. Ali, K. Kargupta, S. Ganguly, Rev. Chem. Eng., 30 (2014) 453-477. doi:10.1515/revce-2014-0009
  181. A.F. Young, H.G.D. Villardi, L.S. Araujo, L.S.C. Raptopoulos, M.S. Dutra, Indust. Eng. Chem. Res., 60 (2021) 14830-14844. 10.1021/acs.iecr.1c02818
  182. C. Song, Q. Liu, S. Deng, H. Li, Y. Kitamura, Renewable and Sustainable Energy Reviews, 101 (2019) 265-278. https://doi.org/10.1016/j.rser.2018.11.018
  183. L. Zhang, K. Ye, Y. Wang, W. Han, M. Xie, L. Chen, Energy, 290 (2024) 129867. https://doi.org/10.1016/j.energy.2023.129867
  184. Y. Lee, H. Kim, W. Lee, D.W. Kang, J.W. Lee, Y.-H. Ahn, Journal of Environmental Chemical Engineering, 11 (2023) 110933. https://doi.org/10.1016/j.jece.2023.110933
  185. X. Lang, S. Fan, Y. Wang, Journal of Natural Gas Chemistry, 19 (2010) 203-209. https://doi.org/10.1016/S1003-9953(09)60079-7
  186. P. Babu, P. Linga, R. Kumar, P. Englezos, Energy, 85 (2015) 261-279. https://doi.org/10.1016/j.energy.2015.03.103
  187. S.K. Viswanadhan, A. Singh, H.P. Veluswamy, Gas Science and Engineering, 131 (2024) 205465. https://doi.org/10.1016/j.jgsce.2024.205465
  188. J. He, Y. Liu, Z. Ma, S. Deng, R. Zhao, L. Zhao, Energy Procedia, 105 (2017) 4090-4097. https://doi.org/10.1016/j.egypro.2017.03.867
  189. A. Hassanpouryouzband, E. Joonaki, M. Vasheghani Farahani, S. Takeya, C. Ruppel, J. Yang, N.J. English, J.M. Schicks, K. Edlmann, H. Mehrabian, Z.M. Aman, B. Tohidi, Chem. Soc. Rev., 49 (2020) 5225-5309. 10.1039/C8CS00989A
  190. A. Katare, S. Kumar, S. Kundu, S. Sharma, L.M. Kundu, B. Mandal, ACS Omega, 8 (2023) 17511-17522. 10.1021/acsomega.3c01666
  191. S. Kanehashi, C.A. Scholes, Frontiers of Chemical Science and Engineering, 14 (2020) 460-469. 10.1007/s11705-019-1881-5
  192. X. Li, Y. Cheng, H. Zhang, S. Wang, Z. Jiang, R. Guo, H. Wu, ACS Appl. Mater. Inter., 7 (2015) 5528-5537. 10.1021/acsami.5b00106
  193. E. Okumus, T. Gurkan, L. Yilmaz, Sep. Sci. Technol., 29 (1994) 2451-2473. 10.1080/01496399408002203
  194. M.-T. Vu, R. Lin, H. Diao, Z. Zhu, S.K. Bhatia, S. Smart, J. Membr. Sci., 587 (2019) 117157. https://doi.org/10.1016/j.memsci.2019.05.081
  195. H. Vinh-Thang, S. Kaliaguine, Chem. Rev., 113 (2013) 4980-5028. 10.1021/cr3003888
  196. R. Mahajan, R. Burns, M. Schaeffer, W.J. Koros, J. Appl. Polym. Sci., 86 (2002) 881-890. https://doi.org/10.1002/app.10998
  197. Y.C. Hudiono, T.K. Carlisle, J.E. Bara, Y. Zhang, D.L. Gin, R.D. Noble, J. Membr. Sci., 350 (2010) 117-123. https://doi.org/10.1016/j.memsci.2009.12.018
  198. Y.C. Hudiono, T.K. Carlisle, A.L. LaFrate, D.L. Gin, R.D. Noble, J. Membr. Sci., 370 (2011) 141-148. https://doi.org/10.1016/j.memsci.2011.01.012
  199. M. Rezakazemi, A. Ebadi Amooghin, M.M. Montazer-Rahmati, A.F. Ismail, T. Matsuura, Prog. Polym. Sci., 39 (2014) 817-861. https://doi.org/10.1016/j.progpolymsci.2014.01.003
  200. R.D. Noble, J. Membr. Sci., 378 (2011) 393-397. https://doi.org/10.1016/j.memsci.2011.05.031
  201. Y. Seo, Y.-C. Jung, M.-S. Park, D.-W. Kim, J. Membr. Sci., 603 (2020) 117995. https://doi.org/10.1016/j.memsci.2020.117995
  202. I. Pinnau, L.G. Toy, J. Membr. Sci., 184 (2001) 39-48. https://doi.org/10.1016/S0376-7388(00)00603-7
  203. A. Das, M. Hazarika, N. Deka, T. Jana, ACS Applied Nano Materials, 7 (2024) 8081-8092. 10.1021/acsanm.4c00560
  204. B. Oh, Y.R. Kim, Solid State Ionics, 124 (1999) 83-89. https://doi.org/10.1016/S0167-2738(99)00129-0
  205. S. Leaper, A. Abdel-Karim, B. Faki, J.M. Luque-Alled, M. Alberto, A. Vijayaraghavan, S.M. Holmes, G. Szekely, M.I. Badawy, N. Shokri, P. Gorgojo, J. Membr. Sci., 554 (2018) 309-323. https://doi.org/10.1016/j.memsci.2018.03.013
  206. R. Castro-Muñoz, V. Fíla, C.T. Dung, Chem. Eng. Commun., 204 (2017) 295-309. 10.1080/00986445.2016.1273832
  207. M. Alizamir, A. Keshavarz, F. Abdollahi, A. Khosravi, S. Karagöz, Sep. Purif. Technol., 325 (2023) 124689. https://doi.org/10.1016/j.seppur.2023.124689
  208. S. Li, Y.-J. Sun, Z.-X. Wang, C.-G. Jin, M.-J. Yin, Q.-F. An, Small, 19 (2023) 2208177. https://doi.org/10.1002/smll.202208177
  209. C. Ma, S. Sarmad, J.-P. Mikkola, X. Ji, Energy Procedia, 142 (2017) 3320-3325. https://doi.org/10.1016/j.egypro.2017.12.464
  210. T.J. Trivedi, J.H. Lee, H.J. Lee, Y.K. Jeong, J.W. Choi, Green Chem., 18 (2016) 2834-2842. 10.1039/C5GC02319J
  211. M. Francisco, A. van den Bruinhorst, M.C. Kroon, Angew. Chem. Int. Ed., 52 (2013) 3074-3085. https://doi.org/10.1002/anie.201207548
  212. A. Krishnan, K.P. Gopinath, D.-V.N. Vo, R. Malolan, V.M. Nagarajan, J. Arun, Environ. Chem. Lett., 18 (2020) 2031-2054. 10.1007/s10311-020-01057-y
  213. Y.R. Tao, H.J. Xu, Appl. Therm. Eng., 236 (2024) 121504. https://doi.org/10.1016/j.applthermaleng.2023.121504
  214. C.A. Trickett, A. Helal, B.A. Al-Maythalony, Z.H. Yamani, K.E. Cordova, O.M. Yaghi, Nature Reviews Materials, 2 (2017) 17045. 10.1038/natrevmats.2017.45
  215. Y. Lin, C. Kong, Q. Zhang, L. Chen, Advanced Energy Materials, 7 (2017) 1601296. https://doi.org/10.1002/aenm.201601296
  216. J.G. Vitillo, M. Savonnet , G. Ricchiardi, S. Bordiga, ChemSusChem, 4 (2011) 1281-1290. https://doi.org/10.1002/cssc.201000458
  217. Z. Xiang, S. Leng, D. Cao, J. Physic. Chem. C, 116 (2012) 10573-10579. 10.1021/jp3018875
  218. K. Sumida, D.L. Rogow, J.A. Mason, T.M. McDonald, E.D. Bloch, Z.R. Herm, T.-H. Bae, J.R. Long, Chem. Rev., 112 (2012) 724-781. 10.1021/cr2003272
  219. D. Wu, Q. Yang, C. Zhong, D. Liu, H. Huang, W. Zhang, G. Maurin, Langmuir, 28 (2012) 12094-12099. 10.1021/la302223m
  220. S. Gaikwad, Y. Kim, R. Gaikwad, S. Han, Journal of Environmental Chemical Engineering, 9 (2021) 105523. https://doi.org/10.1016/j.jece.2021.105523
  221. M. Yin, L. Wang, S. Tang, ACS Appl. Mater. Inter., 14 (2022) 55674-55685. 10.1021/acsami.2c18226
  222. T.S. Nguyen, N.A. Dogan, H. Lim, C.T. Yavuz, Acc. Chem. Res., 56 (2023) 2642-2652. 10.1021/acs.accounts.3c00367
  223. T. Wang, F. Liu, W. Tang, S. Xu, H. Dong, Z. Chen, X. Gao, Chem. Eng. J., 490 (2024) 151426. https://doi.org/10.1016/j.cej.2024.151426
  224. X. Shi, G.A. Lee, S. Liu, D. Kim, A. Alahmed, A. Jamal, L. Wang, A.-H.A. Park, Mater. Today, 65 (2023) 207-226. https://doi.org/10.1016/j.mattod.2023.03.004
  225. J.Y. Yong, R.Y. Xie, Q. Huang, X.J. Zhang, B. Li, P.F. Xie, C.F. Wu, L. Jiang, Sep. Purif. Technol., 328 (2024) 125018. https://doi.org/10.1016/j.seppur.2023.125018
  226. L.A. Darunte, K.S. Walton, D.S. Sholl, C.W. Jones, Current Opinion in Chemical Engineering, 12 (2016) 82-90. https://doi.org/10.1016/j.coche.2016.03.002
  227. P. Li, J. Chen, J. Zhang, X. Wang, Separation & Purification Reviews, 44 (2015) 19-27. 10.1080/15422119.2014.884507
  228. H. Lin, Y. Yang, Y.-C. Hsu, J. Zhang, C. Welton, I. Afolabi, M. Loo, H.-C. Zhou, Adv. Mater., 36 (2024) 2209073. https://doi.org/10.1002/adma.202209073
  229. K.M. Gupta, Y. Chen, J. Jiang, J. Physic. Chem. C, 117 (2013) 5792-5799. 10.1021/jp312404k
  230. M. Kang, J.E. Kim, D.W. Kang, H.Y. Lee, D. Moon, C.S. Hong, J. Mater. Chem. A, 7 (2019) 8177-8183. 10.1039/C8TA07965J
  231. L. Xing, K. Wei, Y. Li, Z. Fang, Q. Li, T. Qi, S. An, S. Zhang, L. Wang, Environ. Sci. Technol., 55 (2021) 11216-11224. 10.1021/acs.est.1c02452
  232. J.F. Kurisingal, Y. Rachuri, A.S. Palakkal, R.S. Pillai, Y. Gu, Y. Choe, D.-W. Park, ACS Appl. Mater. Inter., 11 (2019) 41458-41471. 10.1021/acsami.9b16834
  233. J. Sun, Q. Li, G. Chen, J. Duan, G. Liu, W. Jin, Sep. Purif. Technol., 217 (2019) 229-239. https://doi.org/10.1016/j.seppur.2019.02.036
  234. M. Ding, R.W. Flaig, H.-L. Jiang, O.M. Yaghi, Chem. Soc. Rev., 48 (2019) 2783-2828. 10.1039/C8CS00829A
  235. D. Saha, Z. Bao, F. Jia, S. Deng, Environ. Sci. Technol., 44 (2010) 1820-1826. 10.1021/es9032309
  236. H. Demir, G.O. Aksu, H.C. Gulbalkan, S. Keskin, Carbon Capture Science & Technology, 2 (2022) 100026. https://doi.org/10.1016/j.ccst.2021.100026
  237. S. Bose, D. Sengupta, T.M. Rayder, X. Wang, K.O. Kirlikovali, A.K. Sekizkardes, T. Islamoglu, O.K. Farha, Adv. Funct. Mater., 34 (2024) 2307478. https://doi.org/10.1002/adfm.202307478
  238. M. Hasib-ur-Rahman, M. Siaj, F. Larachi, Chemical Engineering and Processing: Process Intensification, 49 (2010) 313-322. https://doi.org/10.1016/j.cep.2010.03.008
  239. F. Karadas, M. Atilhan, S. Aparicio, Energy Fuels, 24 (2010) 5817-5828. 10.1021/ef1011337
  240. M. Ramdin, T.W. de Loos, T.J.H. Vlugt, Indust. Eng. Chem. Res., 51 (2012) 8149-8177. 10.1021/ie3003705
  241. W. Jiang, X. Li, G. Gao, F. Wu, C. Luo, L. Zhang, Chem. Eng. J., 445 (2022) 136767. https://doi.org/10.1016/j.cej.2022.136767
  242. W. Faisal Elmobarak, F. Almomani, M. Tawalbeh, A. Al-Othman, R. Martis, K. Rasool, Fuel, 344 (2023) 128102. https://doi.org/10.1016/j.fuel.2023.128102
  243. D. Hospital-Benito, J. Lemus, C. Moya, R. Santiago, J. Palomar, Chem. Eng. J., 390 (2020) 124509. https://doi.org/10.1016/j.cej.2020.124509
  244. X. Zhang, X. Zhang, H. Dong, Z. Zhao, S. Zhang, Y. Huang, Energy Environ. Sci., 5 (2012) 6668-6681. 10.1039/C2EE21152A
  245. R. Zhang, Q. Ke, Z. Zhang, B. Zhou, G. Cui, H. Lu, International Journal of Molecular Sciences, 23 (2022) 11401.
  246. J. Sun, Y. Sato, Y. Sakai, Y. Kansha, Journal of Cleaner Production, 414 (2023) 137695. https://doi.org/10.1016/j.jclepro.2023.137695
  247. K. Wang, Z. Zhang, S. Wang, L. Jiang, H. Li, C. Wang, ChemSusChem, 17 (2024) e202301951. https://doi.org/10.1002/cssc.202301951
  248. Y. Zhao, X. Wang, Z. Li, H. Wang, Y. Zhao, J. Qiu, J. Physic. Chem. B, 128 (2024) 1079-1090. 10.1021/acs.jpcb.3c06510
  249. J. Yang, D. Gao, H. Zhang, Q. Yi, Fuel, 366 (2024) 131351. https://doi.org/10.1016/j.fuel.2024.131351
  250. H. Karim, S. Sardar, H. Bibi, F. Perveen, M. Arfan, A. Mumtaz, J. Mol. Liq., 405 (2024) 125079. https://doi.org/10.1016/j.molliq.2024.125079
  251. A.R. Shaikh, A. Grillo, M.C. D’Alterio, J.J. Pajski, S.I. Amran, H. Karim, M. Chawla, G. Talarico, A. Poater, L. Cavallo, J. Mol. Liq., 424 (2025) 127084. https://doi.org/10.1016/j.molliq.2025.127084
  252. Z. Lei, C. Dai, J. Hallett, M. Shiflett, Chem. Rev., 124 (2024) 7533-7535. 10.1021/acs.chemrev.4c00291
  253. X. Yang, C. Zhu, T. Fu, Y. Ma, Int. J. Heat Mass Transfer, 222 (2024) 125210. https://doi.org/10.1016/j.ijheatmasstransfer.2024.125210
  254. S. Hussain, H. Dong, H. Duan, X. Ji, H.M. Asif, W. Liu, X. Zhang, Langmuir, 40 (2024) 8636-8644. 10.1021/acs.langmuir.4c00412
  255. I. Roppolo, M. Zanatta, G. Colucci, R. Scipione, J.M. Cameron, G.N. Newton, V. Sans, A. Chiappone, React. Funct. Polym., 202 (2024) 105962. https://doi.org/10.1016/j.reactfunctpolym.2024.105962
  256. M. Zhang, R. Semiat, X. He, Sep. Purif. Technol., 345 (2024) 127281. https://doi.org/10.1016/j.seppur.2024.127281
  257. Y.-R. Xue, C. Liu, H.-C. Yang, H.-Q. Liang, C. Zhang, Z.-K. Xu, Small, 20 (2024) 2310092. https://doi.org/10.1002/smll.202310092
  258. Z. Turakulov, A. Kamolov, A. Norkobilov, M. Variny, G. Díaz-Sainz, L. Gómez-Coma, M. Fallanza, J. Chem. Technol. Biotechnol., 99 (2024) 1291-1307. https://doi.org/10.1002/jctb.7606
  259. P. Wang, Z. Liu, Z. Pan, J. González-Arias, L. Shang, Y. Wang, Z. Zhang, Sep. Purif. Technol., 346 (2024) 127252. https://doi.org/10.1016/j.seppur.2024.127252
  260. N. MacDowell, N. Florin, A. Buchard, J. Hallett, A. Galindo, G. Jackson, C.S. Adjiman, C.K. Williams, N. Shah, P. Fennell, Energy Environ. Sci., 3 (2010) 1645-1669. 10.1039/C004106H
  261. J. Shen, G. Liu, K. Huang, W. Jin, K.-R. Lee, N. Xu, Angew. Chem. Int. Ed., 54 (2015) 578-582. https://doi.org/10.1002/anie.201409563