10.1007/s40096-023-00518-z

An adaptive finite element method for Riesz fractional partial integro-differential equations

  1. Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura, EG
  2. Mathematics and Engineering Physics Department, Faculty of Engineering, Mansoura University, Mansoura, EG Department of Mathematics, Institute of Basic and Applied Sciences, Egypt-Japan University of Science and Technology (E-JUST), New Borg El-Arab City, Alexandria, EG
Cover Image

Published 2023-08-09

How to Cite

Adel, E., El-Kalla, I. L., Elsaid, A., & Sameeh, M. (2023). An adaptive finite element method for Riesz fractional partial integro-differential equations. Mathematical Sciences, 18(4 (December 2024). https://doi.org/10.1007/s40096-023-00518-z

HTML views: 2

PDF views: 14

Abstract

Abstract The Riesz fractional derivative has been employed to describe the spatial derivative in a variety of mathematical models. In this work, the accuracy of the finite element method (FEM) approximations to Riesz fractional derivative was enhanced by using adaptive refinement. This was accomplished by deducing the Riesz derivatives of the FEM bases to work on non-uniform meshes. We utilized these derivatives to recover the gradient in a space fractional partial integro-differential equation in the Riesz sense. The recovered gradient was used as an a posteriori error estimator to control the adaptive refinement scheme. The stability and the error estimate for the proposed scheme are introduced. The results of some numerical examples that we carried out illustrate the improvement in the performance of the adaptive technique.

Keywords

  • Adaptive finite element method,
  • Fractional partial integro-differential equation,
  • Gradient recovery techniques,
  • Riesz fractional derivative,
  • Polynomial preserving recovery

References

  1. Dehghan and Shakeri (2010) Solution of parabolic integro-differential equations arising in heat conduction in materials with memory via He’s variational iteration technique 26(6) (pp. 705-715) https://doi.org/10.1002/cnm.1166
  2. Habetler and Schiffman (1970) A finite difference method for analyzing the compression of poro-viscoelastic media (pp. 342-348) https://doi.org/10.1007/BF02238819
  3. Aziz, I., Khan, I.: Numerical solution of diffusion and reaction–diffusion partial integro-differential equations. Int. J. Comput. Methods
  4. 15
  5. (1) (2018)
  6. Pao (1974) Solution of a nonlinear integrodifferential system arising in nuclear reactor dynamics (pp. 470-492) https://doi.org/10.1016/0022-247X(74)90171-1
  7. Ravichandran et al. (2022) Results on neutral partial integrodifferential equations using Monch-Krasnosel’Skii fixed point theorem with nonlocal conditions 6(2) https://doi.org/10.3390/fractalfract6020075
  8. Qiu, W., Xiao, X., Li, K.: Second-order accurate numerical scheme with graded meshes for the nonlinear partial integrodifferential equation arising from viscoelasticity. Commun. Nonlinear Sci. Numer. Simul.
  9. 116
  10. (2023)
  11. Fu and Hirsa (2022) An unsupervised deep learning approach to solving partial integro-differential equations 22(8) (pp. 1481-1494) https://doi.org/10.1080/14697688.2022.2057870
  12. Luo, Z., Zhang, X., Wang, S., Yao, L.: Numerical approximation of time fractional partial integro-differential equation based on compact finite difference scheme. Chaos Solit. Fractals.
  13. 161
  14. (2022)
  15. Santra, S., Mohapatra, J.: A novel finite difference technique with error estimate for time fractional partial integro-differential equation of Volterra type. J. Comput. Appl. Math.
  16. 400
  17. (2022)
  18. Dehghan and Abbaszadeh (2019) Error estimate of finite element/finite difference technique for solution of two-dimensional weakly singular integro-partial differential equation with space and time fractional derivatives (pp. 314-328) https://doi.org/10.1016/j.cam.2018.12.028
  19. Diethelm (2004) Springer
  20. Hilfer (2000) World Scientific Publishing https://doi.org/10.1142/3779
  21. Podlubny (1999) Academic Press
  22. Samko et al. (1993) Gordon and Breach Science Publishers
  23. Shamseldeen et al. (2019) Caputo-Riesz-Feller fractional wave equation: analytic and approximate solutions and their continuation 59(1) (pp. 423-444) https://doi.org/10.1007/s12190-018-1186-8
  24. Elsaid et al. (2017) Analytical approximate solution of fractional wave equation by the optimal homotopy analysis method 10(3) (pp. 586-601)
  25. Elsaid et al. (2016) Iterative solution of fractional diffusion equation modelling anomalous diffusion 11(2)
  26. Elsaid, A., Shamseldeen, S., Madkour, S.: Semianalytic solution of space-time fractional diffusion equation, Int. J. Diff. Eqs. 2016 (2016). Article ID 2371837
  27. Elsaid (2011) Homotopy analysis method for solving a class of fractional partial differential equations (pp. 3655-3664) https://doi.org/10.1016/j.cnsns.2010.12.040
  28. Elsaid (2010) The variational iteration method for solving Riesz fractional partial differential equations (pp. 1940-1947) https://doi.org/10.1016/j.camwa.2010.07.027
  29. Elsaid et al. (2016) Similarity solutions for solving Riesz fractional partial differential equations 2(4) (pp. 293-298) https://doi.org/10.18576/pfda/020407
  30. Haghighi, A. R., Dadvand, A., Ghejlo, H. H.: Solution of the fractional diffusion equation with the Riesz fractional derivative using McCormack method. Commun. Adv. Comput. Sci. Appl.cacsa-00024, 1–11 (2014)
  31. Feng et al. (2015) Finite element method for space-time fractional diffusion equation (pp. 749-767) https://doi.org/10.1007/s11075-015-0065-8
  32. Lai et al. (2021) A space-time finite element method for solving linear Riesz space fractional partial differential equations (pp. 499-520) https://doi.org/10.1007/s11075-020-01047-9
  33. Adolfsson et al. (2003) Adaptive discretization of an integro-differential equation with a weakly singular convolution kernel 192(51–52) (pp. 5285-5304) https://doi.org/10.1016/j.cma.2003.09.001
  34. Adolfsson et al. (2004) Adaptive discretization of fractional order viscoelasticity using sparse time history 193(42–44) (pp. 4567-4590) https://doi.org/10.1016/j.cma.2004.03.006
  35. Ervin and Roop (2007) Variational solution of fractional advection dispersion equations on bounded domains in Rd 23(2) (pp. 256-281) https://doi.org/10.1002/num.20169
  36. Ervin et al. (2007) Numerical approximation of a time dependent, nonlinear, space-fractional diffusion equation 45(2) (pp. 572-591) https://doi.org/10.1137/050642757
  37. Roop (2006) Computational aspects of FEM approximation of fractional advection dispersion equations on bounded domains in R2 193(1) (pp. 243-268) https://doi.org/10.1016/j.cam.2005.06.005
  38. Ervin and Roop (2006) Variational formulation for the stationary fractional advection dispersion equation 22(3) (pp. 558-576) https://doi.org/10.1002/num.20112
  39. Li et al. (2011) Numerical approximation of nonlinear fractional differential equations with subdiffusion and superdiffusion 62(3) (pp. 855-875) https://doi.org/10.1016/j.camwa.2011.02.045
  40. Graham et al. (1989) Adaptive numerical solution of integral equations with application to a problem with a boundary layer (pp. 75-90)
  41. Bertoldo, A.: FEMS: an adaptive finite element solver. In: IEEE International Parallel and Distributed Processing Symposium, pp. 1–8 (2007)
  42. Essam, R., El-Agamy, M., Elsaid, A.: Heat flux recovery in a multilayer model for skin tissues in the presence of a tumor. Eur. Phys. J. Plus 134–285 (2019)
  43. Sameeh et al. (2019) Adaptive Finite element solution for Volterra partial integro differential equations (pp. 1-11)
  44. Adel et al. (2016) Adaptive finite element method for Fredholm integral equation 6(5) (pp. 239-248)
  45. Huang et al. (2012) Some weighted averaging methods for gradient recovery (pp. 131-155) https://doi.org/10.4208/aamm.10-m1188
  46. Wei et al. (2007) Superconvergence and gradient recovery of linear Fnite elements for the Laplace Beltrami operator on general surfaces (pp. 1064-1080)
  47. Bank, R., Xu, J.: Asymptotically exact a posteriori error estimators, part I: grids with superconvergence. SIAM J. Numer. Anal. 2294–2312 (2004)
  48. Heimsund, B., Tai, X., Wang, J.: Superconvergence for the gradient of Finite element approximations by L2 projections. SIAM J. Numer. Anal. 1263–1280 (2003)
  49. Podlubny (1999) Academic Press
  50. Repin (2008) Walter de Gruyter https://doi.org/10.1515/9783110203042
  51. Naga, A., Zhang, Z.: A posteriori error estimates based on the polynomial preserving recovery. SIAM J. Numer. Anal. 1780–1800 (2005)
  52. Xu and Zhang (2004) Analysis of recovery type a posteriori error estimators for mildly structured grids 73(247) (pp. 1139-1152) https://doi.org/10.1090/S0025-5718-03-01600-4
  53. Ainsworth, M., Oden, J.: A Posteriori Error Estimation in Finite Element Analysis. Wiley Interscience 37 (2000)
  54. Babuska and Strouboulis (2001) Oxford University Press https://doi.org/10.1093/oso/9780198502760.001.0001
  55. Zienkiewicz and Zhu (1992) The superconvergent patch recovery and a posteriori error estimates, part I: the recovery technique 33(7) (pp. 1331-1364) https://doi.org/10.1002/nme.1620330702
  56. Zienkiewicz and Zhu (1992) The superconvergent patch recovery and a posteriori error estimates, part II: error estimates and adaptivity 33(7) (pp. 1365-1382) https://doi.org/10.1002/nme.1620330703
  57. Zhang and Naga (2005) A new Finite element gradient recovery method: superconvergence property 26(4) (pp. 1192-1213) https://doi.org/10.1137/S1064827503402837
  58. Li and Xu (2010) Existence and uniqueness of the weak solution of the space-time fractional diffusion equation and a spectral method approximation 8(5) (pp. 1016-1051) https://doi.org/10.4208/cicp.020709.221209a
  59. Li and Xu (2009) A space-time spectral method for the time fractional diffusion equation 47(3) (pp. 2108-2131) https://doi.org/10.1137/080718942
  60. Zheng et al. (2010) A note on the finite element method for the space fractional advection diffusion equation (pp. 1718-1726) https://doi.org/10.1016/j.camwa.2009.08.071