Published in Issue 2019-06-08
How to Cite
Onagh, B. N. (2019). The harmonic index of graphs based on some operations related to the lexicographic product. Mathematical Sciences, 13(2 (June 2019). https://doi.org/10.1007/s40096-019-0287-3
HTML views: 54
PDF views: 31
Abstract
Abstract The harmonic index of a graph G is defined as the sum of the weights 2degG(u)+degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{\deg _G(u)+\deg _G(v)}$$\end{document} of all edges uv of G , where degG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _G(u)$$\end{document} denotes the degree of a vertex u in G . In this paper, we investigate the harmonic index of graphs based on operations related to the lexicographic product, subdivision graph, t -subdivision graph, vertex-semitotal graph, edge-semitotal graph and total graph.Keywords
- Harmonic index,
- Subdivision,
- Lexicographic product,
- F-product
References
- Fajtlowicz (1987) On conjectures of graffiti II (pp. 189-197)
- Gutman et al. (2015) On Zagreb indices and coindices (pp. 5-16)
- Hu and Zhou (2013) On the harmonic index of the unicyclic and bicyclic graphs 12(6) (pp. 716-726)
- Lučić et al. (2010) Sum-connectivity index (pp. 101-136) University of Kragujevac
- Lučić et al. (2009) Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons (pp. 146-148) https://doi.org/10.1016/j.cplett.2009.05.022
- Nešetřil and de Mendez (2014) On first-order definable colorings (pp. 99-122) Scuola Normale Superiore
- Nikolić et al. (2003) The Zagreb indices 30 years after 76(2) (pp. 113-124)
- Onagh (2017) The harmonic index of subdivision graphs (pp. 15-27)
- Onagh (2017) The harmonic index of product graphs 11(3) (pp. 203-209) https://doi.org/10.1007/s40096-017-0216-2
- Onagh (2018) The harmonic index of edge-semitotal graphs, total graphs and related sums 42(2) (pp. 217-228) https://doi.org/10.5937/KgJMath1802217O
- Randić (1975) On characterization of molecular branching (pp. 6609-6615) https://doi.org/10.1021/ja00856a001
- Sarala et al. (2017) The Zagreb indices of graphs based on four new operations related to the lexicographic product (pp. 156-169)
- Shwetha et al. (2015) On the harmonic index of graph operations 4(4) (pp. 5-14)
- Xu (2012) Relationships between harmonic index and other topological indices (pp. 2013-2018)
- Yan et al. (2007) The behavior of Wiener indices and polynomials of graphs under five graph decorations (pp. 290-295) https://doi.org/10.1016/j.aml.2006.04.010
- Zhong (2012) The harmonic index for graphs (pp. 561-566) https://doi.org/10.1016/j.aml.2011.09.059
- Zhong (2012) The harmonic index on unicyclic graphs (pp. 261-269)
- Zhong (2013) On the harmonic index and the girth for graphs 16(4) (pp. 253-260)
- Zhou and Trinajstić (2009) On a novel connectivity index (pp. 1252-1270) https://doi.org/10.1007/s10910-008-9515-z
- Zhou and Trinajstić (2010) On general sum-connectivity index (pp. 210-218) https://doi.org/10.1007/s10910-009-9542-4