10.1007/s40096-019-0287-3

The harmonic index of graphs based on some operations related to the lexicographic product

  1. Department of Mathematics, Faculty of Sciences, Golestan University, Gorgan, IR
Cover Image

Published in Issue 2019-06-08

How to Cite

Onagh, B. N. (2019). The harmonic index of graphs based on some operations related to the lexicographic product. Mathematical Sciences, 13(2 (June 2019). https://doi.org/10.1007/s40096-019-0287-3

HTML views: 54

PDF views: 31

Abstract

Abstract The harmonic index of a graph G is defined as the sum of the weights 2degG(u)+degG(v)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\frac{2}{\deg _G(u)+\deg _G(v)}$$\end{document} of all edges uv of G , where degG(u)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\deg _G(u)$$\end{document} denotes the degree of a vertex u in G . In this paper, we investigate the harmonic index of graphs based on operations related to the lexicographic product, subdivision graph, t -subdivision graph, vertex-semitotal graph, edge-semitotal graph and total graph.

Keywords

  • Harmonic index,
  • Subdivision,
  • Lexicographic product,
  • F-product

References

  1. Fajtlowicz (1987) On conjectures of graffiti II (pp. 189-197)
  2. Gutman et al. (2015) On Zagreb indices and coindices (pp. 5-16)
  3. Hu and Zhou (2013) On the harmonic index of the unicyclic and bicyclic graphs 12(6) (pp. 716-726)
  4. Lučić et al. (2010) Sum-connectivity index (pp. 101-136) University of Kragujevac
  5. Lučić et al. (2009) Comparison between the sum-connectivity index and product-connectivity index for benzenoid hydrocarbons (pp. 146-148) https://doi.org/10.1016/j.cplett.2009.05.022
  6. Nešetřil and de Mendez (2014) On first-order definable colorings (pp. 99-122) Scuola Normale Superiore
  7. Nikolić et al. (2003) The Zagreb indices 30 years after 76(2) (pp. 113-124)
  8. Onagh (2017) The harmonic index of subdivision graphs (pp. 15-27)
  9. Onagh (2017) The harmonic index of product graphs 11(3) (pp. 203-209) https://doi.org/10.1007/s40096-017-0216-2
  10. Onagh (2018) The harmonic index of edge-semitotal graphs, total graphs and related sums 42(2) (pp. 217-228) https://doi.org/10.5937/KgJMath1802217O
  11. Randić (1975) On characterization of molecular branching (pp. 6609-6615) https://doi.org/10.1021/ja00856a001
  12. Sarala et al. (2017) The Zagreb indices of graphs based on four new operations related to the lexicographic product (pp. 156-169)
  13. Shwetha et al. (2015) On the harmonic index of graph operations 4(4) (pp. 5-14)
  14. Xu (2012) Relationships between harmonic index and other topological indices (pp. 2013-2018)
  15. Yan et al. (2007) The behavior of Wiener indices and polynomials of graphs under five graph decorations (pp. 290-295) https://doi.org/10.1016/j.aml.2006.04.010
  16. Zhong (2012) The harmonic index for graphs (pp. 561-566) https://doi.org/10.1016/j.aml.2011.09.059
  17. Zhong (2012) The harmonic index on unicyclic graphs (pp. 261-269)
  18. Zhong (2013) On the harmonic index and the girth for graphs 16(4) (pp. 253-260)
  19. Zhou and Trinajstić (2009) On a novel connectivity index (pp. 1252-1270) https://doi.org/10.1007/s10910-008-9515-z
  20. Zhou and Trinajstić (2010) On general sum-connectivity index (pp. 210-218) https://doi.org/10.1007/s10910-009-9542-4