10.57647/j.ijic.2025.1603.08

A New Spectrophotometric Determination of a Pyrethroid Insecticide by Diazotization-Coupling Reaction

  1. Department of Chemistry, College of Science, University of Babylon, Hilla- 51002, Iraq

Received: 2025-06-01

Revised: 2025-08-30

Accepted: 2025-09-15

Published in Issue 2025-09-30

How to Cite

Flayyih, F. H., Alshirifi, A. N., & Kadem, K. J. (2025). A New Spectrophotometric Determination of a Pyrethroid Insecticide by Diazotization-Coupling Reaction. International Journal of Industrial Chemistry, 16(3). https://doi.org/10.57647/j.ijic.2025.1603.08

PDF views: 9

Abstract

A novel and sensitive spectrophotometric technique for identifying alpha-cypermethrin insecticide when coupled with 5-amino-2-hydroxybenzoic acid in an alkaline medium with a pH of about 9–10 was investigated to enhance its analytical detectability to produce yellow-red azo dye. The reaction product was characterized using UV-Vis spectrophotometry (FTIR), ¹H-NMR, and ¹³C-NMR. Acetone and Triton X-100 are used as solvents to increase the solubility and the sensitivity of the procedure. At 25°C, the colored product remained stable for nearly two days. The maximum absorbance was observed at λmax 408 nm. The range of (1-100) µg.mL⁻¹ is where the Beer-Lambert law is followed. The developed method was analytically validated. The limit of detection was found to be (0.130) µg.mL⁻¹, and the limit of quantification was (0.433) µg.mL⁻¹, indicating high sensitivity. The process is efficient for large-scale synthesis, has strong functional-group tolerance, and has gentle reaction conditions, suggesting a promising approach for selective and sensitive analytical monitoring in environmental and agricultural samples.

Keywords

  • Alpha-cypermethrin,
  • Coupling reaction,
  • UV spectroscopy

References

  1. M. Galadima, S. Singh, A. Pawar, S. Khasnabis, D. S. Dhanjal, A. G. Anil, P. Rai, P. C. Ramamurthy, J. Singh , Environ Adv 5(2021) 100105. https://doi.org/10.1016/j.envadv.2021.100105
  2. K. Bhardwaj, R. Sharma, J. Abraham, P. Sharma, Nat. Bioact. Prod. Sustain. Agric. (2020) 113–130. https://doi.org/10.1007/978-981-15-3024-1_8
  3. M. O. Oyovwi, A. D. Atere, P. Chimwuba, U. G. Joseph, Neurotoxicity Res. 43(2025) 1–19. https://doi.org/10.1007/s12640-024-00723-1
  4. M. Słowik-Borowiec, J Environ Sci Health B 51 (2016) 628–633. https://doi.org/10.1080/03601234.2016.1181913
  5. L. Khurana, P. Chaturvedi, C. Sharma, P. Bhatnagar, Curr Dev Biotechnol Bioeng (2023) 305-320. https://doi.org/10.1016/B978-0-323-91900-5.00011-4
  6. B. Singh, D. Kumar, G. Kumar, P. Saroha, K. Vikram, S. K. Gupta, H. Singh, Process Saf Environ Prot, (2024) https://doi.org/10.1016/j.psep.2024.03.118
  7. L. Yang, F. Wei, J. M. Liu, S. Wang, J Agric Food Chem, 69 (2021) 12402–12417. https://doi.org/10.1021/acs.jafc.1c05185
  8. A. Srivastava, C. Liu, H. Fang, J. Lv, W. Qiao, Colloids Surf A Physicochem Eng Asp 529 (2017) 686–695. https://doi.org/10.1016/j.colsurfa.2017.06.053
  9. X. Hu, Y. Cao, Y. Tian, Y. Qi, G. Fang, S. Wang, Microchim Acta, 187 (2020) 1–10. https://doi.org/10.1007/s00604-020-04610-2
  10. V. Hassan, M. Hossein, S. Mansoreh, A. M. Reza, Y-E. M. Reza, R. Ahmad, A. Mohammad, R. Fatemeh, N. Fatemeh, Asian Pac J Trop Med 3 (2010) 642–646. https://doi.org/10.1016/S1995-7645(10)60155-1
  11. J. Sherma, J Liq Chromatogr Relat Technol 40 (2017) 226–238. https://doi.org/10.1080/10826076.2017.1298024
  12. D. Jeong, J. S. Kang, K. M. Kim, S. H. Baek, S. Choe, J. Pyo, Forensic Sci Int, 302 (2019)109846. https://doi.org/10.1016/j.forsciint.2019.06.004
  13. C. Vogt, C. S. Wondergem, B. M. Weckhuysen, Springer Handbook of Advanced Catalyst Characterization. Cham: Springer (2023) 237–264. https://doi.org/10.1007/978-3-031-07125-6_11
  14. A. Parmar, S. Sharma, TrAC Trends Anal Chem, 77 (2016) 44–53. https://doi.org/10.1016/j.trac.2015.12.004
  15. V. K. Vashistha, R. Bala, R. V. S. Pullabhotla, J Taibah Univ Sci, 17 (2023) 2206363. https://doi.org/10.1080/16583655.2023.2206363
  16. Q. H. Wang, L. J. Yu, Y. Liu, L. Lin, R-g Lu, J-p Zhu, L. He, Z-L. Lu, Talanta, 165 (2017) 709–720. https://doi.org/10.1016/j.talanta.2016.12.044
  17. M. G. Lee, V. Patil, Y. C. Na, D. S. Lee, S. H. Lim, G. R. Yi, Sens Actuators B Chem, 261 (2018) 489–496.https://doi.org/10.1016/j.snb.2018.01.151
  18. R. Kaur, J. Singh, Nat Environ Pollut Technol, 20 (2021) 1997–2005. https://doi.org/10.46488/NEPT.2021.v20i05.016
  19. L. Hocine, H. Merzouk, S. A. Merzouk, H. Ghorzi, M. Youbi, M. Narce, Pestic Biochem Physiol, 134 (2016) 49–54. https://doi.org/10.1016/j.pestbp.2016.04.007
  20. S. Bej, K. Ghosh, A. Chatterjee, N. C. Saha, Environ Toxicol Pharmacol, 87 (2021) 103717. https://doi.org/10.1016/j.etap.2021.103717
  21. G. Yao, X. Jing, W. Peng, X. Liu, Z. Zhou, D. Liu, J Agric Food Chem, 63 (2015) 7714–7720. https://doi.org/10.1021/acs.jafc.5b03148
  22. W. Wakil ,N. G. Kavallieratos, N. Eleftheriadou, M. Asrar, T. Yaseen, M. Tahir, K. G. Rasool, M. Husain, A. S. Aldawood, Insects, 14 (2023) 855. https://doi.org/10.3390/insects14110855
  23. T. Arslan, G. Celik, H. Celik, M. Şentürk, N. Yaylı, D. Ekinci, Arch Pharm (Weinheim), 349 (2016) 741–748. https://doi.org/10.1002/ardp.201600122
  24. H. F. Klare, M. Oestreich, J Am Chem Soc, 143 (2021) 15490–15507. https://doi.org/10.1021/jacs.1c07614
  25. H. U. R. Shah, K. Ahmad, H. A. Naseem, S. Parveen, M.Ashfaq, T. Aziz, S. Shaheen, A. Babras, A. Shahzad, J Mol Struct, 1244 (2021) 131181. https://doi.org/10.1016/j.molstruc.2021.131181
  26. M. Kostag, T. Liebert, T. Heinze, Macromol Rapid Commun, 35 (2014) 1419–1422. https://doi.org/10.1002/marc.201400211
  27. S. A. Khan, S. Shahid, S. Kanwal, G. Hussain, Dyes Pigm, 148 (2018) 31–43. https://doi.org/10.1016/j.dyepig.2017.08.058
  28. Md. M. Hosen, S. S. Rakhi, M. Alfakeer, M. M. Rahman, S. Mahbub, Md. A. Hoque, D. Kumar, J Mol Liq, 335 (2021) 116182. https://doi.org/10.1016/j.molliq.2021.116182
  29. J. da S. Sousa, H. O. do Nascimento, H. de O. Gomes, R. F. do Nascimento, Microchem J, 168 (2021) 106359. https://doi.org/10.1016/j.microc.2021.106359
  30. M. Pelajić, G. Peček, D. M. Pavlović, D. V. Čepo, Food Chem, 200 (2016) 98–106. https://doi.org/10.1016/j.foodchem.2016.01.018
  31. K. Hasan, S. Firdevs, Environ Monit Assess, 192 (2020) 9.https://doi.org/10.1007/s10661-020-08523-8
  32. P. M. Graves, L. Makita, M. Susapu, M. A. Brady, W. Melrose, C. Capuano, Z. Zhang, L. Dapeng, M. Ozaki, D. Reeve, K. Ichimori, W. M. Kazadi, F. Michna, M. J. Bockarie, L. A. Kelly-Hope, Parasites Vectors, 6 (2013) 1–18. https://doi.org/10.1186/1756-3305-6-7
  33. S. Armenta, G. Quintás, S. Garrigues, M. de la Guardia, Talanta, 67 (2005) 634–639. https://doi.org/10.1016/j.talanta.2005.03.008