10.57647/j.ijic.2025.1601.04

Predicting the properties of carbon black/silica-filled natural rubber-based compound by specifying the protein and lipid contents of natural rubber, before compounding

  1. Department of Chemistry, North Tehran Branch, Islamic Azad University, Tehran, Iran

Received: 2025-03-10

Revised: 2025-04-27

Accepted: 2025-05-27

Published in Issue 2025-05-29

How to Cite

Eildari, F., Malekzadeh, M., Saber-Tehrani, M.-M., & Motiee, F. (2025). Predicting the properties of carbon black/silica-filled natural rubber-based compound by specifying the protein and lipid contents of natural rubber, before compounding. International Journal of Industrial Chemistry, 16(1). https://doi.org/10.57647/j.ijic.2025.1601.04

PDF views: 44

Abstract

Nowadays, the protein and lipid contents of natural rubber are not included in most of the rubber’s data sheet. This study investigates the effects of the mentioned parameters on the cure and some physico-mechanical features of natural rubber based compounds, filled with carbon black/silica as a dual filler. Kjeldahl and extraction methods are applied to measure the protein and lipid contents of different types of natural rubber, respectively. The first and second-order fitting models show the correlations between the protein, lipid, and protein+lipid contents with cure and some physicomechanical characteristics. The introduced models are used to estimate the features in the case study. Results are presented that, by applying the correlations  between lipid content and torque difference, cure rate index, scorch time, optimum cure time, and modulus 100%, these properties can be estimated by less than 10% error. Using the  correlations between the protein content with compression set and resilience make it possible to predict these properties with less than 10% and 15% errors respectively. The outcomes present the importance of clarity of the protein and lipid contents of natural rubber for preparing well-designed, high-performance products before compounding.

Keywords

  • Compound,
  • Cure characteristics,
  • Lipid,
  • Natural rubber,
  • Physico-mechanical properties,
  • Protein

References

  1. C. Bendjaouahdou and S. Bensaad. “Aging studies of a polypropylene and natural rubber blend.”. Int. J. Ind. Chem., 9:345–352, 2018. DOI: https://doi.org/10.1007/s40090-018-0163-2.
  2. N. Lehman, A. Tuljittraporn, L. Songtipya, N. Uthaipan, K. Sengloyluan, J. Johns, Y. Nakaramontri, and E. Kalkornsurapranee. “Influence of non-rubber components on the properties of unvulcanized natural rubber from different clones.”. Polymers, 14:1759–1773, 2022. DOI: https://doi.org/10.3390/polym14091759.
  3. X. X. Liu, M. F. He, M. C. Luo, Y. C. Wei, and S. Liao. “The role of natural rubber endogenous proteins in promoting the formation of vulcanization networks.”. E-Polym., 22:445–453, 2022. DOI: https://doi.org/10.1515/epoly-2022-0043.
  4. D. Vasudevan and K. Vaidyanathan. “Textbook of Biochemistry.”. Jaypee Brothers Medical Pub, New Delhi, , 2016. DOI: https://doi.org/10.5005/jp/books/13014-5.
  5. R. R. Emma, A. Khatun, M. A. Hossain, M. R. Akhond, N. Hossain, and M. Y. Arafat. “Protein secondary structure prediction using hybrid recurrent neural networks.”. J. Comput. Sci., 18:599–611, 2022. DOI: https://doi.org/10.3844/jcssp.2022.599.611.
  6. S. W. Bae, S. Jung, S. C. Choi, M. Y. Kim, and S. B. Ruy. “Lipid composition of latex and rubber particles in Hevea brasiliensis and taraxacum.”. Mol., 25:5110–5123, 2020. DOI: https://doi.org/10.3390/molecules25215110.
  7. O. Chaikumpollert, Y. Yamamoto, and K. Suchiva. “Protein-free natural rubber.”. Colloid Polym. Sci., 290:331–338, 2012. DOI: https://doi.org/10.1007/s00396-011-2549-y.
  8. J. Tomazic, J. Withrow, and G. Hamilton. “Characterization of the allergen(s) in latex protein extracts.”. J. Allergy Clin. Immunol., 95: 635–642, 1995. DOI: https://doi.org/https://doi.org/10.1016/S0091-6749(95)702628.
  9. H. Yu, Q. Wang, and J. Li. “Effect of lipids on the stability of natural rubber latex and tensile properties of its films.”. J. Rubber Res., 20: 213–222, 2017. DOI: https://doi.org/10.1007/BF03449153.
  10. Y. Wang, S. Su, H. Liu, R. Wang, L. Liao, Z. Peng, J. Li, H. Wu, and D. He. “Effect of proteins on the vulcanized natural rubber crosslinking network structure and mechanical properties.”. Polymers, 16: 2957–2960, 2024. DOI: https://doi.org/10.3390/polym16212957.
  11. R. Chollakup, R. Tantatherdtam, W. Smitthipong, K. Rungsanthien, S. Suwanruji, K. Sriroth, S. Radabutra, S. Thanawan, M. F. Vallat, M. Nardin, and K. Mougin. “Effect of non-rubber components on properties of sulphur crosslinked natural rubbers.”. Adv. Mat. Res., : 1–4, 2013. DOI: https://doi.org/10.4028/www.scientific.net/AMR.844.345.
  12. S. Rolere, C. Bottier, L. Vaysse, J. Sainte-Beuve, and F. Bonfils. “Characterization of macrogel composition from industrial natural rubber samples: influence of proteins on the macrogel crosslink
  13. density.”. Express Polym. Lett., 10:408–419, 2016. DOI: https://doi.org/10.3144/expresspolymlett.2016.38.
  14. S. M. A. Monadjemi, C. McMahan, and K. Cornish. “Effect of non-rubber constituents on Guayule and Hevea rubber intrinsic properties.”. J. Res. Updates Polym., 5:87–96, 2016. DOI: https://doi.org/10.6000/1929-5995.2016.05.03.1.
  15. D.LhamoandC.McMahan. “Effectofprotein addition on properties of Guayule natural rubber.”. Rubber Chem. Technol., 90:387–404, 2017. DOI: https://doi.org/10.5254/rct.17.83746.
  16. X. Fu, C. Huang, Y. Zhu, G. Huang, and W. Jinrong. “Characterizing the naturally occurring sacrificial bond within natural rubber.”. Polymer, :1–17, 2018. DOI: https://doi.org/10.1016/j.polymer.2018.12.005.
  17. P. Nunanan, S. Wisunthorn, S. Pichaiyut, C. D. Nathaworn, and C. Nakason. “Influence of nonrubber components on properties of unvulcanized natural rubber.”. Polym. Adv. Technol., 1:44–59, 2020. DOI: https://doi.org/10.1002/pat.4746.
  18. Y. H. Zhan, Y. C. Wei, J. J. Tian, Y. Y. Gao, M. C. Luo, and S. Liao. “Effect of protein on the thermogenesis performance of natural rubber matrix.”. Sci. Rep-UK., 10:1–9, 2020. DOI: https://doi.org/10.1038/s41598-020-73546-7.
  19. A. Shakun, E. Sarlin, and J. Vuorinen. “Energy dissipation in natural rubber latex films: the effect of stabilizers, leaching and acetone treatment.”. J. Appl. Polym. Sci., 138:e49609, 2021. DOI: https://doi.org/10.1002/app.49609.
  20. Y. Akahori, M. Hiza, S. Yamaguchi, and S. Kawahara. “Protein influence on the mechanical properties of NR.”. Rubber Chem. Technol., 94:657–668, 2021. DOI: https://doi.org/10.5254/rct.21.79916.
  21. N. Hayeemasae, S. Saiwara, and A. Masa. “Influence of centrifugation cycles of natural rubber latex on final properties of uncrosslinked deproteinized natural rubber.”. Polymers, 14:2713, 2022. DOI: https://doi.org/10.3390/polym14132713.
  22. Q. Chen, Z. Zhang, Y. Huang, H. Zhao, Z. Chen, K. Gao, T. Yue, L. Zhang, and J. Liu. “Structure-mechanics relation of natural rubber: insight from molecular dynamics simulations.”. Acs. Appl. Polym. Mater., 4:3575–3586, 2022. DOI: https://doi.org/10.1021/acsapm.2c00147.
  23. S. Liengprayoon, F. Bonfils, J. Sainte-Beuve, K. Sriroth, E. Dubreucq, and L. Vaysee. “Development of a new procedure for lipid extraction from Hevea brasiliensis natural rubber.”. Eur. J.
  24. Lipid Sci. Technol., 110:563–569, 2008. DOI: https://doi.org/10.1002/ejlt.200700287.
  25. M. Bouakkaz, S. Djekhaba, and C. Bendjaouahdou. “Study of polyvinyl chloride/low density polyethylenewastes based blend.”. Int. J. Ind. Chem., 14:1–9, 2023. DOI: https://doi.org/10.57647/j.ijic.2023.1401.02.
  26. S. Kawahara and Y. Tanaka. “Plasticization and crystallization of cis- 1,4 polyisoprene mixed with methyl linoleate.”. J. Polym. Sci, Pol. Phys., 33:753–58, 1995. DOI: https://doi.org/10.1002/polb.1995.090330503.
  27. P.Jukong, R. Morimoto, K.Miyaji, A. Tohsan, Y. Sakaki, and Y. keda. “Effect of fatty acids on accelerated sulfur vulcanization of rubber by active zinc/carboxylate complexes.”. RSC, ADV., 10:4772–4785, 2020. DOI: https://doi.org/10.1039/C9RA10358A.
  28. N. Indrajati and I. Setyorini. “Relaxation behavior of natural rubber composites through recovery measurement after tension and compression set.”. IOP Conf. Ser.: Mater. Sci. Eng., 553:012049, 2019. DOI: https://doi.org/10.1088/1757-899X/553/1/012049.
  29. S. Kawahara and Y. Isono. “Crystallization behavior and strength of natural rubber isolated from different Hevea clone.”. Rubber Chem. Technol., 73:39–46, 2000. DOI: https://doi.org/10.5254/1.3547578.
  30. N. Thi, N. Phan Trung, K. Kosugi, Y. Yamamoto, and S. Kawahara. “Effect of proteins as constituents of island-nanomatrix structure on vulcanization of natural rubber.”. Polymer, 307:127272, 2024. DOI: https://doi.org/10.1016/j.polymer.2024.127272.
  31. F. Motiee, S. Taghvaei-Ganjali, and M. Malekzadeh. “Investigation of correlation between rheological properties of rubber compounds based on natural rubber/styrene-butadiene rubber with their thermal behaviors.”. Int. J. Ind. Chem., 4:16–23, 2013. DOI: https://doi.org/10.1186/2228-5547-4-16.