Enhanced green extraction of phytochemical compound from Eucheuma Cottonii using supercritical CO2 and Sub-critical water as a solvent: Optimization and kinetics modeling
- Department of Mineral-Chemical Engineering, Politeknik ATI Makassar, Kota Makassar, Indonesia
- Department of Chemical Engineering, Institut Teknologi Sepuluh Nopember, Jl Raya ITS Sukolilo, Kota Surabaya, Indonesia
Received: 2024-12-12
Revised: 2025-03-12
Accepted: 2025-03-12
Published 2025-03-20
Copyright (c) -1 Dwi Setyorini, Achmad Qodim Syafaatullah, Anggi Yuktii Kulla, Siti Machmudah, Wahyu Diono (Author)

This work is licensed under a Creative Commons Attribution 4.0 International License.
How to Cite
PDF views: 86
Abstract
Numerous active ingredients found in Eucheuma cottonii have applications in the food, cosmetic, and pharmaceutical industries, among others. Extraction is one of the biomass separation procedures that yields high purity. This work used supercritical CO2 and subcritical water as a solvent to extract phytochemical components from Eucheuma cottonii. Both solvents used are easily available, environmentally friendly, and affordable. Supercritical CO2 extraction is carried out at a temperature of 60 °C and a pressure of 25 MPa, while Sub-critical water extraction (SWE) is carried out at a temperature of 120 °C − 160 °C and a pressure of 3 MPa − 5 MPa. The yields of β-carotene and linoleic acid were 0.0019 μg/g sample and 0.0841 μg/g sample. Meanwhile, the results of SWE were kappa-carrageenan and total phenolic compounds with the largest yield of 55.8% at a temperature of 160 °C and 5 MPa. The data obtained were then analyzed for optimum operating conditions using Face-centered central composite design (FCCCD), where the optimum operating conditions correspond to the largest value of the TPC yield produced. In addition, the data were analyzed using extraction kinetics modeling, where the results showed agreement with first-order kinetics and the activation energy value was 20.563 KJ/mol.
Keywords
- Eucheuma Cottonii,
- FCCCD,
- First-order kinetics,
- Supercritical CO2,
- Subcritical water
References
- M. Tourabi et al., “Efficacy of various extracting solvents on phytochemical composition, and biological properties of Mentha longifolia L. leaf extracts,” Sci Rep, vol. 13, no. 1, Dec. 2023, doi: 10.1038/s41598-023-45030-5.
- K.-Y. Khaw, M.-O. Parat, P. N. Shaw, and J. R. Falconer, “Solvent Supercritical Fluid Technologies to Extract Bioactive Compounds from Natural Sources: A Review,” Molecules, vol. 22, no. 7, p. 1186, Jul. 2017, doi: 10.3390/molecules22071186.
- D. Kaczorová, E. Karalija, S. Dahija, R. Bešta-Gajević, A. Parić, and S. Ćavar Zeljković, “Influence of extraction solvent on the phenolic profile and bioactivity of two achillea species,” Molecules, vol. 26, no. 6, Mar. 2021, doi: 10.3390/molecules26061601.
- R. Aravindhan, V. Monika, K. Balamurugan, V. Subramanian, J. R. Rao, and P. Thanikaivelan, “Highly clean and efficient enzymatic dehairing in green solvents,” J Clean Prod, vol. 140, pp. 1578–1586, Jan. 2017, doi: 10.1016/j.jclepro.2016.09.211.
- I. Pacheco-Fernández and V. Pino, “Green solvents in analytical chemistry,” Curr Opin Green Sustain Chem, vol. 18, pp. 42–50, Aug. 2019, doi: 10.1016/j.cogsc.2018.12.010.
- X. Kang et al., “Supercritical carbon dioxide systems for sustainable and efficient dissolution of solutes: a review,” Apr. 01, 2024, Springer Science and Business Media Deutschland GmbH. doi: 10.1007/s10311-023-01681-4.
- T. M. Attard et al., “Supercritical CO 2 Extraction as an Effective Pretreatment Step for Wax Extraction in a Miscanthus Biorefinery,” ACS Sustain Chem Eng, vol. 4, no. 11, pp. 5979–5988, Nov. 2016, doi: 10.1021/acssuschemeng.6b01220.
- A. E. Lebedev, A. M. Katalevich, and N. V. Menshutina, “Modeling and scale-up of supercritical fluid processes. Part I: Supercritical drying,” J Supercrit Fluids, vol. 106, pp. 122–132, Nov. 2015, doi: 10.1016/j.supflu.2015.06.010.
- T. Bai, K. Kobayashi, K. Tamura, Y. Jun, and L. Zheng, “Supercritical CO2 dyeing for nylon, acrylic, polyester, and casein buttons and their optimum dyeing conditions by design of experiments,” Journal of CO2 Utilization, vol. 33, pp. 253–261, Oct. 2019, doi: 10.1016/j.jcou.2019.05.013.
- J. Anggraini and D. Lo, “Health impact of carrageenan and its application in food industry: A review,” in IOP Conference Series: Earth and Environmental Science, Institute of Physics, 2023. doi: 10.1088/1755-1315/1169/1/012098.
- P. Amin, P. H. Riyadi, R. A. Kurniasih, and A. Husni, “Utilization of κ-carrageenan as stabilizer and thickener of honey pineapple (Ananas comosus [L. Merr]) jam,” Food Res, vol. 6, no. 2, pp. 93–98, Mar. 2022, doi: 10.26656/fr.2017.6(2).060.
- T. Udo, G. Mummaleti, A. Mohan, R. K. Singh, and F. Kong, “Current and emerging applications of carrageenan in the food industry,” Food Research International, vol. 173, p. 113369, Nov. 2023, doi: 10.1016/j.foodres.2023.113369.
- “Phytochemical Constituent and Antioxidant Activity Evaluation of Red Seaweed Eucheuma sp.,” Indonesian Journal of Medical Chemistry and Bioinformatics, vol. 2, no. 1, Oct. 2023, doi: 10.7454/ijmcb.v2i1.1019.
- J. Mercola and C. R. D’Adamo, “Linoleic Acid: A Narrative Review of the Effects of Increased Intake in the Standard American Diet and Associations with Chronic Disease,” Nutrients, vol. 15, no. 14, p. 3129, Jul. 2023, doi: 10.3390/nu15143129.
- G. Marcelino et al., “β-Carotene: Preventive Role for Type 2 Diabetes Mellitus and Obesity: A Review,” Molecules, vol. 25, no. 24, p. 5803, Dec. 2020, doi: 10.3390/molecules25245803.
- G. Riccio and C. Lauritano, “Microalgae with Immunomodulatory Activities,” Mar Drugs, vol. 18, no. 1, p. 2, Dec. 2019, doi: 10.3390/md18010002.
- J. Wang, X. Hu, J. Chen, T. Wang, X. Huang, and G. Chen, “The Extraction of β-Carotene from Microalgae for Testing Their Health Benefits,” Foods, vol. 11, no. 4, p. 502, Feb. 2022, doi: 10.3390/foods11040502.
- M. Thakur, K. Singh, and R. Khedkar, “Phytochemicals,” in Functional and Preservative Properties of Phytochemicals, Elsevier, 2020, pp. 341–361. doi: 10.1016/B978-0-12-818593-3.00011-7.
- M. G. de Morais, B. da S. Vaz, E. G. de Morais, and J. A. V. Costa, “Biologically Active Metabolites Synthesized by Microalgae,” Biomed Res Int, vol. 2015, pp. 1–15, 2015, doi: 10.1155/2015/835761.
- Y. Cheng, F. Xue, S. Yu, S. Du, and Y. Yang, “Subcritical water extraction of natural products,” Jul. 01, 2021, MDPI AG. doi: 10.3390/molecules26134004.
- T.-Y. Chiou et al., “Recovery of Mint Essential Oil through Pressure-releasing Distillation during Subcritical Water Treatment,” Food Sci Technol Res, vol. 25, no. 6, pp. 793–799, 2019, doi: 10.3136/fstr.25.793.
- J. Zhang, C. Wen, H. Zhang, Y. Duan, and H. Ma, “Recent advances in the extraction of bioactive compounds with subcritical water: A review,” Trends Food Sci Technol, vol. 95, pp. 183–195, Jan. 2020, doi: 10.1016/j.tifs.2019.11.018.
- R. Huang, J. Cheng, Y. Qiu, Z. Zhang, J. Zhou, and K. Cen, “Solvent-free lipid extraction from microalgal biomass with subcritical water in a continuous flow reactor for acid-catalyzed biodiesel production,” Fuel, vol. 253, pp. 90–94, Oct. 2019, doi: 10.1016/j.fuel.2019.05.004.
- Y. H. Chan, A. T. Quitain, S. Yusup, Y. Uemura, M. Sasaki, and T. Kida, “Optimization of hydrothermal liquefaction of palm kernel shell and consideration of supercritical carbon dioxide mediation effect,” J Supercrit Fluids, vol. 133, pp. 640–646, Mar. 2018, doi: 10.1016/j.supflu.2017.06.007.
- D. Solomon, Z. Kiflie, and S. Van Hulle, “Using Box–Behnken experimental design to optimize the degradation of Basic Blue 41 dye by Fenton reaction,” International Journal of Industrial Chemistry, vol. 11, no. 1, pp. 43–53, Mar. 2020, doi: 10.1007/s40090-020-00201-5.
- W. Choi and H. Lee, “Enhancement of Chlorophyll a Production from Marine Spirulina maxima by an Optimized Ultrasonic Extraction Process,” Applied Sciences, vol. 8, no. 1, p. 26, Dec. 2017, doi: 10.3390/app8010026.
- I. Jaswir et al., “Optimization and Formulation of Fucoxanthin-Loaded Microsphere (F-LM) Using Response Surface Methodology (RSM) and Analysis of Its Fucoxanthin Release Profile,” Molecules, vol. 24, no. 5, p. 947, Mar. 2019, doi: 10.3390/molecules24050947.
- E. Yabalak, İ. Topaloğlu, and A. M. Gizir, “Multi-response central composite design of the mineralization and removal of aniline by subcritical water oxidation method,” International Journal of Industrial Chemistry, vol. 10, no. 2, pp. 97–105, Jun. 2019, doi: 10.1007/s40090-019-0175-6.
- D. Nur Rizkiyah, Nazla, F. Nadhifah, S. Machmudah, and S. Winardi, “Mathematical modeling of supercritical CO2 extraction of valuable compounds from Eucheuma Cottonii and Gracilaria Sp,” in MATEC Web of Conferences, EDP Sciences, Mar. 2018. doi: 10.1051/matecconf/201815602013.
- G. E. P. Box, William. G. Hunter, and J. S. Hunter, Statistics for Experimenters: An Introduction to Design, Data Analysis, and Model Building. John Wiley & Sons, 1978.
- S. Agustina, N. N. Aidha, E. Oktarina, and J. H. Haruminda, “Optimasi Proses Ekstraksi Karoten Dan Klorofil Dari Spirulina Platensis Dengan Teknologi Karbon Dioksida (CO2) Superkritis Menggunakan Metode Permukaan Tanggap,” Jurnal Kimia dan Kemasan, vol. 41, no. 2, p. 95, Oct. 2019, doi: 10.24817/jkk.v41i2.5593.
- A. B. D. Nandiyanto, R. Ragadhita, and M. Aziz, “How to calculate and measure solution concentration using uv-vis spectrum analysis: Supporting measurement in the chemical decomposition, photocatalysis, phytoremediation, and adsorption process,” Indonesian Journal of Science and Technology, vol. 8, no. 2, pp. 345–362, Sep. 2023, doi: 10.17509/ijost.v8i2.57783.
- A. Majid et al., “Applications and opportunities of supercritical fluid extraction in food processing technologies: A review,” Jul. 01, 2019, Institute of Advanced Science Extension (IASE). doi: 10.21833/ijaas.2019.07.013.
- F. Duan, Y. Yu, Z. Liu, L. Tian, and H. Mou, “An effective method for the preparation of carrageenan oligosaccharides directly from Eucheuma cottonii using cellulase and recombinant κ-carrageenase,” Algal Res, vol. 15, pp. 93–99, Apr. 2016, doi: 10.1016/j.algal.2016.02.006.
- S. C. Moldoveanu and V. David, “Mobile Phases and Their Properties,” in Essentials in Modern HPLC Separations, Elsevier, 2013, pp. 363–447. doi: 10.1016/B978-0-12-385013-3.00007-0.
- S. Machmudah, Widiyastuti, S. Winardi, Wahyudiono, H. Kanda, and M. Goto, “Sub-And supercritical fluids extraction of phytochemical compounds from eucheuma cottonii and gracilaria sp,” Chem Eng Trans, vol. 56, pp. 1291–1296, 2017, doi: 10.3303/CET1756216.
- N. Singh, A. P. Singh, and A. P. Singh, “Solubility: An overview,” International Journal of Pharmaceutical Chemistry and Analysis, vol. 7, no. 4, pp. 166–171, Jan. 2021, doi: 10.18231/j.ijpca.2020.027.
- E.-J. Song and M.-J. Ko, “Extraction of monoterpenes from coriander (Coriandrum sativum L.) seeds using subcritical water extraction (SWE) technique,” J Supercrit Fluids, vol. 188, p. 105668, Sep. 2022, doi: 10.1016/j.supflu.2022.105668.
- N. B. Listyaningrum, M. M. Azis, Sarto, A. N. Rosdi, and M. R. Harun, “Kinetic study of subcritical water extraction of carbohydrate from microalgae nannochloropsis sp.,” ASEAN Journal of Chemical Engineering, vol. 21, no. 1, pp. 11–18, 2021, doi: 10.22146/ajche.60015.
- N. H. Zainan, S. Thiruvenkadam, M. K. Danquah, and R. Harun, “Biochemical analysis and potential applications of aqueous and solid products generated from subcritical water extraction of microalgae Chlorella pyrenoidosa biomass,” J Appl Phycol, vol. 32, no. 1, pp. 111–126, Feb. 2020, doi: 10.1007/s10811-019-01960-0.
- S. Machmudah, “Subcritical Water Extraction of Xanthone from Mangosteen (Garcinia Mangostana Linn) Pericarp,” Journal of Advanced Chemical Engineering, vol. 05, no. 01, 2015, doi: 10.4172/2090-4568.1000117.
- B. Díaz-Reinoso, S. Rivas, J. Rivas, and H. Domínguez, “Subcritical water extraction of essential oils and plant oils,” Dec. 01, 2023, Elsevier B.V. doi: 10.1016/j.scp.2023.101332.
- H. Haqqyana, A. Altway, and M. Mahfud, “Kinetic Modeling for Microwave-Assisted Green Extraction: Effects of Power on Citronella oil from Cymbopogon Nardus Leaf,” International Journal of Applied Science and Engineering, vol. 19, no. 4, Dec. 2022, doi: 10.6703/IJASE.202212_19(4).007.
- A. Q. Syafaatullah, D. Setyorini, M. Ganing, R. Panjaitan, and N. Azizah, “Optimization and Kinetics Extraction of Natural Dyes from Henna Leaves (Lawsonia inermis L.) with Ultrasonic Assistance,” Jurnal Kimia Sains dan Aplikasi, vol. 26, no. 9, pp. 324–331, Dec. 2023, doi: 10.14710/jksa.26.9.324-331.
- B. Dulo et al., “Kinetic modeling of phenolic compounds extraction from nutshells: influence of particle size, temperature and solvent ratio,” Biomass Convers Biorefin, vol. 14, no. 19, pp. 23565–23579, Oct. 2024, doi: 10.1007/s13399-023-04993-1.
- I. Mills, K. Homan, T. Cvitas, N. Kallay, and K. Kuchitsu, Quintitie, Ilnitsand Symbolsin:1’hysical Chemistry, 2nd ed. United State : Wiley-Blackwell Science Ltd, 1988.
- I. Rahmi, A. Fairus, L. K. Dewi, and V. Nurhadianty, “Kinetic Study of Pectin Extraction from Kepok Banana Peel,” Rekayasa Bahan Alam dan Energi Berkelanjutan, vol. 7, no. 2, pp. 39–45, Oct. 2023, doi: 10.21776/ub.rbaet.2023.007.02.06.
- S. T. Mgoma, M. Basitere, and V. V. Mshayisa, “Kinetics and thermodynamics of oil extraction from South African hass avocados using hexane as a solvent,” S Afr J Chem Eng, vol. 37, pp. 244–251, Jul. 2021, doi: 10.1016/j.sajce.2021.06.007.