10.1007/s40095-022-00553-x

Solar drying in a ventilated attic: case study of cassava slices

  1. Laboratoire de Technologie, Université Félix Houphouet-Boigny, Abidjan, CI Laboratoire d’Energie Nouvelle et Renouvelable, Institut National Polytechnique Félix Houphouet-Boigny, Yamoussoukro, BP 581, CI
  2. Laboratoire d’Energie Nouvelle et Renouvelable, Institut National Polytechnique Félix Houphouet-Boigny, Yamoussoukro, BP 581, CI
  3. Laboratoire de Technologie, Université Félix Houphouet-Boigny, Abidjan, CI

Published in Issue 2022-12-15

How to Cite

Tieu, Z. A., Koffi, P. M. E., Yapi, A. S., & Gbaha, P. (2022). Solar drying in a ventilated attic: case study of cassava slices. International Journal of Energy and Environmental Engineering, 14(4 (December 2023). https://doi.org/10.1007/s40095-022-00553-x

Abstract

Abstract In constantly sunny regions of the world such as most African countries, due to the availability of sunlight, metal roofs that are constantly exposed to the sun offer opportunities for many solar thermal applications. This study focuses on the numerical and experimental investigation of solar drying in a ventilated attic. The constructed prototype attic has three PVC pipes used as chimneys, and the roof is painted black. It was modeled using the equations of heat and mass transfers occurring during drying. The food commodity subjected to drying was cassava. The resulting system of equations was solved using the classical fourth-order Runge–Kutta method. The MATLAB R2014a language is used for the simulations. The drying of 6 kg of cassava in the prototype took 3 days. The obtained experimental results were compared with the theoretical points. The mean relative error ( E %) was used as a parameter for model validation. Its values of less than 14% obtained for temperatures and humidities are evidence that the theoretical points accurately represented the behavior of the attic during solar drying. The drying efficiency varied from 25% on the first day to 0.2% on the last day. The calculated payback period is 2 months. This method can be easily implemented and would be helpful to farmers in rural Africa.

Keywords

  • Solar drying,
  • Ventilated attic,
  • Modeling,
  • Heat transfer,
  • Mass transfer,
  • Cassava

References

  1. Agbo et al. (2021) Solar energy: a panacea for the electricity generation crisis in Nigeria https://doi.org/10.1016/j.heliyon.2021.e07016
  2. Soteris (2014) Elsevier
  3. Vernier et al. (2018) Presses agronomiques de Gembloux et Éditions Quæ https://doi.org/10.35690/978-2-7592-2708-2
  4. Tieu et al. (2021) Modeling of humidity evolution during solar drying of cassava in a ventilated attic (pp. 521-531)
  5. Ndukwu et al. (2020) Development and modelling of heat and mass transfer analysis of a low-cost solar dryer integrated with biomass heater: application for West African Region https://doi.org/10.1016/j.sciaf.2020.e00615
  6. Ndukwu et al. (2020) Solar drying research of medicinal and aromatic plants: an African experience with assessment of the economic and environmental impact https://doi.org/10.1080/20421338.2020.1776061
  7. Norton, B.: Characteristics of different systems for the solar Drying of Crops. In: Solar Drying Technology, vol. 10, pp. 978–981. Springer (2017)
  8. Kamarulzaman et al. (2021) Global advancement of solar drying technologies and its future prospects: a review (pp. 559-582) https://doi.org/10.1016/j.solener.2021.04.056
  9. Goud et al. (2021) Experimental investigation of drying kinetics of green chilli and okra using indirect solar dryer with evaluation of dryer performance https://doi.org/10.1080/01430750.2021.1946145
  10. Cetina-Quinones et al. (2021) Experimental evaluation of an indirect type solar dryer for agricultural use in rural communities: relative humidity comparative study under winter season in tropical climate with sensible heat storage material https://doi.org/10.1016/j.solener.2021.05.040
  11. Purusothamana and Valarmathi (2018) Computational fluid dynamics analysis of greenhouse solar dryer https://doi.org/10.1080/01430750.2018.1437567
  12. Tomar et al. (2017) Solar dryers for tropical food preservation: thermophysics of crops, systems and components https://doi.org/10.1016/j.solener.2017.05.066
  13. Nour-Eddine et al. (2015) Experimental study and simulation of a solar dryer for spearmint leaves (Mentha spicata) (pp. 50-61) https://doi.org/10.1080/01430750.2013.820149
  14. Simo-Tagne et al. (2019) Modeling, numerical simulation and validation of a convective dryer in steady conditions: a case study of tropical woods https://doi.org/10.1080/02286203.2019.1575111
  15. Simo-Tagne and Bennamoun (2018) Numerical study of timber solar drying with application to different geographical and climatic conditions in Central Africa https://doi.org/10.1016/j.solener.2018.05.070
  16. Simo-Tagne et al. (2019) Modeling of coupled heat and mass transfer during drying of ebony wood using indirect natural convection solar dryer https://doi.org/10.1080/07373937.2018.1544144
  17. Simo-Tagne et al. (2021) Numerical study of the drying of cassava roots chips using an indirect solar dryer in natural convection https://doi.org/10.3390/agriengineering3010009
  18. Simo-Tagne et al. (2019) Numerical analysis and validation of a natural convection mix-mode solar dryer for drying red chili under variable conditions https://doi.org/10.1016/j.renene.2019.11.055
  19. Simo-Tagne and Macmanus (2021) Study on the effect of conical and parabolic solar concentrator designs on hybrid solar dryers for apricots under variable conditions: a numerical simulation approach https://doi.org/10.1080/15435075.2021.1914632
  20. Lemus-Mondaca et al. (2013) Coupled 3D heat and mass transfer model for numerical analysis of drying process in papaya slices (pp. 109-117) https://doi.org/10.1016/j.jfoodeng.2012.10.050
  21. Stéphane et al. (2018) A numerical model of cocoa beans drying kinetics in an indirect solar and air crossing dryer (pp. 717-731)
  22. Hidalgo et al. (2021) Natural and forced air convection operation in a direct solar dryer assisted by photovoltaic module for drying of green onion (pp. 24-34) https://doi.org/10.1016/j.solener.2021.02.061
  23. Pechaporn et al. (2017) Effect of temperature and shape on drying performance of cassava https://doi.org/10.1016/j.anres.2017.12.004
  24. Tieu et al. (2019) Étude expérimentale d’un grenier séchoir solaire à convection naturelle: application au séchage du cacao et du manioc (pp. 80-95)
  25. Bentayeb et al. (2008) Modelling and simulation of a wood solar dryer in a Moroccan climate (pp. 501-506) https://doi.org/10.1016/j.renene.2007.03.030
  26. Apollinaire, K.-N.S.: Contribution à l’étude du séchage solaire de la banane plantain, de la mangue et du manioc: essais de désorption, sorption et modélisation. Thèse de doctorat troisième cycle. Laboratoire d’énergie solaire. Université de Cocody - Abidjan, Côte d’Ivoire.
  27. https://bibliotheque.uvci.edu.ci
  28. (2020). Accessed 7 Apr 2020
  29. Koua et al. (2007) Etude expérimentale de la cinétique de séchage du manioc dans un séchoir solaire directe muni d'un circulateur thermique (pp. 11-26)
  30. Koua et al. (2011) Modelling of thermal behaviour of a direct solar drier possessing a chimney: application to the drying of cassava (pp. 1609-1618) https://doi.org/10.17485/ijst/2011/v4i12.1
  31. Koua et al. (2012) Thermodynamic analysis of sorption isotherms of cassava (Manihot esculenta) (pp. 125-140)
  32. Huetz, J., Petit, J.P.: Notions de transfert thermique par convection, Techniques de l’Ingenieur, traité de Génie énergetique A 1 540. 1990.
  33. http://japanstuff.free.fr/Sauvegarde/Scolaire/Projet%20d’%C3%A9tude/docs/a1540%20transferts%20thermiques.pdf
  34. (2021). Accessed 3 Jan 2021
  35. Incropera et al. (2007) Wiley
  36. Kabidi, K.: Expérimentation et modélisation du comportement énergétique et thermique d’un séchoir solaire sous le climat de la région de Rabat. THÈSE DE DOCTORAT, UNIVERSITÉ MOHAMMED V – AGDAL, FACULTÉ DES SCIENCES, Rabat, 2014.
  37. https://thesesenafrique.imist.ma
  38. (2020). Accessed 7 Apr 2020
  39. Koua et al. (2019) Evolution of shrinkage, real density, porosity, heat and mass transfer coefficients during indirect solar drying of cocoa beans (pp. 72-82)
  40. Info-Energie en auvergne, CAUBE Haute-Loire: GUIDE DES MATERIAUX ISOLANTS.
  41. http://www.cg43.fr/sites/cg43/IMG/pdf/guide_des_materiaux__isolants
  42. (2022). Accessed 13 May 2022
  43. LECAHIER 106: LE CONTREPLAQUÉ Dans la construction NF EXTÉRIEUR CTB-X.
  44. http://www.lecontreplaque.com/wp-content/uploads/2015/10/CAHIER-106-2015.pdf
  45. (2022). Accessed 13 May 2022
  46. Hii et al. (2013) Simulation of heat and mass transfer of cocoa beans under stepwise drying conditions in a heat pump dryer (pp. 264-271) https://doi.org/10.1016/j.applthermaleng.2013.02.010
  47. Dumka and Mishra (2021) Energy, exergy and techno-economic analysis of novel solar stills for sea coastal area https://doi.org/10.1080/01430750.2021.1945489
  48. Simo-Tagne et al. (2022) Energy, environmental and economic analyses of an indirect cocoa bean solar dryer: a comparison between natural and forced convections https://doi.org/10.1016/j.renene.2022.02.015
  49. Tofighi (1993) Solar energy balance in Yamoussoukro (pp. 919-922) https://doi.org/10.1016/0960-1481(93)90051-H
  50. Pinto et al. (2010) Moisture sorption properties of chitosan (pp. 415-420) https://doi.org/10.1016/j.lwt.2009.09.003
  51. Fu et al. (2015) Heat transfer caracteristics on lignite thin layer during hot air forced convective drying (pp. 132-139) https://doi.org/10.1016/j.fuel.2015.03.075
  52. Poonia et al. (2018) Mathematical modelling and techno-economic evaluation of hybrid photovoltaic-thermal forced convection solar drying of Indian Jujube (Zizyphus mauritiana) (pp. 74-88)
  53. Altobelli et al. (2014) Solar dryer efficiency considering the total drying potential. Application of this potential as a resource indicator in north-western Argentina (pp. 742-759) https://doi.org/10.1016/j.solener.2014.04.029
  54. Hii, C.L., Law, C.L.: Solar drying of major commodity products. In: Solar Drying: Fundamentals, Applications and Innovations. C.L. Hii, S.V. Jangam, S.P. Ong and A.S. Mujumdar, Singapore (2012)
  55. Minka, C.J.: Solar drying in Africa. In: Proceeding of Workshop Held in Dakar, Sénégale: Potential Improvements to Traditional Solar Crop Dryers in Cameroon: Research and Development. International Development Research Centre, Ottawa (1986)
  56. Compendium, GIZ HERA Cooking Energy Energypedia.
  57. https://energypedia.info/wiki/Solar_Drying#Open-Drying
  58. (2022). Accessed 16 July 2022
  59. VijayaVenkataRaman et al. (2012) A review of solar drying technologies https://doi.org/10.1016/j.rser.2012.01.007
  60. Jeannot (2005) CNRS
  61. Daguenet (1985) UNESCO