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Abstract
To develop a new adsorbent for removal of nitrate and to enhance the adsorbent separation from aqueous solution, surface 
modification of titanium dioxide nanoparticles with nano-zero-valent iron (nZVI) was performed through chemical coprecipi-
tation of magnetic nanoparticles on TiO2 surface. Morphological, structural and magnetic properties of modified adsorbents 
(TiO2/nZVI) were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), X-ray 
diffraction (XRD), Fourier transform infrared radiation (FTIR) and vibrating sample magnetometer (VSM). To determine 
the ionic strength effect and optimal removal conditions, the effect of contact time (60–210 min), pH (4–10) and adsorbent 
dosage (0.5–1.5 g/L) on adsorption efficiency were studied, using response surface method. Obtained results showed that 
the nitrate removal efficiency decreased with increasing ionic strength. The TiO2/nZVI nanocomposites exhibited a ferro-
magnetic behavior and its saturation magnetization was 795.28 memu/g. The maximum nitrate removal (98.226%) achieved 
by modified TiO2 was about 14.65% higher than the unmodified nanoparticles. The optimized adsorption parameters were: 
adsorbent dosage 0.982 g/L, pH 4.185 and the contact time 150.091 min.
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Introduction

Nitrate is often found in drinking water because of human 
activities such as excessive utilization of chemical fertiliz-
ers, inappropriate disposal of industrial, human and animal 
wastes, etc. Nitrogen is converted to nitrate in the soil and 
since nitrate is dissolvable in water, it enters groundwater 
and eventually drinking water through the rain [1]. Increas-
ing nitrate in drinking water has two adverse health effects: 
induction of blue-baby syndrome or methemoglobinemia, 
especially in infants, and the formation of carcinogenic 
nitrosamines [2].

Conventional nitrate removal technologies including ion 
exchange, reverse osmosis, electrodialysis, biological and 
chemical denitrification, are often costly and complex with 
low efficiency and sub-products [2–5]. Adsorption has been 
proposed as an attractive technology for removal of dif-
ferent pollutants from water due to its process simplicity, 
selectivity and reusability of the adsorbent, low cost and 
environment-friendly nature [6–14]. Khezri et al. [15] inves-
tigated the adsorption of nitrate anions from aqueous solu-
tions on ammonium-functionalized magnetic mesoporous 
silica. The removal efficiency of NO3

− from solution was 
around 86.24% by the constructed adsorbent under the opti-
mal experimental conditions. Nowadays, nano-adsorbents 
are widely used to efficiently eliminate the pollutants from 
water due to high surface-to-volume ratio, easy synthesis 
and rapid sorption [3, 16]. Bhatnagar et al. [2] have inves-
tigated the removal of nitrate from aqueous solution using 
alumina nanoparticles and achieved the maximum absorp-
tion capacity of 4 mg/g at 25 ± 2 °C and pH 4.4. Farasati 
et  al. [17] eliminated nitrate from contaminated waters 
using anion exchanger Phragmites australis nanoparticles. 
The highest adsorption rate was obtained at pH 6 using 
0.3 mg/L adsorbent. Zhao et al. [13] reviewed the recent 
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works on the preparation of polymer composites and their 
application in the efficient removal of heavy metal ions from 
aqueous solutions under different conditions. Mohammadi 
et al. [18] synthesized carboxylated chitosan modified with 
ferromagnetic nanoparticles for adsorptive removal of nitrate 
anions from aqueous solutions. The maximum amounts of 
adsorption onto prepared nanoparticles were obtained in 
acidic conditions with 2 g/L of adsorbent. Yazdi et al. [19] 
removed nitrate from aqueous media by functionalized chi-
tosan–clinoptilolite nanocomposites successfully.

Recent studies have shown that zero-valent iron (Fe0), 
especially in nanoscale form, may potentially be used for 
water remediation, due to its affinity for a large number of 
contaminants, large specific surface area, and high surface 
reactivity [20–23]. Muradova et al. [20] investigated the 
removal of nitrate from groundwater by Fe/Cu bimetallic 
nanoparticles. They found that the rate of nitrate reduction 
increased by adding the ratio of copper particles to ZVI in 
two-part metal particles. Zou et al. [24] reported the excel-
lent removal capacity of nZVI-based materials for various 
heavy metal ions. Sepehri et al. [25], removed nitrate (up 
to 84%) from aqueous solution by zero-valent iron nano-
particles reinforced with natural zeolite. Furthermore, the 
adsorption of some contaminants including amido black 
dye (up to 88% removal), ibuprofen (92%), ametryn (88%), 
propranolol drug residue (90%), pantoprazole drug residue 
(89%), secbumeton herbicide (90%), β-estradiol (82%), atra-
zine herbicide(95%), cyanazine (80%) onto iron nanocom-
posite material as adsorbent has been investigated by Ali 
et al. [26–34].

Titanium dioxide is a nontoxic material that has been 
applied in environmental treatments such as water and air 
disinfection because of relatively low price, corrosion resist-
ance and its unique properties such as strong photocatalytic 
activity and high physical and chemical stability [35–38]. 
Titanium dioxide nanoparticles have been used to photocata-
lytic and adsorption removal of some pollutants [36, 39–48], 
but to the best of our knowledge, any research focused on 
removal of nitrate from water by adsorption on magnetized 
titanium dioxide nanoparticles and its comparison with 
unmodified TiO2 nanoparticles has not yet been reported. 
The main aim of this study was to investigate the nitrate 
removal efficiency of TiO2 nano-particles grafted with nZVI.

Experimental

Materials

Nano-TiO2 powder (anatase-phase crystal structure with 
average particle size of about 25 nm) was supplied by Nan-
olin, Germany. Potassium nitrate (99%), ferric trichloride 
(FeCl3·6H2O) with 99% purity, molecular mass 270.33 g/

mol and density of 1.82 g/cm3, sodium borohydride (NaBH4) 
with a purity of 99%, molecular weight 37.83 g/mol and 
density of 0.0005 g/cm3 and ethanol (≥ 99% purity) from 
Merck, Germany were used.

Preparation of TiO2/nZVI nano‑adsorbent

nZVI was synthesized in an anaerobic chamber via the 
reduction of Fe3+ ions with sodium borohydride as a reduc-
ing agent according to the method described by Huang [49]. 
Briefly, FeCl3·6H2O was dropped to NaBH4 solution in a 1:2 
volume ratio. The black nZVI was separated and rinsed with 
pure ethanol and vacuum dried for 90 min at 160 mbar. The 
reduction process occurs according to the following equa-
tion [49]:

TiO2/nZVI nanocomposite was prepared according to 
Petala et al. [37] method, during two stages: wet impregna-
tion and then reduction with sodium borohydride. For this 
purpose, 0.2 g ferric trichloride was dissolved in 7 mL of 
pure ethanol and 0.4 g TiO2 was added to this solution until 
saturation. Solvent evaporation was performed by heating 
in a hot water bath at 70 °C for 20 min. For reduction of 
Fe3 + to Fe0, a reducing solution (containing 0.2 g sodium 
borohydride in 7 mL of deionized water) was added to the 
solution as dropwise. The mixture was kept stationary for 
30 min until deposition and then centrifuged at 15,000 rpm 
for 15 min. Finally, the solid phase was rinsed and vacuum 
dried. All of [TiO2]:[nZVI] ratios (0, 0.25, 0.5, 1, 2.5, 5 and 
7), were produced in the same way. For this purpose, calcu-
lated mass amounts of TiO2 were added to ferric trichloride 
solution. [Fe3+]:[BH−

4
] ratio was kept constant.

Adsorption experiments

Adsorption experiments were conducted discontinuously to 
evaluate the nitrate adsorption efficiency. Certain concen-
trations of nitrate at specific contact times and pHs were 
subjected to different amounts of adsorbent, based on the 
relevant experiments design. Aqueous nitrate solution was 
stirred on a magnetic stirrer at 1000 rpm to allow the trans-
fer of the pollutant onto the adsorbent. The main part of the 
magnetic adsorbent was separated from the solution using 
a magnet and the remainder was separated by centrifuge at 
15,000 rpm for 15 min. The nitrate concentration was ana-
lyzed by spectrophotometry. The absorbance of the solutions 
was determined at λmax = 270 nm using a UV–Vis spectro-
photometer model 8454/4000 (USA).

The nitrate adsorption efficiency onTiO2 and TiO2/nZVI 
nanocomposite was obtained by the following formula:

(1)
2Fe

(

H2O
)3+

6
+ 6BH−

4
+ 6H2O → 2Fe0 + 6B(OH)3 + 21H2
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where, C0 is the initial nitrate concentration in the aqueous 
solution; Ct is the concentration of nitrate in the aqueous 
solution at t min.

Characterization of adsorbent

The morphology of unmodified and modified nanoparti-
cles was evaluated using Cambridge S360 scanning elec-
tron microscope (SEM) equipped with an Oxford EDX. All 
images were taken with an operating voltage 30 kV and 200, 
500, 1000 and 2000 magnifications. All the specimens were 
sputter-coated with gold in a Quorum sputter coater model Q 
150R ES. A closer look at the shape, size, and arrangement 
of the nanostructure adsorbent was carried out by Philips 
transmission electron microscope (TEM) model CM120. The 
X-ray diffraction analysis(XRD) was performed at an angular 
range of 5°–70° (2θ) with a step size of 2θ = 0.02° in Philips 
Analytical X-Ray diffractometer model X’ Pert PW 3040/60 
using a Cu Kα radiation (λ = 1.5406 nm), 40 kV, and 30 mA. 
The diffractometer was equipped with 1° divergence slit and 
a 0.1 mm receiving slit. Fourier transform infrared spectros-
copy (FTIR) was carried out by the Thermo Nicolet appa-
ratus model Avatar 370, made in USA. All the peaks were 
obtained in the range of 4000–400 cm−1 for modified and 
unmodified nano-adsorbents. Magnetization of the prepared 
nanocomposite (TiO2/nZVI) was studied at room temperature 
using vibration sampling magnetometer (VSM) model 7400 
(USA). This device is able to measure the magnetic proper-
ties of samples with an accuracy of 1 × 10−7 emu.

Regeneration and reusability of adsorbent

To evaluate the possibility of recycling the adsorbent, 
regeneration process of TiO2/nZVI nanocomposites was 
conducted. A 0.01 M NaOH solution was used as adsorbent 
recovery solution. TiO2/nZVI nanocomposites, previously 
saturated with nitrate, were agitated with NaOH solution 
for 3 h and followed by ultrasonication for 5 min to des-
orb the nitrate from them. Adsorbents were separated by 
centrifuge, and then washed by deionized water for 5 min. 
The denitrification performance of the regenerated adsor-
bent was measured in a new adsorption experiment. This 
adsorption–desorption cycle was repeated five times to test 
the reusability of the adsorbents [19, 50, 51].

Statistical analysis

Response surface method (RSM), central composite 
design(CCD) type was used for designing of experiments, 

(2)Adsorption efficiency =
C0 − Ct

C0

,

analyzing resulted data and determining the influence of 
three factors “contact time”, “pH” and “adsorbent dosage” 
with three levels for each one,on “adsorption efficiency” 
response. The levels of factors have been selected according 
to the preliminary tests. Design expert software version 10 
was used for analysis of variance (ANOVA). The 0.05 sig-
nificance level was used. The optimal value for each of the 
three parameters was determined according to the obtained 
responses. Factors under study along with their levels are 
summarized in Table 1.

Results and discussion

Morphological properties

SEM micrographs of titanium dioxide nanoparticles and 
their modified form are shown in Fig. 1a–d. The micro-
graphs, taken from the surface of samples, illustrate that the 
particles are largely spherical and the modified particles are 
slightly larger than unmodified particles.

The larger size of TiO2/nZVI nanoparticles (up to 70 nm) 
indicates the proper integration of TiO2 nanoparticles with 
the modifier factor. As it is seen, the resulting nanocompos-
ites are spherical with no agglomeration between particles.

TEM images taken from TiO2/nZVI magnetic nanopar-
ticles are shown in Fig. 1e, f. In the prepared TiO2/nZVI 
nanocomposite structure, the coated core is visible that 
suggesting a good combination of TiO2 nanoparticles with 
nZVI. Based on TEM results, the size of prepared magnetic 
nanoparticles was below 100 nm.

Structural properties

The element composition of the synthesized materials was 
identified by an energy-dispersive X-ray spectroscopy sys-
tem (EDX) coupled to the SEM. EDX analysis of nanocom-
posites (Fig. 11), confirmed the presence of titanium, iron, 
oxygen and chlorine elements in the composition of the 
compound. The presence of some oxygen (33.37%) in the 
composition is not surprising, since the occurrence of partial 
oxidation is inevitable.

X-ray diffraction patterns related to TiO2 nanoparti-
cles and TiO2/nZVI nanocomposites at 2θ = 5°–70° are 

Table 1   Factors under study along with their levels

Factor Level

Low High

A: Contact time (min) 60 210
B: pH 4 10
C: Adsorbent dosage (g/L) 0.5 1.5
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Fig. 1   a, b SEM images of titanium dioxide nanoparticle; c, d SEM images of TiO2/nZVI nanocomposites; e, f TEM images of TiO2/nZVI nanocomposites
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shown in Fig. 2. As it is seen, TiO2 exhibits a sharp peak at 
2θ = 25.402° corresponding to the plane spacing (d-spac-
ing) of 0.351 nm [35]. The X-ray diffraction pattern of the 
magnetic nanocomposite has the same pattern as for TiO2, 
with two excessive peaks in 2θ = 31.8° and 2θ = 44.9° which 
indicate the presence of Fe in the composition [38, 52]. The 
peak in 2θ = 25° can correspond to the presence of TiO2 
and FeOOH in the nanocomposites [33]. Observed peak in 
2θ = 31.8° is related to the presence of iron oxide (FeO) and 
the peak in 2θ = 44.9° indicating the presence of iron zero-
valent crystalline phase [25, 53].

Fourier transform infrared radiation (FTIR) technique 
is used to understand the adsorption mechanism [11]. A 
comparison between the FTIR spectrums of TiO2 and its 
modified form are shown in Fig. 3. In the nano-TiO2 spec-
trum, a strong and broad absorption band at 3430.52 cm−1 
shows a large amount of –OH at the nano-TiO2 surface. 
Absorption band at 1629.16 cm−1 is related to Ti–OH 
bending vibration and the absorption band at 713.06 cm−1 
indicates the Ti–O–Ti tensile vibration [54, 55].

Comparison between FTIR spectra of TiO2/nZVI nano-
composite with the spectra of TiO2 nanoparticles shows 
that the surface modification has been occurred [56]. In 
the TiO2/nZVI spectrum, the broad band at 3415.20 cm−1 
is related to tensile vibrations of –OH which should be in 
the range of 3200–3500 cm−1. The peaks at 1637.51 cm−1 
and 3415.20 cm−1 are also indicative of the tensile vibra-
tions of OH related to H2O and �-FeOOH [53]. A shift 
in the absorption band of Ti–O tensile vibration from 
713.06 cm−1 to 503.65 cm−1 indicates the Ti–O composi-
tion with other elements during the surface modification 
process [56].

Magnetic properties of TiO2/nZVI nano‑adsorbent

The magnetic behavior of diamagnetic materials, paramag-
netics, ferromagnetics, etc., can be measured in different 
shapes of powder, solid, thin film, single crystal, liquid, 
etc., using VSM with drawing of a residual curve. A rep-
resentative hysteresis loop of TiO2/nZVI nanocomposites 
at ambient temperature and in the fields from − 20,000 to 
20,000 Oersted is shown in Fig. 4. The obtained hysteresis 
loop, suggested a weak magnetic nature of prepared nano-
composites. The weak magnetism was most likely attrib-
uted to the existence of nonconductor TiO2 along with 
nZVI and the weak magnetic nature of nZVI itself. As it 
is seen, the response of prepared nanocomposite to the 
applied magnetic field indicates a ferromagnetic behavior. 
As expected, the residual is very low and also has a mag-
netic saturation. The saturation magnetization of the TiO2/
nZVI nanocomposite was about 795.28 memu/g. Petala 
et al. [37] in their research on synthesis and characteriza-
tion of nZVI/TiO2 for photocatalytic removal of chromium 
VI from water, achieved a ferromagnetic response with 
maximum magnetic properties of 16.1 Am2/kg at 5 K and 
13.8 Am2/kg at 300 K without reaching saturation at any 
temperature. Lu et al. [38] reported a magnetic property of 
1320 memu/g for Rectorite/TiO2/Fe3O4 composites.

Optimization of factors

To determine the optimal nitrate removal conditions, 
the effect of contact time (60–210 min), pH (4–10) and 
adsorbent dosage (0.5–1.5 g/L) were studied. For this rea-
son, the specific concentration of the contaminant, under 
controlled pH conditions was contacted with different 
amounts of adsorbent during certain contact times based 
on the design of experiments.

Effect of contact time

The effect of contact time on nitrate adsorption efficiency by 
TiO2 and TiO2/nZVI nanoparticles are shown in Fig. 5a, b. 
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As it can be seen, increasing the contact time has improved 
the efficiency of nitrate adsorption by the adsorbent. The 
main reason for increasing the amount of adsorption over 
time is increasing the collision chance of nitrate ions with 
active sites on the adsorbent. The major part of removal by 
unmodified TiO2 nanoparticles occurred in the first 150 min, 
and by approaching to equilibrium, the amount of adsorption 
had no considerable progress. The maximum adsorption on 
unmodified TiO2 nanoparticles was 82.9406% at 210 min. 
With increasing the contact time from 210 to 240 min, no 
further increase in adsorption efficiency occurred; this is 
due to adsorbent saturation over time. Bhatnagar et al. [2] 
had obtained the same result for removal of nitrate from 

water through adsorption on alumina nanoparticles. They 
observed that the adsorption process reached equilibrium 
within 60 min. Comparison of the obtained results showed 
that the maximum adsorption by modified TiO2 was about 
14.65% higher than the unmodified nanoparticle; this is 
due to the increased adsorbent surface and the high abil-
ity of zero-valent iron nanoparticles integrated with TiO2 
for removal of pollutants [20, 25, 57]. The obtained result 
matches the report by Muradova et al. [20] on the nitrate 
elimination from aqueous solution by nZVI/Cu nanoparti-
cles. They also observed more reduction in concentration 
of nitrate at the beginning and in contact times more than 
60 min, the concentration changes were little.

Fig. 4   Magnetic property of 
TiO2/nZVI nanocomposite
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Fig. 5   Effect of contact time on nitrate adsorption by: a TiO2 nanoparticles, b TiO2/nZVI nanocomposites
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Effect of pH value

Figure 6a, b shows the effect of pH on nitrate removal effi-
ciency by nano-TiO2 and TiO2/nZVI nanocomposites. The 
role of pH is crucial, as it may influence both the reactivity 
with the pollutants and the actual composition of adsorbent. 
In acidic conditions, the adsorbent surface is protonated and 
has a higher positive charge. This causes electrostatic inter-
actions between adsorbents and negative charged ions in 
the water. In alkaline conditions, the surface of adsorbent 
has a negative charge and the interaction between adsor-
bent and positive ions will increase [58]. We found that the 
nitrate removal efficiencies decreased with increasing pH 
value. The adsorption mechanism was strong electrostatic 
interaction between H+ ions that had been increased positive 
charges on adsorbent surface and negative charged nitrate 
ions. In high pHs because of the competition between OH− 
ions present in alkaline environment and anionic nitrate for 
sit on adsorbent active sites, nitrate removal was decreased. 
The highest adsorption efficiencies on nano-TiO2 and TiO2/
nZVI nanocomposite were 82.9406% and 95.092% at pH 4, 
respectively. The maximum adsorption efficiency by TiO2/
nZVI has indicated an improvement equal to 14.45% in the 
presence of nZVI. Bhatnagar et al. [2] also observed that 
the adsorption efficiency of nitrate by nano-alumina was 
increased in pH range from 3 to 4.4; it then decreased along 
with an increase in pH. Xie and Gao [39] also had used 
TiO2 nanoparticles to remove heavy metals from water. They 
had observed less absorption efficiency for metal cations in 
low pHs because of the competition between H+ and posi-
tively metal ions; Conversely, at high pHs, the adsorbent 
was deprotonated and was more likely to absorb cationic 
metals. Ai et al. [59] have reported that the sorption of 

U(VI) towards graphene oxide was primarily influenced by 
the pH values of the aqueous solution, and its adsorption 
performance was strongest at high pH levels. The adsorption 
mechanism was strong electrostatic interaction between the 
uranyl ion and the negative charged O atoms of the oxygen-
containing functional groups, which were the main adsorp-
tion sites also. Based on their opinion, in addition to the 
pH influence, an increase in functional groups and negative 
charges on the GO surface can improve the adsorption abil-
ity towards uranyl ions.

Effect of adsorbent dosage

Effect of adsorbent dosage on the adsorption efficiency 
is shown in Fig. 7a, b. As it is clear from this figure, the 
efficiency of nitrate adsorption initially has improved by 
increasing the amount of adsorbent and then remained con-
stant. This result is similar to what proposed by Ali et al. in 
their studies on molecular uptake of Congo red dye from 
water on iron composite nano-particles [60] and fast removal 
of fluoride from water by iron nano-impregnated adsorbent 
[61].

When using unmodified TiO2, with an increase in the 
amount of adsorbent from 0.3 to 1 g/L, the adsorption effi-
ciency increased from 14.285 to 82.637% (approximately 
478.5% improvement) while with increasing the adsorbent 
from 1 to 1.5 g/L, only 0.36% increase in removal efficiency 
was observed. Therefore, increasing the amount of adsorbent 
to more than 1 g/L will not increase the adsorption efficiency 
significantly. The maximum nitrate removal efficiency with 
TiO2/nZVI nanocomposites was 95.092% using 1.5 g/L 
adsorbent, which is 14.65% higher than that of the unmodi-
fied TiO2 with the same adsorbent dosage. We attribute these 
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results to good surface characteristics of prepared compos-
ite nano-adsorbent and its suitable interaction with nitrate 
molecules. Consequently, grafting the TiO2 nanoparticles 
with nZVI has improved the adsorption capability of the 
adsorbent. Statistical analysis, also showed that the influence 
of adsorbent dosage on removal efficiency was significant 
(P < 0.05). The high performance of nano-zero-valent iron 
to remove various pollutants had been reported previously 
[24, 25, 37, 62].

Regeneration and reusability of modified TiO2

The regeneration of an adsorbent is one of the most 
important aspects for an economical adsorption process. 

Therefore, to reduce costs and waste production, regenera-
tion tests for recycling TiO2/nZVI nanocomposites were 
conducted and the results are shown in the Fig. 8. Results 
indicated that the adsorption efficiency decreased after each 
cycle of adsorption–regeneration slightly and there was no 
significant difference during five adsorption–regeneration 
cycles. The first-time regenerated TiO2/nZVI nanocompos-
ites could remove 95.9% of nitrate (only 0.992% less than 
the fresh adsorbent) and 85.001% after five time regenera-
tion. Therefore, the obtained results confirm that the major-
ity of adsorbent can recycle. Qin et al. [63] in their study on 
mesoporous TiO2–SiO2 adsorbent for ultra-deep desulfuriza-
tion of organic-S had observed that the first-time regenerated 
adsorbent could recover 99% of the breakthrough capacity as 
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compared to a fresh adsorbent and after the fifth regenera-
tion, it could recover 94.5%.

Statistical results

Analysis of the results by Design Expert software showed 
that the quadratic model is statistically well matched to the 
obtained data for nitrate adsorption onto the TiO2 nanoparti-
cles before and after grafting with nZVI. The obtained equa-
tions for nitrate adsorption efficiency by TiO2 nanoparticles 
based on the coding and real factors, respectively, were:

The obtained equations for nitrate adsorption efficiency 
by TiO2/nZVI nanocomposites based on the coding and real 
factors, respectively, were:

Design Expert software has been used to determine the 
optimal removal conditions within the tested range. Pre-
dicted and experimental optimum conditions for nitrate 
removal by TiO2/nZVI along with the maximum adsorption 
value are presented in Table 2.

(3)
Adsorption efficiency (%)

= +74.31 + 25.75 ∗ A − 7.74 ∗ B

+ 14.25 ∗ C − 13.77 ∗ A2 − 10.92 ∗ C2

(4)

Adsorption efficiency (%)

= −70.77102 + 1.00435 ∗ Time (min) − 2.57911 ∗ pH

+ 115.85303 ∗ adsorbent (g∕l) − 2.44834E

− 003 ∗ Time (min)2 − 43.68022 ∗ adsorbent (g∕l)2

(5)
Adsorption efficiency (%)

= +85.74 + 24.78 ∗ A − 9.16 ∗ B

+ 13.36 ∗ C − 14.93 ∗ A2 − 8.62 ∗ C2

(6)

Adsorption efficiency (%)

= −47.08448 + 1.04717 ∗ Time (min) − 3.05371 ∗ pH

+ 95.69313 ∗ adsorbent (g∕l) − 2.65464E

− 003 ∗ Time (min)2 − 34.48179 ∗ adsorbent (g∕l)2

Effect of ionic strength

To study the effect of ionic strength on nitrate removal effi-
ciency, the salt content of the feed solution was adjusted for the 
optimized conditions (adsorbent dosage 0.982 g/L, pH 4.185 
and the contact time 150.091 min). Obtained results illus-
trated that the nitrate removal decreased as the ionic strength 
increased (Fig. 9). This removal decrease may be because of the 
competitive adsorption among NO3

− and interfering Cl− ions 
toward the adsorbent. Similar findings were reported by Kim 
and Zazouli in their works on nitrate adsorption by nZVI [22, 
64]. Ali et al. [33] also reported the same result for atrazine 
herbicide adsorption onto the iron nanocomposite.

Effect of different TiO2:nZVI ratios

The efficiencies of nitrate removal by TiO2, nZVI and TiO2/
nZVI were studied at determined optimized conditions. A 
removal efficiency of 78.9% and 65.73% were able to be 
achieved using TiO2 and nZVI nanoparticles alone, while 
the nitrate removal was increased up to 96.892% using TiO2/
nZVI nanocomposites. Figure 10 shows the nitrate removal 
efficiencies with different ratios of TiO2/nZVI adsorbents 
at constant nitrate concentration of 200 mg/L and optimum 
conditions. On the basis of obtained results, the effect of 
grafting the TiO2 nanoparticles with nZVI on nitrate removal 
efficiency is apparent. It can be seen that TiO2:nZVI ratio 
has strongly influenced the nitrate removal performance 
of the adsorbent. By increasing the amount of TiO2 in the 
adsorbent composition, its performance was significantly 
improved. However, increasing the TiO2:nZVI ratio to more 
than 7 times, reduced the efficiency of the adsorbent.

The major problem for Fe0 application as an adsorbent is 
its high agglomeration and the formation of a surface oxide 
layer and that for TiO2 is the limit of the efficiency due to the 
recombination phenomenon [49]. Our results indicated that 
grafting TiO2 with ZVI nanoparticles has overcome these 
problems as well as to improve their performance. Huang 
et al. [49] in a similar study, reported that the efficiency of 

Table 2   Predicted and experimental optimal conditions for nitrate 
removal by TiO2/nZVI

Contact 
time (min)

pH Adsorbent 
(g/L)

Adsorption 
efficiency 
(%): pre-
dicted

Adsorption 
efficiency 
(%): from 
experiment

Error (%)

150.091 4.185 0.982 98.226 96.892 1.358
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Fig. 9   Effect of ionic strength on nitrate adsorption efficiency
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TiO2/Fe0 composite on azo dye reduction is much more than 
microscale and nanoscale Fe0 and TiO2 particles. Ulucan-
Altuntas et al. [65] in their study on the effect of activated 
carbon/nZVI ratio on removal of nickel ion from water, indi-
cated that the adsorption capacity was increased from 125 
and 820 mg/g for activated carbon and nZVI, respectively, 
to 1190 mg/g for 50% AC/nZVI nanocomposite.

Conclusions

The developed functionalized TiO2/nZVI nanocomposites 
were effective for nitrate elimination from water and had 
a good reusability. Denitrification of nitrate by nanoscale 
ZVI particles includes the direct reduction by metallic iron 
and indirect reduction by the iron corrosion product, hydro-
gen; but with respect to the using of TiO2 in the composite 

structure, it seems that adsorption has been the main mecha-
nism for nitrate removal. On the basis of SEM and TEM 
morphological analyses, the prepared nanocomposites were 
spherical with no agglomeration between particles and the 
coated core was visible. In VSM study, the response of pre-
pared nanocomposite to the applied magnetic field indicated 
a ferromagnetic behavior. This magnetic property of the 
particles makes it easier to separate them from the solu-
tion. Comparison of the obtained results showed that the 
maximum adsorption by modified TiO2 was about 14.65% 
higher than the unmodified nanoparticles. Therefore, the 
combination of nano-TiO2 with nZVI would greatly improve 
its nitrate adsorption efficiency. The optimal conditions pre-
dicted for a maximum nitrate separation of 98.226% by TiO2/
nZVI nanocomposites were: adsorbent dosage 0.982 g/L, 
pH 4.185 and the contact time 150.091 min. Regeneration 
process was carried out with NaOH and proven it was an 
effective agent in the discharge of nitrate.
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