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Abstract
The literature relatively lacks results and data related to the direct influence of physical aging on the properties of poly-
propylene and natural rubber blend; so, the objective of this research was to study the influence of thermal and ultraviolet 
(UV) aging on a natural rubber (NR) SMR-ω and polypropylene (PP) blend. This toughened blend is generally used for the 
fabrication of automobile parts and in the construction industry. The loading of the NR was 10, 20, 30, 40 and 50 wt%. The 
blends were prepared by calendering followed by melt extrusion and it was subjected to XRD (WAXS) analysis, mechanical 
testing, thermal and UV aging, and optical microscopy (OM) observations. The results obtained by X-ray characterisation 
show that the adding of this kind of rubber does not affect the crystalline structure of the polypropylene matrix. Moreover, 
the adding of the rubber shows a decrease of the obtained material tensile strength and a valuable increase of the elongation 
at break. The shore A hardness decreases slightly as the percentage of the natural rubber increases. The optical microscopy 
indicates the apparition of cracks at the sample surfaces and debonded rubber domains from polypropylene matrix induced 
by UV and thermal aging.
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Introduction

The mixing of various kinds of polymers is a suitable 
method for the development of blends with characteristics 
better to those of the individual components. Properties of 
a polymeric blend or mixture depend mainly on the matrix 
phase (major component) but factors like amount, shape, 
size, and interfacial adhesion of the discontinue phase 
(minor component) also are important [1–4]. The resulted 
binary blend of polypropylene (PP) and rubber component 
is called a thermoplastic elastomer (TPE). Thermoplastic 
elastomeric materials (TPEs) can be obtained from a blend 
of PP and various natural or synthetic types of rubbers. 
This kind of blend has the characteristics combination of 
thermoplastic and elastomeric phases [5–12] and it can be 
treated like thermoplastic materials. The majority of TPEs 
have non-uniform morphology. The TPEs based on rubber 

and thermoplastic compositions have been synthesized along 
two different procedures. One consists of a simple blend and 
the resulted mixture is called a thermoplastic elastomeric 
olefin (TPO). In the second procedure, the elastomeric phase 
is dynamically vulcanized, leading to a thermoplastic vul-
canizates (TPVs) or also called dynamic vulcanizates (DVs). 
The TPVs are characterized by finely dispersed micron-sized 
cross-linked elastomeric particles distributed in a thermo-
plastic matrix [13]. The dynamic vulcanization operation 
makes the morphology of the material more stable. Conse-
quently, a uniform and finer distribution of rubber particles 
in the thermoplastic matrix is obtained [14]. TPV procedure 
is based on the crosslinking of a rubber with cross-linking 
agents (sulfur or organic peroxide) to form a discontinuous 
phase of cured rubber, distributed in a continuous matrix 
of a thermoplastic [15]. The extensively used thermoplas-
tic component is polypropylene (PP). PP has various appli-
cations due to its unique properties such as high melting 
temperature, low density, high chemical solvents and heat 
resistances. Furthermore, PP exhibits poor impact strength, 
which limits its applications. Different rubbers were blended 
with PP to prepare TPEs such as ethylene–propylene–diene 
rubber (EPDM), nitrile rubber (NBR), ethylene–propylene 
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rubber (EPR), and rubber waste from truck and car tires 
[16–21].

The aim of this research is to study the influence of UV 
and thermal aging on the mechanical properties of poly-
propylene and natural rubber blend. In this study, SMR-ω 
natural rubber (SMR) was blended with PP to produce a 
polypropylene and natural rubber binary blend. The loading 
of the elastomeric component (SMR) in the blend was 10, 
20, 30, 40 and 50 wt%. The PP/SMR blends were subjected 
to mechanical testing carried out before and after thermal 
and ultraviolet (UV) aging and these blends were also sub-
ject to optical microscopy (OM) observations.

Experimental

Materials

A commercially and not stabilized isotactic polypropylene 
(trademarked as X 34-981903308, produced by APPRYL 
SNC, France) with Mw/Mn = 4, a melting temperature of 
169 °C, an isotacticity index of 98% and a melt flow index 
(MFI) of 0.148 g/min (measured at 190 °C under a 2.16 kg 
load) was used as the major blend component. The natural 
rubber (SMR-ω grade) was purchased from the Malaysian 
Rubber Board (MRB). The main characteristics of natural 
rubber type SMR-ω are: 0.92 g/cm3 (specific gravity); Nitro-
gen (max. 0.60 wt%); volatile matter (max. 0.80 wt%): plas-
ticity retention index (min. 30%); Mooney viscosity, ML, 
1 + 4 (100 °C) 130. The natural rubber was used as received.

The twin-roll mill had a nip clearance equal to 0.5 mm 
and a friction ratio of 1.3 (20/15 rpm), and the blending was 
carried out for 15 min. We began by mixing polypropylene 
(PP) pellets on the two-roll mill for 10 min; afterwards, little 
lumps of natural rubber (SMR) were added during 10 min. 
Finally, the resulted mixture was extruded in an extruder 
having a single screw.

Preparation of the samples

Before blending, polypropylene and grinded SMR natural 
rubber (SMR) were dried in an oven at 80 °C for 24 h. The 
components were melt-blended at 175 °C in a two-roll mill 
(BRABENDER POLYMIX 200P). The extruder used was 
a SCHWABENTHAN PLE 330 apparatus; it had a length/
diameter ratio of 21, a diameter of 20 mm, a thread thickness 
of 5.4 mm, and a step between two consecutive threads of 
15 mm. The barrel temperature (from feed zone to die) and 
screw speed were set, respectively, at 170–180–190 °C and 
45 rpm. The screw used was conventional. Five formulations 
were studied, so that the weight ratio PP/NR was 90/10, 
80/20, 70/30, 60/40 and 50/50.

Characterizations

X-ray diffraction analyses (XRD) were done on an Xpert 
Philips diffractometer interfaced with a computer and 
operating at 40 kV and 40 mA in a continuous mode. The 
incident ray had a wavelength of 1.54 Å generated by a 
CuKα anode. The 2Θ range was 1.51–19.98° with a scan-
ning rate of 0.028°/min. The composite specimen analyzed 
by X-ray diffraction was films of 0.5-mm thickness that 
were obtained by compression and heating at 175 °C.

Tensile characterization was done at ambient tempera-
ture (23 ± 2 °C) according to ASTM D 417 with a ZWICK 
ROELL Z100 testing machine interfaced with a computer. 
The specimens having a dumbbell shape extended at 
100 mm/min crosshead speed. The reported values of the 
tensile properties represent averages of the results from 
test runs on five specimens. The standard deviation was 2% 
for the tensile strength, and 5% for the elongation or strain 
at break. The dumbbell-shaped specimens (gauge length 
24 mm, width 5 mm, thickness 2 mm) were cut with a 
special cutting machine from sheets having a 2-mm thick-
ness. These sheets were obtained by compression molding 
35 g of each sample at 175 °C in a SCHWABENTHAN 
POLYSTAT 300S hydraulic press, according to the follow-
ing procedure: heating for 7 min; 50 bars pressure applied 
for 2 min; 200 bars applied for 3 min, and 350 bars applied 
for 4 min.

Shore A hardness tests were done with a ZWICK 
ROELL HPE hardness tester according to ISO 868 norm. 
They involved six measurements on each side of a 3-mm-
thick plate obtained by compression molding. These meas-
urements were then averaged. The standard deviation for 
the Shore A hardness was 3%.

Thermal aging was done in a hot air-circulating oven at 
100 °C for 6 days. Mechanical properties (tensile strength, 
elongation at break) of the dumbbell-shaped samples were 
determined before and after thermal aging and compared. 
Resistance to thermal aging was evaluated at a certain 
period of time (6 days), according to ASTM D 3045-2003.

UV aging was done by exposing the prepared dumb-
bell-shaped samples to UV radiations for 72 h at ambient 
temperature. The source of UV irradiation was fluorescent 
tubes UVA-340, with a light intensity of 0.68 W/m2 and 
340 nm wavelengths. Each sample was located 25 cm away 
from the tubes. The mechanical properties of the samples 
were determined before and after UV aging and compared.

Optical microscopy observations (OM) were done with 
a Bresser optical microscope interfaced with a computer 
at 200× magnification in transmission light mode. The 
observed samples were not cry-fractured and they were 
films having 1-mm thickness obtained by compression 
molding.
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Results and discussion

XRD analysis

The existence of four peaks between 14 and 20°, in Fig. 1a, 
can be interpreted by the crystalline structure of PP chains 
[21, 22]. The three great peaks at 14.18°, 16.88° and 18.58° 
are induced by the (110), (040), and (130) planes character-
istics of α-type monoclinic crystal structures of PP chains 
[18, 19]. The second peak at 16.28° (Fig. 1a) is induced by 
the (300) reflection plane of the β-type hexagonal crystal 
structure of the PP chains [22, 23].

For samples containing 10–50 wt% of natural rubber, 
represented, respectively, by Fig. 1b–e, we can observe that 
the four diffraction peaks remain unchanged, especially the 
β phase characteristics peak located at 16.28°. This result 
can be interpreted by the fact that this grade of natural rub-
ber, with these processing conditions, seems to not have a 
nucleating effect for the α and β phases of polypropylene. 
This result can be interpreted by the fact that the elastomeric 
phase is not grafted by matrix polymer chains. Indeed, the 
elastomeric component can have a nucleating effect for one 
crystalline phase of the polypropylene matrix as remarked 

for PP-g-SBR particles which promote the β crystal growth 
of PP in the PP/PP-g-SBR binary blend [23].

Mechanical properties

It can be remarked from Figs. 2, 3, 4 that adding natural rub-
ber (SMR) to PP induces a decrease of the tensile strength 
and Shore A hardness and it also induces an increase of 
the elongation or strain at break. So, we can observe that 
the inclusion of SR into PP induces a decrease of the stiff-
ness and strength and improves the ductility of the resulting 

Fig. 1   XRD patterns of a neat polypropylene, b PP/SMR/(90/10), c 
PP/SMR(80/20), d PP/SMR/(70/30), e PP/SMR(60/4), f PP/SMR 
(50/50)
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blend. These results can be interpreted by the soft nature of 
the SMR when it is added to the more rigid PP phase [21].

It can be noticed from Figs. 2, 3, 4 that, before thermal 
and UV aging, the strength and hardness decrease as func-
tion of natural rubber loading, while the strain at break 
increases versus natural rubber loading. A similar result 
was previously mentioned [24, 25]. It can be observed from 
Figs. 2, 3, 4 that before thermal and UV aging, the rubber 
adding is accompanied by an increase in strain at break or 
ductility and a reduction in material strength (or stiffness) 
and hardness.

Thermal aging

Thermal aging induces chemical reactions that cause chain 
scission and a decrease of the chains length and molecular 
weight of the polymeric material. The decrease of the molec-
ular weight induced by chain scission lowers the mechanical 
strength and leads to a low ductility of the material [26, 
27]. The thermal processing leads to oxidation of poly-
meric chain and induces surface cracks, one of the reasons 
for embrittlement of ductile semicrystalline polymers [28]. 
Branching will enhance the influence of a polymer segment 
on thermal oxidation due to the reactivity of the tertiary 
carbon at the branch point. In photooxidation and thermal 
oxidation, the resulting effects are surface cracking, color 
changes and hardening [29]. It can be remarked from Figs. 2, 
3 that after thermal aging, there is a decrease of the strength 
and strain at break relatively to the unaged case. Moreover, 
Fig. 2 shows that the elongation at break decreases nota-
bly after UV aging, and also Fig. 3 shows that the tensile 
strength declines notably after thermal aging. Consequently, 

Fig. 2 shows that the elongation at break is very sensitive to 
UV aging and Fig. 3 shows that the tensile strength is very 
sensitive to thermal aging. Furthermore, it can be seen from 
Fig. 2 that for the blend containing 30 wt% of natural rubber, 
the difference of the values of elongation, between the three 
curves, is minimum relatively to the other studied concen-
trations. So, it can be concluded that the blend containing 
30 wt% of natural rubber is more thermal resistant than the 
other formulations.

It can be seen from Fig. 3 that, after thermal aging, the 
decrease of the tensile strength is more important rela-
tively to the cases before and after UV. This observation 
can be explained by the fact that the natural rubber can be 
degraded under high temperature due to the thermally sensi-
tive unsaturation of C=C double bonds within the isoprene 
chain [11].

UV aging

Polymers would degrade after a long exposure to sunlight or 
after irradiation with ultraviolet (UV) rays. The presence of 
impurities able of absorbing UV will increase the degrada-
tion phenomena. UV irradiation of natural rubber induces 
various volatile degradation products such as ketones, 
aldehydes and organic acids [30]. The presence of tertiary 
carbon in the main chain of isotactic polypropylene is the 
reason of its great sensitivity to UV rays [30]. Degradation 
reactions of semicrystalline polymers occur mainly in the 
amorphous regions; however, morphology parameters, such 
as the arrangement, size and distribution of the crystalline 
zones, influence highly the degradation mechanism [31, 32].

It can be remarked from Figs. 2, 3 that after UV aging, 
the strain and strength decline relatively to the case without 
UV aging. The decrease of the elongation after UV aging 
means that the blend becomes stiffer. It can be observed 
from Fig. 3 that, generally, the difference between the two 
curves (before and after UV aging) becomes less significant 
when the concentration of the natural rubber is equal and 
beyond 30 wt%. This phenomenon can be interpreted by the 
fact that the natural rubber is known as a radiation crosslink-
ing type of polymer because it contains a double bond in 
its cis 1,4 polyisoprene monomers [31]. Consequently, in 
the case of UV aging blend, when the concentration of the 
natural rubber increases, the tensile strength increases due to 
crosslinking [31] and the blend becomes stiffer, that is why, 
in Fig. 3, the two curves become superposed beyond 30 wt% 
of natural rubber loading. Moreover, it can be seen from 
Fig. 3, that for the blend containing 30 wt% of natural rub-
ber, the difference of the values of tensile strength, between 
the three curves, is minimum relatively to the other studied 
concentrations. So, it can be concluded that the blend con-
taining 30 wt% of natural rubber is more UV resistant than 
the other formulations.
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Optical microscopy

Figure 5a–f shows the optical micrographs taken at the same 
magnification showing the UV-irradiated sample surfaces. It 
can be seen from this figure the apparition of surface crack-
ing upon UV irradiation. The cracks are observed for all 
the prepared blends. These cracks are induced by degrada-
tion due to prolonged exposure to UV irradiation. Figure 5 
shows the surface of pure polypropylene and the existence 
of cracks induced by UV irradiation and some spherulites. 
Figure 5b shows the surface of PP/SMR (90/10) blend, and 

the existence of cracks and dispersed natural rubber (SMR) 
domains (which are indicated by black arrows).

Furthermore, it can be noticed that for all the prepared 
blends, the spatial distribution of these elastomeric domains 
in the polypropylene matrix is not homogeneous and this is 
due to the absence of a compatibilizer component such as 
organoclay [33]. For all the prepared blends, droplet-like 
dispersion morphology was observed with high coalescence 
and a large distribution of the rubber particle sizes.

Figure 5c shows the surface of PP/SMR (80/20) blend; 
this figure indicates the existence of cracks and the average 

Fig. 5   Optical micrographs 
images taken at the same mag-
nification (×200) showing the 
UV-irradiated sample surfaces 
of a neat polypropylene, b 
PP/SMR (90/10), c PP/SMR 
(80/20), d PP/SMR (70/30), e 
PP/SMR/(60/40), f PP/SMR/
(50/50)
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dispersed rubber domain size is bigger relatively to the 
Fig. 5a case. Figure 5b–e shows that when the concentration 
of natural rubber (SMR) increases, the dispersed domains 
of this elastomeric phase become more voluminous and this 
observation was previously reported [24, 25]. It can also be 
noticed from Fig. 5b–f that the rubber domains are debonded 
from the polypropylene major phase because of the poor 
interfacial adhesion between them induced by UV irradia-
tion exposure which leads to lower mechanical properties.

Furthermore, the cracks in Fig. 5a–f are not numerous 
and not wide because the exposure time used in this study 
was only 3 days and this exposure time can be extended 
until 21 days as cited in the scientific literature [32]. Fig-
ure 6a, b shows the surface samples of non-aged samples 
containing, respectively, 30 and 40 wt% of SMR compo-
nent. These two figures show clearly that if the samples 

are not exposed to UV aging, the cracks are not present 
and the typical rubber domains (indicated by black arrows) 
are not debonded from the polypropylene matrix. These 
figures (Fig. 6a, b) are to be compared, respectively, with 
Fig. 5d, e. Figure 7a, b shows, respectively, the surface 
samples of no thermally and thermally aged samples con-
taining 40 wt% of SMR. It can be remarked from these 
figures that after thermal aging, the surface of the sam-
ple presents cracks and debonded domains of elasto-
meric phase. However, Fig. 7b shows that the elastomeric 
domains seem to be less debonded comparatively to the 
case with UV aging (Figs. 7b and 6d are to be compared). 
This observation can explain the important decrease of 
the elongation at break after UV aging comparatively to 
the case with thermal aging, since it was reported that the 
elongation at break is directly related to the adhesion or 

Fig. 6   Optical micrographs images taken at the same magnification (×200) showing the non-UV-irradiated sample surfaces of a PP/SMR 
(70/30), and PP/SMR/(60/40)

Fig. 7   Optical micrographs images taken at the same magnification (×200) showing the sample surfaces of PP/SMR (60/40), a before thermal 
aging, b after thermal aging
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compatibility between two immiscible phases in a binary 
polymeric blend [34–36].

Conclusion

The results and data found in this work are an important con-
tribution to evaluate and understand the effects of thermal 
and UV aging on the mechanical properties of polypropylene 
and natural rubber blend for better understanding and predic-
tion of long-term behavior of practical applications.

The results obtained from thermal and UV aging showed 
that the blend containing 30 wt% of natural rubber is more 
thermal and UV resistant than the other studied formula-
tions. So, this kind of material can be used essentially as 
toughened blend in outdoor applications (electrical cable 
insulation).

In this study, the XRD analysis showed that the adding of 
the SMR rubber does not affect the crystalline structure of 
the polypropylene matrix. Indeed, this natural rubber seems 
to not have a nucleating effect for the α and β crystalline 
phases of polypropylene. It was noted that the mechanical 
properties of the PP/SMR decrease when the loading of the 
elastomeric phase increases especially before thermal and 
UV aging.

The optical microscopy showed dispersed rubber domains 
in polypropylene matrix and their size rises as the concentra-
tion of the rubber phase increases. The optical microscopy 
also indicates the existence of cracks at the sample surfaces 
and debonded rubber domains from the polypropylene 
matrix induced by UV and thermal aging. Furthermore, the 
optical microscopy showed that the elastomeric domains are 
more debonded from matrix after UV exposure than after 
thermal aging.
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