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Abstract
This work proposes a kinetic model for the reactions involved in the heterogeneous copper-based Fenton-type oxidation of 
mixed recalcitrant compounds in a real industrial effluent from the alkaline sulfite treatment of wood. This kind of treatment 
is unusual in this industry due to the complexity of the effluents and the high costs involved in total mineralization of the 
organic matter. Nevertheless, conversion of recalcitrant to degradable compounds and catalyst recovery can make the differ-
ence. The complexity of the effluent and the great number of compounds formed as intermediates, make extremely difficult 
the identification and quantification of the individual reactions that occur during oxidation. To solve this drawback TOC 
parameter was used as a representative measurement. To verify the level of TOC degradation produced by the heterogeneous 
catalysis reaction, experiences of homogeneous catalysis and adsorption were accomplished. The studied temperature range 
was 45–80 °C. A “two-step” kinetic model was applied to TOC reduction in heterogeneous and homogeneous oxidations, 
admitting two sequential steps of oxidation: a first fast stage (“seconds stage”) followed by a slow one (“minutes stages”). 
Kinetic constants were obtained for both processes and activation energies were also determined for the “minutes stage” step 
(33.17 kJ/mol and 15.13 kJ/mol, respectively). Homogeneous catalysis studies confirm mass transfer limitations in heteroge-
neous oxidations. Experiences of adsorption of organic matter on CuO/γ-Al2O3 catalyst demonstrated that this phenomenon 
is exothermic and cannot be neglected. The activation energy of adsorption was determined as 7.32 kJ/mol. Catalysts were 
characterized through SEM, EDS, XRD, FTIR, and TGA.
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Introduction

Cellulose, hemicelluloses, and lignin are the main compo-
nents of wood. Cellulose is a polymer consisting of d-glu-
copyranosyl units. Hemicelluloses are a mixed group of 
both linear and branched sugars heteropolymers. Lignin 
is an amorphous, aromatic, water-insoluble, heterogene-
ous, three-dimensional, and cross-linked polymer. Wood 
has also other minor components named as extractives, 
as they are easily extracted by water or solvents. One of 
the usual processing of wood for printing paper produc-
tion is the alkaline sulfite pulping process, in which wood 
chips are impregnated with sodium hydroxide and sodium 
sulfite (pH 9–10), and they are subsequently mechanically 
refined. This treatment, named as chemimechanical pro-
cess, combines chemical action prior to mechanical action. 
Since the chemical charge and the organic dissolved matter 
is not enough as to implement a chemical recovery system, 
diluted spent liquors are generally treated in the effluent 
system [1–5].

Advanced Oxidation Processes (AOP) have proved to 
be interesting options to degrade or mineralize hazard-
ous compounds present in this kind of effluent. These 
processes differ from each other in the source of radicals 

HO·, which is their main feature. Hydroxyl radicals (HO·) 
present high reactivity and low selectivity during oxida-
tion [1], [6–9].

Classical Fenton was developed in the 1890s and consists 
of iron species combined with hydrogen peroxide to oxi-
dize organic matter [10]. Iron catalysts require strong acidic 
conditions (pH < 4) to avoid leaching and sludge formation. 
On the contrary, the copper-based catalyst can work within 
a broad range of pH and offer good operational stability, so 
they are an excellent choice for the degradation and oxida-
tion of organic recalcitrant matter [11] (see Table 1).

Heterogeneous catalysts use solid supports to deposit 
the active phase which activates the H2O2, thereby avoiding 
the complexity and economical cost of separate the catalyst 
from the reaction medium. Among the possible options, 
mesoporous γ-Al2O3 presents high surface area and strong 
interactions active phase-support. As support of CuO par-
ticles, it minimizes copper ions leaching into the reaction 
medium [23–25].

No information has been found regarding the applica-
tion of the system CuO/γ-Al2O3-H2O2 on effluents from 
the industrial alkaline sulfite treatment of wood, known as 
chemimechanical pulping. As these processes do not have 
a chemical recovery system, spent liquors are generally 
discharged into the receiving body. The catalytic oxidation 

Table 1   Summary of several copper-based systems which have been used in oxidation reactions

Catalyst Target compound Experimental conditions Outcomes Ref

CuSO4 Benzylic alcohols (3 mmol) 1 mol% of catalyst, 1 mL of H2O2 [30%], 
80 °C

Conversion = 90% [12]

Copper oxide nanoparticles Methylene blue, basic cationic dye, 
(14.4 µM)

1.0 ± 0.1 mg of catalyst, 0.15 mL/min of 
H2O2, 25 °C

Conversion > 90% [13]

Cu/MCM-41 Phenol (100 mg/L) 0.15 g of catalyst, 0.306 ml of H2O2 
[35%], 20 °C, UV of 8 W and 365 nm

Conversion > 70% [14]

[Cu(sal-ambmz)Cl]-zeolite Styrene (0.005 mol) 15 mg of catalyst, 0.15 mmol of H2O2 
[30%], 75 °C

Conversion = 56.7% [15]

[Cu(sal-ambmz)Cl]-zeolite Methyl phenyl sulfide
(0.005 mol)

5 mg of catalyst, 0.005 mmol of H2O2 
[30%], 75 °C

Not reported [15]

[Cu(sal-ambmz)Cl]-zeolite Phenol (0.05 mol) 25 mg of catalyst, 0.05 mol H2O2 [30%], 
80 °C

Conversion = 42% [15]

Copper complexes Methyl orange, azo dye
(2 10−5 M)

3.11 10−6 M of catalyst, 2.40 10−2 M of 
H2O2, UV light, 300 W

Conversion = 80% [16]

Ordered mesoporous CuFe2O4 Imidacloprid (10 mg/L) 0.3 g/L of catalyst, 40 mM of H2O2 
[30%], 30 °C

Conversion > 90% [17]

Cu2(OH)PO4 Direct Brown 2 ((NH4)2HPO4) (20 mg/L) 100 mg of catalyst, 0.8 mL of H2O2 
[30%], 50°C

Conversion = 93.2% [18]

CuO/ γ-Al2O3 Phenol (200 mg/L) 20 g/L of catalyst, 15 mM of H2O2 
[30%], 70°C

Conversion= 97% [19]

CuSO4/ glucaric acid Remazol Brilliant Blue R, Anthraqui-
none (100 mg/L)

10 mM/ 15 mM of catalyst, 200 mM of 
H2O2 [30%]

Conversion = 98% [20]

CuO/γ-Al2O3 Black 5, azo dye (100 mg/L) 0.20 g of catalyst, 40 mM of H2O2 
[30%], 21 °C

Removal = 90% [21]

CuO/ Li2O-γ-Al2O3 Methylene blue (0.025 mM) 33.6 mg/L of the copper active phase, 
0.05 M of H2O2 [30%], 25 °C

Conversion > 90% [22]
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of mixed recalcitrant compounds in industrial effluents is 
unusual because of the complexity of the effluents and the 
high costs involved in the total mineralization of the organic 
matter. Nevertheless, the conversion of recalcitrant to easily 
degradable compounds and the recovery of the catalysts can 
make the difference. Therefore, the study of the behavior 
of the industrial effluent with this oxidative system and the 
determination of the kinetic parameters for its application 
is a key step for the subsequent design of a treatment plant.

The amount and complex nature of compounds formed as 
intermediates during the oxidation process make extremely 
difficult the identification and quantification of the individual 
reactions produced during oxidation. The aim of this work 
was to propose a kinetic model for the reactions involved in 
the heterogeneous copper-based Fenton-type oxidation of 
mixed recalcitrant compounds in an industrial effluent from 
the alkaline sulfite treatment of wood, using Total Organic 
Carbon (TOC) as representative of the quantitative evolution 
of organic matter throughout oxidation.

Homogeneous systems are more efficient in the oxidation 
of compounds because of the single phase [26], [27]. Study-
ing this system allows to know the maximum conversion 
(always considering that metal species are different in both 
systems) and to check for mass transfer resistance as result 
of the introduction of another phase. Homogeneous copper-
based oxidations were, therefore, analyzed to verify the cata-
lyst effect on the oxidation rate and to evaluate eventual mass 
transfer limitations because of the heterogeneous system.

Adsorption on the support as result of attractive forces is 
always possible [28], so it is also important to verify whether 
TOC reduction is only produced by oxidation or if there is 
any adsorption component, and how it varies at different 
temperature and pH conditions.

Materials and methods

Industrial effluent

The study involved a pulp and paper integrated mill, “Papel 
Prensa S.A.”, located in San Pedro, Argentina, which pro-
duces 132,000 ton/year of soda-sulfite chemimechanical 
pulps from a mixture of willows, poplar, and eucalyptus, 
and recycled newspaper. The effluent of the mill comprises 
several streams: (1) liquid waste from deinking plant; (2) 
water from wood treatment; (3) black liquor from the chemi-
cal treatment of wood (pH 7–8, deep red color, mainly com-
posed of extractives and lignin derived from the product of 
the chemical reaction between wood and pulping liquor); 
(4) effluent from chemimechanical pulp washing; (5) efflu-
ent from the bleaching plant; (6) white water from the paper 
making section. As stream 3 contains the highest polluting 
load, this work was performed simulating the effluent with 

dilutions of spent liquor 3), using a liquor/water ratio of 
1/50. The liquor was stored in plastic containers and it was 
used without filtration. The temperature of this real effluent 
in the point of the treatment is about 60–70 °C.

Synthesis and characterization of supported 
catalysts

Commercial γ-Al2O3 (SASOL) pellets (1.8 mm in diameter 
and 200 m2/g of surface area) were used as support and were 
impregnated using an aqueous solution of Cu(NO3)·2.5H2O 
(Riedel-de Haën, p.a.) as precursor. The incipient wetness 
impregnation method comprises mixing the support with an 
aqueous solution containing an appropriate amount of salt 
so that, after calcination, the catalyst contains the required 
metal content. The volume of the prepared solution is equal 
or slightly smaller than the pore volume of the support. The 
maximum load is limited by the solubility of the precursor in 
the solution. Solids were air dried for 24 h, oven dried during 
24 h at 120 °C, and finally calcined during 4 h at 900 °C in 
air atmosphere.

The support and the catalysts were characterized using 
the following techniques: Surface areas were calculated from 
N2 adsorption isotherms at − 196 °C. Oxide structures and 
cluster size of the synthesized metal oxides supported on 
alumina were determined by techniques of powder XRD. 
The main peaks corresponding to the aluminum oxide 
(gamma phase) are 2θ = 66.7° (100), 46.1° (80), 37.4° (60), 
and 39.7° (30). The surface morphology and elemental com-
position of the catalysts were examined by means of a scan-
ning electron microscope (SEM) and by energy dispersive 
X-ray spectroscopy (EDS).

The organic matter removal from the used catalysts was 
accomplished by Thermogravimetric Analysis, the measure-
ments were carried out from 25 to 900 °C under air current 
(20 mL/min; 10 °C/min). The nature of carbonaceous depos-
its was explored by Fourier-transformed infrared spectros-
copy and recorded over the spectral range 4000–600 cm−1. 
Solid samples were prepared by the KBr pellet method.

Fenton‑type oxidations and adsorption trials

The stoichiometric H2O2 concentration respect to the 
Chemical Oxygen Demand (COD) value was 1.98 g/L. It 
was calculated assuming complete mineralization of COD to 
CO2 and H2O. The theoretical amount of hydrogen peroxide 
estimated for total TOC oxidation is 2.43 g/L. The studied 
initial doses of H2O2 were: sub-stoichiometric I (1.78 g/L; 
H2O2:COD ratio of 0.9:1), over-stoichiometric II (2.43 g/L; 
H2O2:COD ratio of 1.2:1), and over-stoichiometric III 
(3.54 g/L; H2O2:COD ratio of 1.8:1).

A PYREX glass batch reactor of 250 mL with a glass 
stopper equipped with a condenser, a thermocouple, and 
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pH meter was used. To minimize external mass transport 
effects, experiments were carried out with a high-speed 
stirring. Testing was performed in contact with air, at 
atmospheric pressure. The reaction volume was 100 mL.

Heterogeneous experiments were conducted using cata-
lyst pellets. Initial time was recorded when the catalyst 
was added to the liquid inside the batch reactor, and the 
system reached the reaction temperature. Time zero was 
recorded when H2O2 was added, initiating the oxidation 
reaction.

A series of preliminary tests (blank trials) were carried 
out with the effluent and the support to be used for the 
preparation of the catalyst (γ-Al2O3 + H2O2 + industrial liq-
uor; H2O2 + industrial liquor; γ-Al2O3 + industrial liquor). 
Due to the lack of background of the Fenton-type treat-
ment for the oxidation of this kind of industrial liquor, the 
presence and/ or the influence of non-catalytic processes 
such as adsorption onto γ-Al2O3 were analyzed. In addi-
tion, the thermal decomposition of the liquor was analyzed 
under extreme temperature conditions (80–85 °C).

Adsorption studies of the industrial liquor-CuO/γ-Al2O3 
system were also performed without hydrogen peroxide 
addition.

Homogeneous oxidations were performed with 0.0365 g 
of Cu(NO3)·2.5H2O (Riedel-de Haën, p.a.), equivalent 
to 100 ppm of supported copper used in heterogeneous 
reactions.

Liquid samples of 2.5  mL were taken according to 
appropriate time intervals and were immediately analyzed. 
Total oxidation time was 240 min. The analyzed response 
throughout the reaction was the percentage of total organic 
carbon reduction (TOC % reduction).

Analytical methods

Solids were determined according to Tappi T629. The 
inorganic content was assessed by determining the ashes at 
525 °C according to Tappi T211. The color of the effluent 
was measured by the absorbance at 450 nm (TECHCOMP 
spectrometer). COD was measured following the technique 
SM 5220-B (Standard Methods for the Examination of 
Water and Wastewater, 17th edition). Organic acids and 
peroxide consumption during the reaction, were quantified 
by HPLC (Waters Corp. Massachusetts, USA) using an 
Aminex-HPX87H column under the following conditions: 
4 mM H2SO4 as eluent, flow rate of 0.6 mL/ min, 35 °C, 
and UV Diode Array detector (organic acids at 210 nm and 
aromatic compounds at 254 nm). Total Organic Carbon 
(TOC) technique was used to measure the organic com-
pounds, using a TOC analyzer (Shimadzu, TOC-VCPN 
model).

Kinetic study of Fenton‑type reactions

The rate and the order of the heterogeneous catalytic oxida-
tion reactions were obtained using the linear form of “n” 
order reactions. The order of the reaction was determined 
by fitting the equations to the experimental data, verifying 
the coefficient of determination (R2). Statgraphics software 
was used for curves fitting.

Results and discussion

Effluent characterization

Initial TOC and COD of the simulated effluent were 
433 mg/L and 931 mg/L, respectively. The main charac-
teristics of the industrial spent liquor are shown in Table 2.

The hardwood mixture used by the mill is characterized 
by their extractives rich in hydrolyzable tannins, condensed 
tannins, flavonoid-based steroids (some esterified with fatty 
acids) and triterpenes. The industrial effluent contains sug-
ars, low molecular weight polyoses, and several recalcitrant 
compounds to microbiological treatment. COD of stream 3 
is composed mainly of aromatic derivatives from extractives 
and labile lignin fractions, and acetic acid, most of them 
with unknown chemical structure [1].

Catalyst characterization

The analysis of X-ray diffraction (Fig. 1) of calcined CuO/γ-
Al2O3 catalyst (before and after reaction) revealed only the 
presence of the characteristic peaks of the γ-Al2O3 phase, 
probably due to the low concentration of impregnated active 
phase and its good dispersion onto the support [29]. Despite 
the high calcination temperatures, the effects of sintering 
by the thermal treatment were negligible, evidenced by the 
final BET area of the homemade catalyst (170 m2/g). The 
composition of the prepared catalyst via spectrometry and 

Table 2   Chemical characteristics of the spent liquor

SD standard deviation

Parameter Value SD

Total soluble solids (g/L) 61.1 0.0
pH 7.4 0.0
COD (mg/L) 46,550 0.1
TOC (mg/L) 21,665 0.3
Ashes at 525 °C (% of total soluble 

solids)
52.3 0.0

Acetic acid (g/L) 23.6 0.0
Formic acid(g/L) 0.3 0.0
Propionic acid (g/L) 0.6 0.0
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energy dispersive X-ray determined by surface mapping and 
as the average of 330 points from the surface to the center of 
the pellets is shown in Fig. 2. Active phase remained almost 
constant through all the distance, indicating a uniform dis-
tribution of copper species [30]. This diffusion of active 
species to inner zones of the support is probably a conse-
quence of the high calcination temperature [31]. According 
to Fig. 2, the average pore size is nearly identical to the 
alumina support, indicating adequate diffusion of copper 
species.

Kinetic study of TOC evolution by heterogeneous 
oxidation

The control trials performed showed a negligible TOC con-
version (less than 0.3% of conversion in all trials), therefore, 
there is no adsorption mechanism onto the catalytic support. 
No thermal decomposition of the liquor was verified (evi-
denced by the negligible TOC and COD reduction of the liq-
uor). Catalyst mass and active phase content were analyzed 
in a previous work through an experimental design, to find 
their impact on TOC and COD reductions. Between the two 
tested points, the catalyst mass did not have a significant 
effect on TOC and COD reduction, and the higher active 
phase tested showed better performance in oxidation trials 
[32], then, 0.5 g/L of 2.5% CuO/γ-Al2O3 were used.

The identified species in the chemimechanical black 
liquor (such as acetic acid, oxalic acid, sulfur compounds, 
sodium carbonate and other salts) [4], [5] are recalcitrant 

and interfere the Fenton oxidation process [33], avoiding a 
total mineralization [34], [35]. As complete mineralization 
would be then very expensive to achieve, the intention of this 
work was to reduce the organic content of the effluent (not 
its complete elimination), allowing the application of this 
process at the mills. As a consequence, initial doses of H2O2 
were applied considering the feasibility of reducing costs.

The reaction temperature and H2O2 concentration are crit-
ical issues in Fenton and Fenton-type reactions [36], [37]. 
Since the oxidant reagent depletion is one of the main factors 
that influences oxidation efficiency, oxidation reaction con-
ditions for the kinetic study were analyzed in terms of hydro-
gen peroxide consumption trough the “η parameter” used by 
several authors [38], [39]. It is defined here as the reagent 
consumption, considered as the amount of TOC (mg/L) and 
COD (mg/L) converted per unit of consumed H2O2 (g/L).

Substantial amounts of hydrogen peroxide were still pre-
sent at the end of the experience at low temperature, reflect-
ing a slow formation of radicals with the concomitant low 
reductions of TOC and COD (Fig. 3). On the contrary, high 
temperatures contribute to a faster copper-catalyzed con-
version of H2O2 into radicals, which enhances black liquor 
oxidation degree, evidenced by high TOC and COD conver-
sions [38].

The percentage of lixiviated copper was also reported 
in Fig. 3. Some authors state that the reactivity of the com-
pounds to be treated is the main cause of leaching in hetero-
geneous reactions [40]. The optimum pH to prevent Cu from 
leaching from the support is close to neutrality [11] [41], 
Since the pH of the reactions oscillates between 6 and 7, it 
is possible that leaching is a consequence of the compounds 
reactivity. The catalytic reactions could have some homoge-
neous contributions if the leached copper is still catalytically 
active. According to Fig. 3, a strategy to reduce leaching is 
to increase the severity of the conditions of reaction, which 
also prevents the accumulation of compounds on the surface 
of the catalyst. This is a plausible option since unproductive 
reactions were not verified in the working conditions as the 
use of H2O2 was still efficient and the analyzed parameters 
(for example, COD) decreased. However, as the effect of 
copper leaching on the heterogeneous kinetic analysis was 
out of the scope of this study, homogeneous catalysis con-
tributions are not going to be taken into account when deter-
mining heterogeneous kinetics models. Leaching of copper 
and its influence on TOC, COD and H2O2 reduction, are 
subject of a future work.

According to TOC evolution with time, two different 
tendencies of TOC depletion were found (Fig. 4): (1) An 
abrupt decrease up to 0.1 min (named “seconds stage”); (2) 
A smooth decrease from 0.1 to 240 min (named “minutes 
stage”).

This mechanism probably indicates that the “seconds 
stage” corresponds to higher-order kinetics, and/or other 

Fig. 1   XRD pattern for the catalyst used in the kinetic study (Ox1 to 
Ox 9 are defined bellow in Table 3)
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reaction mechanisms take place [42]. The “two-step 
kinetic model” [43] which can be applied to TOC reduc-
tion, admits two sequential steps of oxidation, suggesting 
that reactions should be responsible for TOC degradation 
[44]. The reactions could be represented as follows:

Where unstable species easily oxidized are named as A, 
pollutants that are difficult to oxidize are designed as B, 
the desired final products (CO2 and H2O) are commonly 

(1)A + H2O2

kss
→B

(2)B + H2O2

kms
→C

referred as C; kss and kms correspond to the “seconds stage” 
and the “minutes stage” kinetics constants, respectively.

As can be seen in Fig. 4, the rapid decrease in TOC con-
centration observed within the first 0.1 min approximately is 
so fast that would require specialized equipment and a more 
exhaustive analysis, to determine the order and the exact 
mechanism of the reaction.

TOC reduction during the first 0.1 min is a direct conse-
quence of the severity of the initial conditions. The decrease 
during the first 0.1 min is attributed to the oxidation of 
extremely easily oxidizable compounds present in the black 
liquor. The same trend is observed during tests in homo-
geneous phase (discussed below). Unlike what happens in 

Fig. 2   SEM (×2500) image, EDS spectra and surface mapping of a. γ-Al2O3 and b. CuO/γ-Al2O3 catalyst
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the oxidation reaction, this trend is not observed during the 
adsorption process (reaction without H2O2), so this TOC 
decrease should not be attributed to the adsorption of organic 
compounds on the catalyst surface (also discussed below).

This “two-step” kinetic behavior was also observed by 
other authors [45], who found that the kinetics of COD 
removal in a real stream (mix of several compounds) by 
heterogeneous Fenton oxidation presents an initial abrupt 
decrease of COD, followed by a smooth one. The “seconds 
stage” oxidation rate is fast probably due to the great avail-
ability of active sites in the catalyst [46]. The critical aspect 
of heterogeneous systems probably is the reaction between 
H2O2 and supported copper (Fig. 5). At the beginning of 
the reaction, all active sites on the surface are available, so 
HO· production and oxidation of the recalcitrant compounds 
occurs fast [47]. As the oxidation proceeds, the reaction in 
the pores is partially blocked, as evidenced by the slow reac-
tion rate in the “minutes stage”.

Considering TOCA as the initial TOC value, TOCB repre-
sents its value immediately after the “seconds stage”.

Simple regression models for the “seconds stage” were 
tested to determine TOCB dependence of the reaction condi-
tions for each experimental point. TOC reduction was found 
to obey the following equation, where “Temp” is the work-
ing temperature, and “[H2O2]0” is the initial concentration 
of hydrogen peroxide (R2: 0.982):

(3)

TOCB =
1

(

2.21 ∗ 10−3 + 1.13 ∗ 10−6 ∗ Temp ∗
[

H2O2

]

0

)

Figure 6 compares the experimental and predicted TOC 
values from the “seconds stage”, confirming the validity of 
the model.

Time-concentration curves for TOC reduction obtained 
for the oxidation reactions in the “minutes stage” period were 
fitted to potential models to obtain kinetic equations. In all 
cases, the oxidation rates can be described by pseudo-zero 
order kinetics. This kinetic model was observed at catalyst 
surface saturation by the reactants [48] and suggests that the 
rate of reaction in this study does not vary with the concentra-
tion of organic components.

Since the oxidation kinetics of the studied effluent corre-
sponds to a pseudo-zero order model, some assumptions are 
needed to develop the kinetics analysis. It is assumed that HO· 
concentration reach a virtually constant value [49], that is, HO· 
concentration is considered in a pseudo steady-state condition 
[50]. The global kinetic of the reaction can be represented as 
follows:

Where “C” represents the concentration of TOC species in 
Eq. (2), “r” is the reaction rate, “kOH” is reaction kinetic 
rate constant and “kms” is the apparent pseudo-zero order 
kinetic constant.

Thus, the kinetic reaction for the “minutes stage” can be 
represented as (the parameter RH2O2

 in the following equation 
is defined bellow, in Eq. 6):

(4)−
dC

dt
= −r = kOH[HO⋅] = k

(5)−rTOCC
= −

dTOCB

dt
=

kms

RH2O2

Fig. 3   “η parameter” at different temperatures and H2O2 doses
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To assess the feasibility of reducing the treatment cost by 
reducing the H2O2 charge, a committed relationship between 
the maximization of H2O2 efficiency and the highest possible 
levels of TOC conversion was sought (Fig. 2). RH2O2

 can be 
defined as the ratio between the working hydrogen peroxide 
concentration “[H2O2]0.Work” and the over-stoichiometric 
concentration III “[H2O2]0 Over-stochiometricIII”, as:

The final kinetic expression can be obtained from the inte-
gration of the Eq. (5) as follow:

(6)RH2O2
=

[

H2O2

]

0Work
[

H2O2

]

0Over - stochiometric III

Where TOCB is the initial Total Organic Carbon of the min-
utes stage, and TOCC is the final Total Organic Carbon at a 
certain time. Since this model does not discriminate between 
the refractory pollutants (mainly acetic acid) and oxidizable 
compounds in the initial mixture, the remaining TOC along 
the reaction is due to the presence of both.

Percentages of TOC reduction after 240 min of oxida-
tion and kinetic constants of the respective equations at 
different experimental conditions are shown in Table 3. All 
catalytic reactions were accomplished without pH adjust-
ment to record the natural tendency of the catalyst system. 

(7)TOCC = TOCB −
kms

RH2O2

∗ time

Fig. 4   TOC evolution at differ-
ent reaction temperatures (45, 
70 and 80 °C) and initial H2O2 
concentration (1.78, 2.43 and 
3.54 g/L)
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The pH values of the oxidation reactions were close to 7.3 
in all cases, possibly due to both the recalcitrance of liq-
uor compounds and to the interference of acetic acid and 
oxalic acid (presents as sodium salts), sulfur compounds, 
sodium carbonate and other salts on Fenton oxidation.

The Arrhenius expression, showing the relationship 
between the reaction temperature and the specific kinetic 
rate is expressed as follows:

Where
“k” is the kinetic rate constant (mg/L min).
“A” is the Arrhenius factor (mg/L min).
“E” is the Arrhenius activation energy (J/mol).

(8)k = Ae

(

−
E

R∗Temp

)

“R” is the gas constant (8.314 J/mol K).
“Temp” is the temperature of reaction (absolute).
Arrhenius activation energy indicates the minimum 

energy that the reactants must have for the reaction to pro-
ceed. It can also be interpreted as the energy barrier that 
molecules must overcome to transform reactants into prod-
ucts. For these oxidation processes the activation energy 
“E” resulted to be 33.17  kJ/mol, obtained by plotting 
( ln kms∕RH2O2

 ) vs ( 1∕Temp(K) ) (R2:0.904).
The kinetic constant can be obtained from the experimen-

tal data as a function of the operating temperature by plot-
ting kms vs Temp (K) (R2:0.999), confirming that the process 
is governed by the Arrhenius law:

The relationship between experimental and predicted TOC 
values from the “minutes stage”, confirm the validity of the 
model, as shown in Fig. 7.

The kinetic constants of the simulated effluent degrada-
tion are significantly affected by temperature and [H2O2]0, 
being higher at high values of these two parameters 
(Table 3). As the applied thermal energy increases, the rate 
of reaction increases according to the Arrhenius law. In these 
conditions, diffusion of reactants to active sites of the cata-
lyst and diffusion of product from the active sites back to 
the reaction medium are favored [51], [52]. The increase in 
rate constants with [H2O2]0 suggests that the percentage of 
TOC removal increases with the ratio H2O2:COD, due to the 

(9)kms = 2 ∗ 10−6 ∗ e0.0356∗Temp(K)

Fig. 5   Proposed mechanism of the oxidation reaction between H2O2 
and supported copper Adapted from [22], [47]

Fig. 6   Parity plot for TOC in the “seconds stage”. The bars corre-
spond to the experimental values, and the dotted lines correspond to 
the values calculated with the model

Table 3   TOC reduction after 240  min of reaction and experimental 
kinetic constants of the “minutes stage” reactions for each experimen-
tal condition

Ox 1to Ox 9 corresponds to heterogeneous oxidations
Ox 10 to Ox 12 corresponds to homogeneous oxidations
a Total percentage of TOC reduction
b kms in (mg/L min) for Ox 1 to Ox 9, and kms in (1/min) for Ox 10 to 
Ox 12

Trial Temp (°C) [H2O2] (g/L) % TOC Reda kb
ms R2

Ox 1 45 1.78 7.62 0.145 0.977
Ox 2 70 1.78 18.16 0.313 0.983
Ox 3 80 1.78 28.24 0.447 0.963
Ox 4 45 2.43 7.83 0.136 0.977
Ox 5 70 2.43 22.25 0.329 0.965
Ox 6 80 2.43 32.87 0.513 0.944
Ox 7 45 3.54 11.97 0.151 0.917
Ox 8 70 3.54 27.55 0.245 0.953
Ox 9 80 3.54 33.72 0.479 0.947
Ox 10 45 2.43 22.97 0.343 0.964
Ox 11 70 2.43 41.45 0.416 0.907
Ox 12 80 2.43 47.34 0.482 0.913
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additional generation of HO· radicals [53]. No scavenging 
effect of HO· was observed by H2O2 in all the studied range.

A set of experiments were carried out to determine the 
effect of catalyst load in the heterogeneous system. The 
surface rate constant (ksuf) can be obtained from the ratio 
between the apparent rate constant for the minutes stage 
(kms) and the surface area of the catalyst [52].

Where:
“SAv” is the catalyst surface area (m2/L).
“SA” is the specific surface area (m2/g).
“CCu” is the copper content.
The values of kms were proportional to copper oxide con-

centrations in the reaction mixture and increased linearly 
with the increase of catalyst concentration: ims: 5.39 10−04 
for 0.1 g/L; kms: 6.76 10−04 for 0.3 g/L; and kms: 6.76 10−04 
for 0.5 g/L. Final TOC as function of the amount of catalyst 
at 70 °C and H2O2 over-stoichiometric II concentration (as 
defined in II) correspond to: 379.9 mg/L, 359.0 mg/L, and 
336.7 mg/L, respectively.

The long-term stability was analyzed in a series of five 
consecutive reactions, without thermal treatment between 

(10)ksuf =
kms

SAv

(11)SAv = SA ∗ CCu

reactions (performed at 70 °C and over-stoichiometric II 
concentration of H2O2). The catalysts used were filtered 
from the reaction medium (at the working temperature to 
prevent re-adsorption of compounds) and dried at room tem-
perature during 24 h. TOC and H2O2 concentration (in % 
of reduction) at the end of each catalytic test can be seen in 
Fig. 8. Throughout the five cycles of oxidative treatment, a 
small induction phase was observed, which was more notice-
able during the consecutive treatments. According to Fig. 8, 

Fig. 7   Parity plot for TOC in the “minutes stage”. The bars correspond to the experimental values, and the dotted lines correspond to the values 
calculated with the model

Fig. 8   TOC reduction and H2O2 consumed in five consecutive oxida-
tion cycles
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the catalyst remains catalytically active, with respect to the 
elimination of TOC and the efficient consumption of the 
oxidizing agent.

TOC reduction by homogeneous oxidations

In homogeneous catalysis, the catalyst is the same phase that 
the organic matter to oxidize. In these systems, the highest 
possible conversion of TOC can be found. Homogeneous 
and heterogeneous oxidation rates and activation energies 

were then compared to see the efficiency of the studied het-
erogeneous system.

As in heterogeneous oxidations, the variation of total 
organic carbon versus time can be divided into two stages: 
the first, in which TOC decreases abruptly (from 0 up to 
0.1 min of reaction), and the second, in which it decreases 
smoothly (from 0.1 min until the end of reaction time). The 
time-concentration curves for the second stage were fitted to 
a pseudo first-order kinetic model. Several authors have also 
found a “two-step” kinetic in the homogeneous oxidation of 
real effluent streams (a fast first stage followed by a slower 
second stage) [49], [44].

Activation energy in homogeneous experiments resulted 
to be 15.13 kJmol−1 (R2: 0.985). From the comparison of 
heterogeneous and homogeneous catalytic oxidations (see 
Fig. 9 and Table 3), it was confirmed that the reaction rate of 
heterogeneous oxidations was lower than that observed for 
the homogeneous ones, whereas the activation energy was 
higher, with the concomitant lower TOC conversion values. 
The results agree with those obtained by other authors [26], 
[54–56] and may be due to the reduced accessibility of H2O2 
to copper, as the active phase is supported on γ-Al2O3.

Estimation of TOC reduction by adsorption

Adsorption experiences were accomplished to verify possi-
ble adsorption contributions during the oxidation reactions. 
The adsorption of the simulated effluent components onto 
the CuO/γ-Al2O3 catalyst was evaluated by analyzing the 
system behavior at different pH and temperatures in absence 
of H2O2.

A set of experiments were carried out at 70 °C to analyze 
the relationship between the system pH and the adsorption 
of organic compounds over γ-Al2O3 (see Table 4). Trials 
were made as a function of the point of zero charge (PZC) of 
γ-Al2O3 (7-9), corresponding to the pH at which its surface 
is neutral [57], [58]. The pH of the experiments was con-
trolled by adding H2SO4 or NaOH to the reaction volume; 
since γ-Al2O3 tends to dissolve in strong systems (either 

Fig. 9   Heterogeneous vs. Homogeneous oxidations (100 ppm of cop-
per supported on γ-Al2O3 and in solution respectively, over-stoichio-
metric II doses of H2O2 in all trials)

Table 4   TOC reduction after 
240 min of reaction and 
experimental kinetic constants 
for the adsorption reactions

a kads in (1/min)
b q in mg/m2

Trial Temp (°C) PH (%) TOC Red ka
ads R2 qb

Ads 1 70 3 20.78 – – 105.882
Ads 2 70 5 12.14 – – 61.882
Ads 3 70 7 (Uncontrolled) 9.49 4,18E−04 0.986 48.352
Ads 4 70 8 0.48 – – 2.470
Ads 5 70 10 2.86 – – 14.588
Ads 6 45 7 (Uncontrolled) 11.06 5,09E−04 0.966 56.352
Ads 7 80 7 (Uncontrolled) 9.12 3,87E−04 0.968 46.470
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acidic or basic), these trials were performed within a pH 
range that was kept between 3 and 10.

At pH values lower or higher than the PZC, the surface is 
increasingly protonated or deprotonated, respectively [59]. 
Because negligible adsorption over the catalyst was verified 
at pH 8 it can be presumed that this pH value might cor-
respond to the PZC of CuO/ γ-Al2O3 system (see Table 4). 
Nevertheless, when initial pH was adjusted to 3 TOC reduc-
tion was higher than at pH 7. When initial pH increased to 7, 
the adsorption performances exhibit a continuous decreasing 
tendency along with the rise of pH, probably due to electro-
static attraction (Table 4) [60]. The spent liquor from the 
alkaline treatment of wood behaves as an anionic stream, 
which is easily adsorbed on the active sites of the alumina 
surface, highly protonated at low pH [61]. On the contrary, 
the adsorption is less favored at high pH because of the great 
amount of OH- ions in alumina surface [62]. In this condi-
tions, more active sites at the surface are available for the 
catalyzed decomposition of H2O2 [63]. As oxidation trials 
in this study were carried out at near neutral pH, adsorption 
by pH effect can be considered as negligible.

The effect of temperature on the adsorption of organic 
matter of the simulated effluent onto the CuO/γ-Al2O3 sys-
tem was studied by carrying out temperature-controlled 
experiments (45, 70 and 80 °C). The percentage of TOC 
removal decreased with increasing temperature (Table 4), 
evidencing an exothermic process [64], [65]. Some authors 
argue that molecules tend to pass from the solid phase to the 
bulk phase when increasing temperature [66]. The amount 
of adsorbed compounds increased during the 240 min of 
reaction (no plateau was observed), so saturation of catalyst 
surface was not reached under the studied conditions.

The amount of adsorbed organic compounds (q, mg/m2) 
was calculated by the equation:

Where TOCo is the initial concentration of total organic 
carbon in solution, TOC (mg/L) is the concentration at a 
specific time and V (L) is the volume of reaction (Table 4). 
The time-concentration curves for the adsorption experi-
ments were fitted to a pseudo first-order kinetic model. The 
magnitude of the activation energy indicates whether the 
adsorption is mainly physical (5–40 kJ/mol) or chemical 
(40–800 kJ/mol) [67], [68]. TOC depletion due to adsorption 
processes was best described by a pseudo first-order kinetic 
model and the activation energy resulted to be 7.32 kJ/mol 
(R2: 0.941), which confirms the nature of physisorption onto 
the CuO/ γ-Al2O3 surface.

Oxidation experiments were carried out assuming that 
TOC decreased only by an oxidation mechanism, that is, 
without considering an eventual adsorption of organic 

(12)q =

(

TOC0 − TOC
)

∗ V

CCu ∗ SA

compounds on the catalyst. The veracity of this assump-
tion was assessed by the thermogravimetric characteriza-
tion of catalysts from all trials. The TGA profiles (Fig. 10) 
showed two main steps: the release of pre-adsorbed water 
(near 150 °C) and the loss of reversible carbonaceous depos-
its (near 500 °C) [69]. In case of oxidations trials (Ox 1 
to Ox 9), a mass loss of nearly 1% was registered (in the 
range of 400–600 °C). Thermogravimetric curves show an 
increase in mass loss according to the experimental condi-
tions described previously.

Catalysts used in all adsorption trials were character-
ized by FTIR to determine the nature of adsorbed organic 

Fig. 10   TG curves for used catalysts in the oxidation trials

Fig. 11   FTIR spectra of CuO/γ-Al2O3 catalyst, used in adsorption tri-
als
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compounds (see Fig. 11). The shoulder at 833 cm−1 indi-
cates the presence of γ-Al2O3 [70]. Bands around 1618 cm−1 
are probably due to the combination of aromatic C=C and 
conjugated carbonyl C=O stretching [51]. The amount of 
adsorbed compounds decreases as the pH increases, which is 
evidenced by the reduction in the intensity of the bands. This 
effect agrees with results presented in Table 4 (Ads 1 to Ads 
5). Temperature effect over the amount adsorbed compounds 
onto the catalyst (Ads 3, 6 and 7) was in accordance with 
the experimental conditions described previously. Bands 
around 2300 cm−1 correspond to CO2 due to atmospheric 
carbon dioxide that could be removed from the spectra [71]. 
Samples after calcination present O–H stretching vibration 
evidenced by the bands around 3430 cm−1 representing a 
strong hydrophilicity [60].

Based on these results, adsorption effects over the CuO/ 
γ-Al2O3 surface cannot be neglected. Important differences 
are observed between these results and those of the control 
trials as shown in Table 4. This difference in the results of 
the adsorption test corresponds to differences in a number 
of compounds adsorbed on the surface of the catalyst, before 
and after impregnation of the active phase [28]. Several 
authors attribute this high amount of organic adsorbed com-
pounds onto the active phase/ γ-Al2O3 system to the crystal-
line structure of the active phase (dependent on the impreg-
nated copper load and the calcination temperature), which 
could exhibit vacant, to accommodate neutral molecules or 
compounds with anionic characteristics, while γ-Al2O3 has 
a virtually zero adsorption capacity [72].

Conclusions

A two-step kinetic model was applied to TOC reduction in 
heterogeneous and homogeneous oxidations, admitting two 
sequential steps of oxidation, a first fast stage (“seconds 
stage”) followed by a slow one (“minutes stages”).

The heterogeneous oxidation process was evaluated by 
examining temperature and catalyst loading. Temperature 
affected dramatically the reaction and the kinetics constant 
increased linearly with the increase of catalyst load. The 
oxidation rate in the “minutes stage” can be described by a 
pseudo-zero order kinetics and the activation energy resulted 
to be 33.17 kJ/mol.

TOC conversions and reaction rates of homogeneous 
oxidations were higher than those observed for the hetero-
geneous reactions, confirming mass transfer limitation. The 
homogeneous oxidation rate for the “minutes stage” was fit-
ted to a pseudo first-order kinetic model and the activation 
energy resulted 15.13 kJ/mol.

The simulated effluent from the alkaline treatment of 
wood behaves as an anionic stream, with an easy adsorp-
tion to the active sites of alumina surface at lower pH. 

Adsorption of organic compounds onto CuO/ γ-Al2O3, of 
physical nature and exothermic, cannot be neglected. It was 
best described by a pseudo first order kinetic model with an 
activation energy of 7.32 kJ/mol.
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