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Abstract:
A modified Rayleigh-Taylor (RT) instability equation is derived using a three-fluid Hall thruster plasma model by including
multi-ionized ions to study the growth rate of the RT instability. For a simplified plasma density and electron drift velocity
axial profile, the growth rate for an unstable wave and the condition leading to this instability are discussed. A possible
analytical solution for the modified Rayleigh-Taylor equation is discussed along with the condition that leads to it. For
double-ionized ions, the behavior of growth rate and perturbed potential for different densities of double-ionized ions are
studied.
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1. Introduction

Hall thrusters are the electric propulsion systems that fall
among the most promising electric propulsion devices due
to their high specific impulse, zero limitation on ion current
density, higher efficiency, and longer operating time [1].
Electric thruster takes less power to operate, and this can
be achieved by solar energy. These devices are relatively
smaller than the conventional rocket engines and use less
fuel. The Hall thrusters can attain very high speed in space
(provided continuous operation for a long time), making
them ideal for space applications and a valid candidate for
interplanetary travel. These electric thrusters are known to
provide the thrust of the order of mN to 1N, which is not
much, but their continuous operation for a longer period is
enough for the satellite adjustment in outer space.
An axial electric field from a grided anode toward a heated
cathode and a radial magnetic field in an annular channel are
the main elements of a Hall thruster or closed drift thruster
(Fig. 1). The applied radial magnetic field and the axial elec-
tric field cause the electrons coming from the cathode to be
trapped and drift in the azimuthal direction (thus, the name
close drift thruster). These azimuthally drifting electrons
collide with the neutral gas atoms injected from the anode,
generating plasma. Heavy and unmagnetized ions acceler-

ate toward the cathode by the axial electric field while the
electrons stay trapped by the magnetic field. These acceler-
ated ions get neutralized by the heated cathode so that they
are not pulled back and keep on producing the thrust [1, 2].
The oscillations and instabilities inside the Hall thruster
plasma affect the electron transport, their energy transport,
wall erosion rate, and plasma plume (directly the thrust); in
other words, they affect the efficiency of the Hall thruster
and reduce its lifespan [3]. The main reason for these in-
stabilities and oscillations are different drift velocities of
electrons and ions, density gradient, and nonuniformity
of the magnetic field [2]. In the past years, several stud-
ies have been done regarding various Hall thruster plasma
modeling, magnetic configuration, plasma plume, electron
transport, and instabilities, both theoretically and experi-
mentally [4, 5].
Inside the thruster channel, the plasma is formed at the
ionization front of trapped electrons, generating a density
gradient in the system. The radial magnetic field holds this
density gradient. As the system is in the state of higher
potential energy, any fluctuations in the density gradient
will grow in such a way that the system goes into rel-
atively lower potential energy. Thus, any fluctuation in
the axial density gradient will grow into instability, called
Rayleigh-Taylor instability. Litvak and Fisch have stud-
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Figure 1. Schematic representation of Hall Thruster, show-
ing the inner and outer walls of the acceleration channel and
the electric and magnetic fields.

ied the gradient-driven Rayleigh-Taylor instability (of MHz
range) in a Hall thruster by neglecting the temperature of
electrons and ions and found a special case solution using
a step-like profile of the plasma parameters [6]. The tem-
perature of the electrons inside a Hall thruster operating at
a discharge voltage of 300 V is high enough to multi-ionize
the neutral Xenon gas atoms [7]. Also, an increased den-
sity of multi-ionized ions leading to a lower wall erosion
rate has been observed by Kim et al. while studying the
magnetic field tailoring effect [3]. As the neutral Xenon
atoms are injected from the anode side, they collide with the
electrons drifting azimuthally and get ionized. On further
collisions with the electrons accelerating toward the anode,
multi-ionization of Xenon atoms takes place. Because ions
are heavy and unmagnetized, they help into breaking the
magnetic confinement of the electrons which fall in their
Debye sphere, reducing the density gradient. Since the De-
bye sphere of double-ionized ions has more charge in it,
these ions will reduce the density gradient even more. The
increased density of double-ionized ions inside the channel
also represents increased ionization, resulting in a lower
axial gradient in the density of electrons. These will reduce
the Rayleigh-Taylor instability growth rate. Thus, in this
article, a modified Rayleigh-Taylor instability is being stud-
ied while including the electron and ion temperatures in the
presence of ions with double-ionization using a three-fluid
plasma model. An analytical approach is used to get the
growth rate of the unstable wave along with the axial profile
of perturbating potential, which is also confirmed with the
help of numerical solution of the modified Rayleigh-Taylor
equation.

2. Mathematical model
To investigate the Rayleigh-Taylor instability present in a
Hall thruster plasma, a two-dimensional thruster model is
used by neglecting the azimuthal curvature and consider-
ing zero variations in thruster parameters along the radial
direction of the thruster channel. The accelerating electric
field E is taken along the x-axis and the radial magnetic
field B = B0ẑ along the z-axis to trap the electrons, giving
rise to an electron drift along the y-axis while the ions are
accelerated along the x-axis. In the current investigation, a
three-fluid plasma model comprising magnetized electrons,
unmagnetized singly ionized ions, and cold double-ionized

ions is used to investigate the instability corresponding to
azimuthally propagating wave. The effects of collisions are
not studied in the current investigation, and electrons and
ions are taken to have a uniform temperature while double-
ionized ions are considered to be cold as their accelerating
velocity are very high compared to their thermal velocity.
The motions of ions and electrons are governed by fluid
equations. The equations of motion and continuity equation
for the ions (singly and double-ionized) fluid are given by

∂vi

∂ t
+(vi.∇∇∇)vi =

eE
M

− ∇∇∇pi

Mni
(1)

∂ni

∂ t
+∇∇∇.(nivi) = 0 (2)

∂vzi

∂ t
+(vzi.∇∇∇)vzi =

2eE
M

(3)

∂nzi

∂ t
+∇∇∇.(nzivzi) = 0 (4)

Here, M is the mass of the ions (for both singly and double-
ionized), and z represents the level of ionization of the
multi-ionized ions.
To find the growth rate of the instability, a small perturbation
is added in the density, fluid velocity, and electric field and
see whether it grows or dies out with time. The unperturbed
fluid velocity for the electrons and the ions are along the
y- and x-axes, represented by u0 and vi0 (vzi0 for double-
ionized ions). After linearization, the Equations (1)-(4)
become

∂vi1

∂ t
+ vi0

∂vi1

∂x
=

−e∇∇∇φ1

M
− γikBTi∇∇∇(ni0 +ni1)

Mni0
(5)

∂ni1

∂ t
+ni0(∇∇∇.vi1)+ vi0

∂ni1

∂x
= 0 (6)

∂vzi1

∂ t
+ vzi0

∂vzi1

∂x
=

−2e∇∇∇φ1

M
(7)

∂nzi1

∂ t
+nzi0(∇∇∇.vzi1)+ vzi0

∂nzi1

∂x
= 0 (8)

Here γi, called the heat capacity ratio, is the ratio of heat
capacity at constant pressure to the heat capacity at con-
stant volume for ion fluids as they are considered to be
monoatomic particles in a two-dimensional space and kB is
the Boltzmann constant. The terms with subscript 0 repre-
sent the unperturbed quantity, and those with subscript 1 rep-
resent the perturbed quantity. The electric field can be rep-
resented in the form of electrostatic potential as E =−∇∇∇φ .
And a small perturbation in the potential is represented as
φ = φ0 +φ1, where φ0 represents the unperturbed potential
which is 0. Let these perturbing quantities have a sinusoidal
form of

A1 = A0e(iωt−ikyy). (9)

Here ω and ky are the frequency of the perturbating wave
and its wave number. After solving Equations (5) and (7)
for the ion’s velocity with the help of Equation (9) and
using those expressions in Equations (6) and (8), the ion’s
perturbed densities are obtained as

ni1 =
eni0

Mω2 − γiTik2
y

(
k2

yφ1 −
∂ 2φ1

∂x2 − γikBTi

eni0

∂ 2ni0

∂x2

)
(10)
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nzi1 =
zenzi0

Mω2

(
k2

yφ1 −
∂ 2φ1

∂x2

)
(11)

Now, the fluid equations for the magnetized electrons are
given by

∂ue

∂ t
+(ue.∇∇∇)ue =− e

m
(E+ue ×B)− ∇∇∇pe

mne
(12)

∂ne

∂ t
+∇∇∇.(neue) = 0 (13)

Here ue and ne are the electron fluid velocity and density,
and m is the electron’s mass. The unperturbed electron drift
velocity u0 depends on the magnetic field profile; thus, it
has an axial profile as the magnetic field. After linearization,
Equations (12) and (13) are transformed to

∂ue1

∂ t
+u0

∂ue1

∂y
+ue1x

∂u0

∂x
=− e

m
(−∇∇∇φ1 +ue1 ×B)−

γekBTe∇∇∇(ne0 +ne1)

mne0
(14)

∂ne1

∂ t
+ne0(∇∇∇.ue1)+

∂ne0

∂x
ue1x +u0

∂ne1

∂y
= 0 (15)

Here, γe is the specific heat ratio for the electron fluid. We
get the x− and y− components of the electrons’ fluid ve-
locity after using the condition Ω ≫ ω , kyu0, ∂u0/∂x from
Equation (14) with the help of Equation (9). Here Ω =
eB0/m is the electron cyclotron frequency and u0 = |E0/B0|
is the electron drift velocity in the azimuthal direction.

u1x =
e

mΩ2

[
i(ω − kyu0)

∂φ1

∂x
+ ikyΩφ1 − ikyΩ

γekBTe

ene0
ne1−

i(ω − kyu0)
γekBTe

ene0

∂ne0

∂x
+ ikyφ1

∂u0

∂x
− iky

γekBTe

ene0

∂u0

∂x
ne1

]
(16)

u1y =
e

mΩ

(
∂φ1

∂x
− γekBTe

ene0

∂ne0

∂x
+

ky(ω − kyu0)φ1

Ω
−

ky(ω − kyu0)

Ω

γekBTe

ene0
ne1

)
(17)

Using Equations (16) and (17) in Equation (15), along with
Equation (9), the electron’s perturbed density is obtained as

ne1 =


ene0
mΩ2

[
(ω − kyu0)(k2

yφ1 − ∂ 2φ1
∂x2 )− kyξ (x)φ1

]
−

γekBTe
mΩ

[
ky

∂ne0
∂x − (ω−kyu0)

Ω

∂ 2ne0
∂x2

]


(ω − kyu0)

[
1+ γekBTeky

mΩ2(ω−kyu0)
(ky(ω − kyu0)−ξ (x))

]
(18)

where ξ (x) = ∂ 2u0/∂x2 +Ω/ne0(∂ne0/∂x).
Now, the perturbed ions, double-ionized ions, and electron
densities from Equations (10), (11), and (18) are used in
Poisson’s equation ∇2φ1 = e/ε0(ne1 − ni1 − 2nzi1). This

gives the following equation in the perturbated potential(
∂ 2φ1

∂x2 −k2
yφ1

)[
1+

ω2
pe

Ω2 (ω − kyu0)

(ω − kyu0)Q
−

ω2
pi

ω2 − v2
thik

2
y
−

ω2
pzi

ω2

]

+

ω2
pe

Ω2 kyξ (x)φ1 +
eu2

the
ε0Ω

[
ky

∂ne0
∂x − (ω−kyu0)

Ω

∂ 2ne0
∂x2

]
(ω − kyu0)Q

−
ω2

pi

(ω2 − v2
thik

2
y)

γikBTi

eni0

∂ 2ni0

∂x2 = 0, where

Q =

[
1+

γeTeky

mΩ2(ω − kyu0)
(ky(ω − kyu0)−ξ (x))

]
.

(19)

Here, ω2
pe = (ne0e2)/(ε0m), ω2

pi = (ni0e2)/(ε0M), and
ω2

pzi = (4nzi0e2)/(ε0m) are the plasma oscillation frequen-
cies for electrons, singly ionized and multi-ionized ions.
The thermal velocities of the electron and single-ionized
ions are given by u2

the = γekBTe/m and v2
thi = γikBTi/M.

3. Growth rate
Now, to get the dispersion relation of this azimuthal propa-
gating wave, the unperturbed part of Equation (19) is solved.
Thus, the following expression is needed to be solved for
the plasma wave modes and their growth rate.

e
ε0

u2
the
Ω

[
ky

∂ne0
∂x − (ω−kyu0)

Ω

∂ 2ne0
∂x2

]
(ω − kyu0)

[
1+ γekBTeky

mΩ2(ω−kyu0)
(ky(ω − kyu0)−ξ (x))

]
−

ω2
pi

(ω2 − v2
thik

2
y)

γikBTi

eni0

∂ 2ni0

∂x2 = 0

(20)

On simplifying Equation (20), the dispersion relation is
given by[

∂ 2ne0

∂x2

]
ω

3−
[

kyΩ
∂ne0

∂x
+ kyu0

∂ 2ne0

∂x2

]
ω

2+[
− ∂ 2ne0

∂x2 k2
yv2

thi + v2
thi

∂ 2ni0

∂x2

(
k2

y +
Ω2

u2
the

)]
ω+[

kyΩ
∂ne0

∂x
+ kyu0

∂ 2ne0

∂x2

]
k2

yv2
thi−

[
kyu0

(
k2

y +
Ω2

u2
the

)
+

ky(ξ (x))
]

v2
thi

∂ 2ni0

∂x2 = 0

(21)

Equation (21) is a third-degree polynomial that is solved
for the frequency ω which gives rise to three distinctive
solutions

a3ω
3 +a2ω

2 +a1ω +a0 = 0 (22)

where a3, a2, a1 and a0 are the coefficients of ω3, ω2, ω1

and ω0 respectively in the Equation (21). Equation (22)
is solved by eliminating the term containing ω2 and then
transforming it into a quadratic equation. This is done by
replacing ω with y− (a2/3a3), where y is a variable. It
gives

y3 +3py−2q = 0
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Now, replacing y with u− (p/u, where u is a new variable,
we get

(u3)2 −2q(u3)− p3 = 0

This equation has a solution u3 = q±
√

q2 + p3 and it is
further solved for all the three solutions, which are

ω1 =r
1
3 − pr−

1
3 − a2

3a3
,

ω2 =
1
2

(
− r

1
3 + pr−

1
3 − 2a2

3a3

)
+ i

√
3

2

(
r

1
3 + pr−

1
3

)
,

ω3 =
1
2

(
− r

1
3 + pr−

1
3 − 2a2

3a3

)
− i

√
3

2

(
r

1
3 + pr−

1
3

)
.

where p =
3a3a1 −a2

2

9a2
3

, q =
9a3a2a1 −27a2

3a0 −2a3
2

54a3
3

and r = q+
√

q2 + p3.

As we are interested in the unstable mode of plasma waves
and the solution of a third-degree polynomial will have
one real and two complex solutions only if the following
condition is met

q2 + p3 > 0 (23)

otherwise, all the solutions will be real. So, there will not be
any Rayleigh-Taylor instability present in the system unless
the condition stated in Equation (23) is achieved.
Here, it is observed that the frequency ω1 is real and ω2
and ω3 are complex. It is further observed that only ω3 =
(ωR − iωI) can provide an unstable plasma wave. Finally,
the growth rate of the Rayleigh-Taylor wave is given by

γ =
ωR

ωpi
=

√
3

2

(
r

1
3 + pr

1
3

)
ωpi

(24)

The dependency of the growth rate γ on various plasma
parameters can be given by Equation (24). The growth
rate comes out to be γ = 0.0264 for the plasma density of
1018/m3, radial magnetic field strength B of 0.021 T and
60% double-ionized ions, while the other parameters are
the same as of Figure 1 which are used in the Hall thruster
studies. If the magnetic field strength B is increased to 0.026
T, then the growth rate γ increases to 0.0399. The increased
gradient causes this increase in the growth rate, revealing
that it is the gradient driven Rayleigh-Taylor instability.
If the plasma density is decreased to 1017/m3 the growth
rate γ is increased to 0.0836; similar behaviour is seen on
decreasing the density of double-ionized ions to 20% for
which the growth rate is increased to 0.0305.

4. Rayleigh-Taylor instability
Now, for the unstable wave’s potential, the perturbed part of
Equation (19) is needed to be solved. From Equation (19),
the perturbed part is given as

∂ 2φ1

∂x2 − k2
yφ1+

(
kyξ (x)φ1

ω − kyu0 +
Ω2

ω2
pe

[
1−

ω2
pi

(ω2−v2
thik

2
y )
−

ω2
pzi

ω2

]
× 1[

ω − kyu0 +
u2

the
Ω2 ky[ky(ω − kyu0)−ξ (x)]

])= 0

(25)

This equation looks like the Rayleigh-Taylor instability
used in fluid dynamics [8]. The above equation reduces into
the Rayleigh-Taylor equation solved by Litvak and Fisch if
the plasma model is considered to be cold and having only
singly ionized [6].
For the density gradient driven Rayleigh-Taylor instability

to exist, the phase velocity of this azimuthally propagat-
ing wave should be the same as of the electron drift ve-
locity ωR = kyu0 and after one complete revolution in the
azimuthal direction it should be in phase with itself i.e.,
2πR = nλ . This can also be said that as there is periodicity
in the azimuthal direction [9], the azimuthal channel length,
i.e., the circumference of the thruster channel, should be
an integral multiple of the wavelength of the azimuthally
propagating plasma unstable wave (nλ = 2πR), restraining
wave number ky to attain only real value while the wave
frequency ω can be complex. By the Rayleigh theory from
fluid dynamics [8], the necessary condition for instability to
occur is to have an inflection between the boundary interval,
i.e., ξ (x0) = 0 should exist at some point between the anode
and the virtual cathode.
As we are interested in getting an analytical solution to the

Figure 2. Comparison of analytical and numerical results.

Figure 3. Weak dependence of growth rate (γ) on wave
number (ky) for two different ion temperatures (Ti).
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Figure 4. Perturbed potential (φ ) profile with axial distance
(x) along the channel length for two different electron tem-
peratures (Te).

Figure 5. Perturbed potential (φ ) profile with axial distance
(x) along the channel length for two different densities of
multi-ionized ions (nzi0).

above equation, we rearrange it as follows

∂ 2φ1

∂x2 − k2
yφ1+

( ky
ξ (x)

(ω−kyu0)
φ1

1+ Ω2

ω2
pe

[
1−

ω2
pi

(ω2−v2
thik

2
y )
−

ω2
pzi

ω2

]
× 1[

1+ u2
the

Ω2 ky[ky − ξ (x)
(ω−kyu0)

]

])= 0

(26)

Figure 4 shows the dependence of perturbed potential on
the electron temperature for the same plasma parameters
that are used in Figure 2, along with ky = 200/m and Ti = 1
eV. The above equation can’t be solved without the plasma
density and electron drift velocity profiles. Based on the
experimental observation, the plasma density is maximum
at the position where maximum ionization of Xenon atoms
takes place and electron drift velocity at the position of the
maximum applied magnetic field [2]. The axial profile of
the magnetic field, which confines the electrons, has a max-
imum in the acceleration region. These electrons are used
to ionize the neutral Xenon atoms, which are injected from
the anode creating plasma in the thruster’s channel. So, it
is appropriate to consider the plasma density and electron

drift velocity to have a Gaussian-like profile; a similar pro-
file has been shown by Adam et al. that also supports our
assumption [10]. But getting the exact profiles of density
and velocity, both theoretically and numerically, are very
complicated to calculate. So, for calculation purposes, we
have taken a Gaussian density and drift velocity as

ne0 = n0 max exp
(
−18(

x−0.03
d

)2
)

(27)

u0 = u0 max exp
(
−18(

x−0.035
d

)2
)

(28)

where n0 max and u0 max represent the maximum values of
the density and the velocity, respectively, and d is the chan-
nel length. The above expressions also consider that the
density distribution is such that the density reaches its max-
imum value slightly before the magnetic field profile or the
velocity profile, since mostly neutral atoms get ionized be-
fore reaching the maximum magnetic field region. Similar
distribution of the density and velocity have been shown
experimentally [10].
Now we analyse the function ξ (x)/(ω − kyu0) (Let’s say
χ = ξ (x)/(ω − kyu0)). If one compares the function
(1/φ1)∂φ1/∂x(∼ 102) with the help of experimental results
or numerical studies [11], to the function (1/χ)∂ χ/∂x(∼
10−2) with the help of density and velocity profiles con-
sidered in the current problem, it is observed that χ is a
slow varying function relative to the potential φ1. And if we
compare both the functions, it can be shown that

1
φ1

∂φ1

∂x
>

1
L
>

1
χ

∂ χ

∂x
(29)

Here L is the scale length of inhomogeneity. Thus, we can
consider the slowly varying quantities as constant compared
to the perturbed potential φ1. With this simplification, the
solution to Equation (26) can be written in the following
form

φ1 = 2C sinh
[(

k2
y −

kyχ

1+ Ω2

ω2
pe
[1−

ω2
pi

(ω2−v2
thik

2
y )
−

ω2
pzi

ω2 ]

× 1

[1+ u2
the

Ω2 ky(ky −χ)]

) 1
2
] (30)

using boundary conditions φ1(0) = φ1(xd) = 0, where xd is
the position of the virtual cathode. Here, C is a constant of
experimental fit.

5. Results
In order to verify the analytically obtained solution (30)
for the perturbation potential, Equation (26) is solved nu-
merically using initial values as φ1(0) = φ́1(0) = 0. The
perturbed potential so obtained is plotted in Figure 2, where
the potential profile obtained by the analytical approach is
also plotted. There is a good agreement between the two
profiles of the potential, verifying the correctness of our an-
alytical calculations. In this figure and also at other places
in the article (until specified), 60% ions are considered to
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Figure 6. Dependence of growth rate (γ) on the density of
double-ionized ions (nzi0) for two different channel lengths
(d).

be double-ionized and the plasma parameters are taken as
B0 = 200 G, d = 0.06 m, ky = 200/m, γe = γi = 2, Te = 25
eV, Ti = 1 eV, M = 2.17×10−25 kg, n0 max = 1018/m3, and
u0 max = 106 m/s. These parameters have been used in Hall
thruster studies and experimentally realized by Smirnov et
al. and are within an acceptable range [12–14].
The necessary condition for Rayleigh-Taylor instability
states that the function ξ (x) must have an inflection point
between the boundaries and if we observe the function ξ (x)
under current density and velocity profiles that are used in
this article, the inflection point is found to take place at
x = 0.0298 m. It is noticed that the function ξ (x) is neg-
ative before the inflection point and is positive after this
point. If we see its role in the perturbed potential profile
which is calculated using it as a slowly varying function, it
is seen that before the inflection point it helps increasing the
magnitude of the terms inside the hyperbolic function (be-
ing negative) and after that it reduces its magnitude (being
positive). This might be the cause of slight discrepancies
between analytical and numerical results.
Figure 3 shows the variation of the growth rate with the

wave number for two different ion temperatures for the same
plasma parameters, as used in Figure 2. Here this is evident
that initially, the growth rate increases with the wave num-
ber, and after achieving maximum value at a certain point,
it starts decreasing. This behaviour can be explained with
the help of the azimuthal drift of the electron fluid. The
Rayleigh theorem from fluid dynamics states that for this az-
imuthal propagating wave to be unstable, the fluid velocity
must be equal to the phase velocity along with the inflec-
tion point [8]. It means when ωR = kyu0, the growth rate
reaches its maximum value. The increased growth rate with
the increased ion temperature is because of the increased
pressure gradient term, which acts like the increased density
gradient.
The increased pressure gradient term in the electrons fluid
momentum equation will act as the increased density gradi-
ent term, thus resulting in an increased perturbed potential.
This result is consistence with the result obtained by Malik
and Singh [15] using a numerical approach to solve the

Rayleigh-Taylor equation and experimental results obtained
by Kusamoto et al. [16]. This is a point of mention that
the variation of perturbed potential for the density driven or
RT instability was not shown in the work of Hall thruster
plasmas [17–20] and E×B plasmas [21, 22], contrary to
the present investigation.
The axial profile of the perturbed potential and its depen-
dence on the densities of double-ionized ions is shown in
Figure 5. The plasma parameters used are the same as in
Figure 2. The increased density of double-ionized ions
results in a relatively smaller perturbed potential. It can
be explained with the help of the reduced restoring force
on the electrons due to the increased attractive force of
double-ionized ions, as the double-ionized ions attract more
electrons relative to the single-ionized ions. Since the ions
in the Hall thruster are unmagnetized, the double-ionized
ions help break the magnetic trapping of the electrons. That
means it reduces the density gradient of the electrons in the
channel of the thruster, resulting in a smaller perturbating
potential.
Figure 6 shows the behavior of the growth rate with the
density of double-ionized ions for two different thruster
channel lengths. As the density of double-ionized ions in-
creases, the growth rate decreases, and a relatively higher
growth rate is observed in a thruster with a smaller chan-
nel length. The increased density of double-ionized ions
reduces the density gradient, resulting in lower growth rates.
With the increased channel length also, the density gradi-
ent decreases, and because Rayleigh-Taylor instability is a
gradient-driven instability its growth rate decreases with the
reduced density gradient, i.e. with the increase of channel
length as well as the larger density of the double-ionized
ions.

6. Conclusion
An azimuthally propagating wave was discussed using a
three-fluid model consisting of electrons, single-ionized
ions, and double-ionized ions. For this azimuthal wave, an
unstable mode of frequency ω3 was obtained, and the neces-
sary condition (q2+ p3 > 0) for this instability was realized.
The condition (1/φ1(∂φ1/∂x) > 1/L > 1/χ(∂ χ/∂x))
enabled us to find the analytical solution of the modified
Rayleigh-Taylor equation with the consideration of slow
varying plasma parameters. Most of the results were
obtained by choosing the parameters of an SPT-100 Hall
thruster. The frequency of this unstable wave was found to
be of the order of 10 MHz and the phase velocity (ωR/ky)
turned out to be of the order of the electron drift velocity.
Larger concentration of double-ionized ions reduced the
growth rate and the perturbed potential.
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