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Abstract:
In addition to the fact that waves have been proven in different plasma environments, they have also been investigated
under different physical regimes. In this research, the propagation of electromagnetic waves in quantum semiconductor
plasma in the presence of a uniform external magnetic field was investigated using the quantum hydro magnetism model.
The researches that have been done so far about these waves have mostly been done in classical or relativistic regimes.
Some cases have been studied to study linear waves in quantum plasma, taking into account the quantum Bohm potential
without investigating the effect of the spin characteristics of plasma particles. In addition to the simultaneous study of spin
and quantum effects of semiconductor plasma components, exchange-correlation relationships have not been found in any
research, and the most important novelty of the present work can be considered the addition of these relationships together.
The obtained results show that the effects of quantum and external magnetic fields have a significant effect on the scattering
of hydromagnetic waves, which causes the appearance of nonlinear terms in the scattering relationship. By increasing
the linear part of the electron spin in the sputtering relation, some relations have been modified, including the Alfven
velocity. On the other hand, the effect of electron spin leads to the reduction of the effect of other quantum potentials on
the scattering of waves. In the end, some special states of classical and quantum systems are also discussed. Considering
the limit states, the results of the present work are exactly similar to the results of other researchers, and this can be a
self-confirmation of the obtained results.
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1. Introduction

Plasma is a collection of charged particles, which is re-
garded as a multi-particle system from a statistical point of
view. Charged plasma particles can interact with each other
due to the electrostatic potential with a range longer than
the average distance between particles, so the correlation
between plasma particles cannot be ignored [1–3]. Charge
carriers in semiconductors form a plasma that exhibits col-
lective self-behavior like gas plasmas. In the last three
decades, much research has been conducted concerning
the excitation of linear and nonlinear waves and their in-
stabilities in solid-state plasmas. In physical environments,
quantum effects become effective if plasma particles’ wave-

length is comparable to the plasma’s spatial scale [4]. In
general, in environments where the density of carriers is
relatively high and the temperature is low, the presence of
quantum phenomena in the dynamic behavior of plasma
is inevitable [5–7]. In addition, in semiconductor plasmas,
the wavelength of the charge carriers is comparable to the
longitudinal characteristics of the system, such as the in-
terparticle distance or Winger radius, and the environment
can be considered quantum [8]. On the other hand, most
of the recent studies with quantum models show significant
changes in the linear and nonlinear electrodynamic prop-
erties of semiconductor systems compared to the classical
model [9].
In previous research and many other similar works, most
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of the classical aspects of plasma particles have been con-
sidered and quantum effects have not been considered. On
the other hand, in recent years, the influence of the quantum
aspects of particles on the behavior of plasma environments
has been noticed and has taken a considerable part of the
studies [10, 11]. In many cases, considering the quantum
aspects of plasma particles changes the relations and results
of various analytical calculations compared to the classi-
cal state [12]. After analytical calculations, numerical and
graphical estimates determine the importance and effect of
quantum corrections compared to the numerical results of
the classical mode. The reason for paying attention and deal-
ing with these calculations is the possibility of influencing
and relating them to developments, and emerging fields in
physical systems such as ultra-fine electronic devices, semi-
conductor devices, quantum dots, carbon nanotubes, mi-
croplasmas, dense astrophysical systems, etc. On the other
hand, the study of waves and instabilities in quantum plasma
to understand collective behaviors in intense laser-plasma
interactions; Microelectronic devices, and metallic nanos-
tructures are of fundamental importance [13–15]. In the
1960s, for the first time, discussions about quantum plasma
were raised by Pines in physical regimes with high density
and low temperature [16–19]. Taniuti and Washimi investi-
gated the instability of nonlinear hydromagnetic waves in
cold plasma based on a nonlinear dispersion equation [20].
Mushtaq et al. using the QMHD model, Qamar studied the
magnetic waves in the electron-ion Fermi plasma. In the
linear approximation, the effect of quantum corrections for
fast and slow magnetic waves is discussed and it is found
that the results obtained for quantum plasmas are signifi-
cantly different from classical e-i plasmas [21]. Hussain et
al. studied nonlinear magneto-acoustic waves in a homo-
geneous and non-collision magnetic quantum plasma and
in his research investigated the effects of plasma density
and magnetic field intensity on individual magneto acoustic
structures in quantum plasma [22].
The first researches conducted in the field of quantum semi-
conductor plasmas go back to 2010, but the research related
to understanding the behavior and characteristics of waves
in these plasmas is limited. The quantum hydrodynamic
model has been widely used to study the diffusion charac-
teristics in quantum plasma systems [23, 24]. In research
using the quantum hydrodynamics model, the linear charac-
teristics of the longitudinal electrokinetic wave in a quan-
tum semiconductor plasma were investigated and analyzed.
Also, the propagation characteristics of electrokinetic meth-
ods in classical and quantum processes have been evaluated.
Others have investigated the excitation of helicon waves in
a quantum semiconductor plasma for current carriers [25].
In dense quantum plasma systems that contain a large num-
ber of electrons, the interaction between electrons can be
separated into two parts, one of which arises from the elec-
trostatic potential (Hartree theorem), and the other is known
as the electron exchange effect [26]. The electron exchange
effect is a complex function of the electron density and is
obtained through the local density approximation. Jung et al.
investigated the effect of electron exchange potential on the
charge-trapping process in degenerate quantum plasma [27].

In fact, the electron-hole (e-h) plasma represents the core
to understanding the properties of several types of semi-
conductor devices, which has also already been used in
designing high-power semiconductor devices, such as su-
perluminescent diodes (SLEDs), There are many reports
about this such as: Zang et al. investigated the low thermal
resistance of high power superluminescence diodes (SLED)
using active multimode interferometer (active-MMI) [28].
Zeba et al. studied the electron-hole two-stream instabil-
ity in a quantum semiconductor plasma and showed that
considering the phonon susceptibility allows for the acous-
tic mode to exist, and the collisional instability arises in
combination with hole drift [29]. Yahia et al. investigated
wave propagation in GaAs semiconductor and showed that
the propagation modes are unstable and strongly depend on
electron beam parameters as well as quantum recoil effects
and depletion pressures [30].
In the discussion of plasma waves, hydromagnetic waves are
one of the most important categories. The existence of these
waves has been proven in different plasma environments
and has been investigated under different physical regimes.
The research that has been done so far on these waves has
mostly been done in classical or relativistic regimes. In
many cases, a part of the quantum plasma components and
a classical part have been considered, or the characteristic
effect of the spin of plasma particles has been neglected.
Investigations show that previous studies on semiconduc-
tor plasma lack a case where the effects of electron spin
and Quantum forces due to fluctuations in the density of
electrons and holes should be considered simultaneously.
Therefore, in the present work, by using the modified quan-
tum hydromagnetic equations, first by considering the spin
of electrons and also by considering the quantum potential
of electrons and holes forming the plasma, the propaga-
tion of these waves in semi-conducting plasma, including
hole-electrons isothermal has been studied. Electrons are
assumed to obey Fermi-Dirac statistics with magnetic spin
energy and other quantum effects such as Bohm’s quantum
potential. The holes are also assumed to be quantum and
the quantum Bohm potential is considered for them. It has
been tried to obtain a more general relationship for spraying
under the influence of all mentioned quantum effects by
using the generalized equations of quantum fluid and to
discuss and investigate the propagation of hydromagnetic
waves in different states of the environment with an external
magnetic field. And in the final part, numerical analysis is
done. And the result of the research will be presented.

2. Basic equations
Using the equations of motion for the network and the
equations of the quantum hydrodynamic model (QHD)
for plasma, the wave scattering relation is obtained. The
Schrodinger-Poisson model describes the hydrodynamic
behavior of plasma components on a quantum scale. The
study of quantum kinetic behavior in plasma is also pos-
sible with the Wigner-Poisson model. The QHD model is
obtained by considering the velocity torques in the Wigner
relations [31]. In fact, the QHD model is the equivalent of
the classical fluid for plasma, which is more complete with
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the quantum correction term (such as the Bohm potential).
In this model, the quantum statistical effect is also consid-
ered through the equations of state. The set of equations
that describe the dynamic behavior of electrons and holes
in magnetic quantum semiconductor plasma are [12]:

∂nα j

∂ t
+n j0∇∇∇ ·Vα j = 0 (1)

where the index j refers to electrons (e) or holes (h). An-
other important equation is the modified Euler equation for
plasma particles and is written as follows:

m∗
jnα j

dVα j

dt
= FL +FP +FQ +FS +FE (2)

This equation is the equation of motion of semiconductor
plasma components (electrons and holes) [1]. q j, m∗

j and
nα j are the charge, effective mass and equilibrium den-
sity of the jth plasma component, respectively. The first
term on the right side of Equation 2 refers to the Lorentz
force due to the electrostatic potential plus the effect of
the external magnetic field (−q j∇ϕ + q jVα j ×B0). The
second term is the force due to the Fermi pressure, where
it is assumed that the semiconductor plasma components
obey the Fermi state equation. Therefore, the term related
to the Fermi pressure is defined as Pj = (m∗

jV
2
F j/3n2

j0)n
3
α j,

where V 2
F j = 2KBTF j/m∗

j is the Fermi velocity of the jth
component of the plasma. The third term describes the phe-
nomenon of quantum tunneling through the Bohm poten-
tial such that Vq j =−(k2/2m∗

j)∇
2√nα j/

√nα j. The fourth
term of the spin magnetization force is caused by the spin
interaction with the external magnetic field, which is very
important in highly magnetic and dense environments. On
the other hand, the quantum term caused by density fluc-
tuations is important in all dense and semi-dense quantum
plasmas (semiconductors), magnetic and non-magnetic en-
vironments, cold and hot plasmas. Also, in this regard,
electron spin is considered a constant physical quantity
and is not a dynamic variable. Therefore, spin plays the
role of the spin magnetization force in the equation of
motion (it is used from all nonlinear terms of spin) and
µ j = eh̄/2m∗

j represents the Bohr magneton. The last sen-
tence also refers to the quantum exchange correlation. In re-
lation dV/dt = ∂V/∂ t +(V ·∇)V , where ∂V/∂ t is change
of velocity with time and (V ·∇)V is convective time. In
this research, the velocities of both types of particles in
the equilibrium state were considered zero (Ve0 =Vh0 = 0),
and we consider the equilibrium density as ne0 = nh0 = n0.
In order to linearize the sentences in the above relation-
ship, we consider the quantity ξ , which represents each
of the physical quantities (B, E, Vα , and nα ). The above
quantity includes an equilibrium part (ξ0) and a very small
fluctuating part (ξ1). Considering the fluctuating part as
ξ1 = ξ1 exp i(ky−ωt), form of Equation 2 and Poisson’s

equation will be:

m∗
jnα j

∂Vα j

∂ t
=q jnα j(E +Vα j ×B0)−

1
3

V 2
Fα jm

∗
j∇nα j−

k2

4m∗
j
∇

[
1

√nα j
∇

2√nα j

]
−

2µ jnα j

h̄
∇(B0,Sα j)−2

4
3 q2

j

√
3
π

3
√

nα j(∇nα j)

(3)

∇
2
ϕ = 4πe(nh −ne) (4)

The velocities of each species of particles in the equilibrium
state are considered zero (Vj0 = 0). In addition to continuity
and motion equations, to describe electromagnetic waves,
we mention Maxwell’s equations as follows:

∇×E1 =− ∂B1

∂ t
,

∇ ·E1 =4πe(nh −ne)

(5)

∇×B1 =µ0ε0
∂E1

∂ t
−4πe(ne0Ve −nh0Vh)+ JM j,

∇ ·B1 =0
(6)

The last term of this relationship contains the total current
density JM j = −∇× (2n jµ jS/h), where the spin magneti-
zation current density results from the spin interaction with
the external magnetic field and S is the spin vector.

3. Numerical analysis
In order to study the propagation characteristics of waves
that can propagate at the boundary between a semicon-
ducting quantum plasma piece and under the influence of
quantum forces such as the force caused by the Boehm po-
tential and the exchange interaction potential, we consider
semiconducting quantum plasma consisting of electrons and
holes, which is limited between planes X = 0 and X = L
according to the Figure 1, and is exposed to an external and
uniform magnetic field B0 applied in a direction parallel to
this boundary surface.
It is assumed that the plasma is anisotropic and exposed

to the external magnetic field B0. Also, assuming that the
range of fluctuations is small, we can analyze the system
by linearizing the equations governing the environment. To
analyze the dispersion of the system, we use first-order
disturbance coefficients corresponding to exp i(ky − ωt).
Therefore, with the Fourier transform, the disturbed mag-
netic field is obtained from Equation 5 as B1 =−(kE1/ω)ẑ.
According to the continuity equation, the disorder density
of plasma particles takes the following form:

nα j =
n j0k
ω

ŷ ·Vj1 (7)

In the continuation of the calculations, by substituting the ve-
locity components of the plasma particles from the modified
Euler equations as well as the magnetizing current density,
we obtain a kind of general sputtering relation. Therefore,
in the next step, we determine the spin equilibrium shape.
Therefore, when the external magnetic field is considered
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Figure 1. Geometrical structure of semiconductor plasma.

as (B0 = B0y,B0z), the zeroth order of magnetization (MS0)
caused by spin is written as follows [12].

MS0 = n0µBη

(
µBB0

KBTFe

)
B̂ (8)

In which, for simplicity, the Brillouin function due to
the magnetization of a spin distribution in thermodynamic
equilibrium is introduced as η(α) = tanh(α). Here α =
(µBB0/KBTFe), and TFe = (3π2ne)

(2/3)h̄2/(2KBme) is the
Fermi temperature of electrons in the temperature of the
plasma. In general, spin magnetization MS and spin vector
S are related as follows:

S =
h̄MS

2neµB
(9)

In this case, the zeroth order of the spin vector is ob-
tained from the combination of Eqs. 9 and 10 in the
form of S0 = −(h̄/2)η(α)(cosθ ŷ + sinθ ẑ). By replac-
ing S0 and n j1, the spin magnetization current is obtained
JM j = (iµ jη(α)n j0k2Vα j sinθ x̂)/ω . On the other hand, by
applying the Fourier transform to Euler’s equation, we will
have 3:

−iωm∗
jn j0Vj1 =q jn j0(E +Vj1 ×B0)−

i
3

V 2
Fα jm

∗
jn j1kŷ−

ik2

4m∗
j
k3n j1ŷ+ iη(α)n j0B1k sinθ ŷ−

i2
4
3 q2

j

√
3
π

n
4
3
j1ŷ

(10)

In the following, the required speed components of the
particles are obtained from the Equation 10 for electrons
and holes as follows:

V1 jx =

(
ω2(1−β j)

ω2(1−β j)−ω2
c j +ω2

c j cos2 θβ j

)
[(

−ie
ωm∗

j
Ex

)
−
(

iωc jη(α)k2µ j sin2
θ

m∗
jω(1−β j)ω2 Ex

)] (11)

and

V1y j =
η(α)k2µ j sinθ

m∗
j(1−β j)ω2 Ex+[

iωc j sinθ

ω(1−β j)

(
−ie
ωm∗

j
Ex

)
−
(

iωc jη(α)k2µ j sin2
θ

m∗
jω(1−β j)ω2 Ex

)]
[

ω2(1−β j)

ω2(1−β j)−ω2
c j +ω2

c j cos2 θβ j

]
(12)

In these relationships, the following definition is used for
simplification:

β j =

(V 2
F j

3
+

k2k2

4m2
j
−2

4
3

3

√
3
π

q2
j

m∗
j
n

1
3
j0

)
,

ωc j =
q jB0

m∗
j
, and

ωp j =

√√√√q2
jn j0

ε0m∗
j

(13)

By placing the obtained velocities 11 and 12 in the Equation
8, the general sprinkling relation is obtained as follows:

ω
2 − c2k2 =ω

2
p j

[
1+

2ωc jη(α)µ jk2 sin2
θ

q j(1−β j)ω2 +

η2(α)µ2
j k4 sin2

θ

q2
j(1−β j)ω2

(
1−

ω2
c j

ω2 cos2
θ

)]
×[

ω2(1−β j)

ω2(1−β j)−ω2
c j +ω2

c j cos2 θβ j

]
(14)

This relation shows the scattering of hydromagnetic waves
in degenerate semiconductor plasma and in the presence of
quantum effects caused by the quantum Bohm potential, the
electron spin effect, and the exchange correlation. In the
next section, it will be shown that the special states of this
equation will include known relationships and results.
To check the effect of dielectric in sputtering relationships,
it is enough to enter ε in Equation 15:

k =
ω

c

[
ε −ω

2
p j −

2ω2
p jωc jη(α)µ jk2 sin2

θ

q j(1−β j)ω2 +

ω2
p jη

2(α)µ2
j k4 sin2

θ

q2
j(1−β j)ω2

(
1−

ω2
c j

ω2 cos2
θ

)] 1
2
×

[
ω2

p jω
2(1−β j)

ω2(1−β j)−ω2
c j +ω2

c j cos2 θβ j

] 1
2

(15)

in this relation, ε is the dielectric constant of the system.

4. Discussion and review
Equation 15 has a relatively complex form and the influence
of various factors is obvious in it. In the following, its
different modes will be examined.
a) Spin electron-hole plasma
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Figure 2. The presence (solid line) and absence (dashed line)
of the spin magnetization effect in the relation of hydromag-
netic wave scattering are shown.

We assume that there are no additional charged particles in
the plasma environment, so for perpendicular propagation
(θ = π/2) Equation 15 is reduced as follows:

ω
2 =

c2k2

V 2
jA + c2 [V

2
jA +V 2

Fα j +
k2k2

4m2
j
(2−η

2(α))− γ jω
2
p j],

γ j =
3

√
3

(2π2)2 (n
− 2

3
j0 )

(16)

In this equation, V 2
jA = B0/

√
µ jn j0m j is the Alfven speed.

Equation 16 shows the quantum and modified form of spin
for the scattering relationship of semiconductor hydromag-
netic waves, the term related to spin appeared in the last
sentence on the right side. As it is evident from Equation 16,
the quantum effects caused by the drop in the density with
a positive sign increase the scattering, so that the effect of
spin magnetization shows a decreasing contribution to the
scattering of these waves, contrary to the terms of quantum
diffraction. Here, c represents the speed of light, and the
quantum correction caused by the correlation potential as γ j
e reduces the Alfven speed in equation to 16. For parallel
propagation (θ = 0), Equation 15 will be as follows:

ω =ViAk (17)

This relation is related to the Alfven wave, which is not
affected by quantum effects.
b) Non-spin electron-hole plasma
Ignoring the effect of particle spin (η(α) → 0) and con-
sidering the perpendicular propagation mode (θ = π/2),
Equation 16 is reduced to the following form:

ω
2 =

c2k2

V 2
jA + c2 [V

2
jA +V 2

Fα j +
k2k2

2m2
j
− γ jω

2
p j] (18)

In this case, the quantum correction related to the quantum
potential of electrons and holes is seen. It is clear from
this relationship that in this case, the Bohm potentials of
electrons and holes have an increasing contribution to the
wave scattering, although the scattering depending on the
holes is less. The speed of the modified spiny Alfven is also
converted to the classical Alfven speed VjA. In the case of

parallel propagation, we will reach the relation obtained in
the previous section (Eq. 17).
c) Classical plasma
If we don’t consider any of the quantum effects, i.e. in the
limit (k → 0) for semiconductor plasma, Eq. 16 reaches
the well-known relations for compressive hydromagnetic
waves:

ω
2 = c2k2

(V 2
jA +V 2

Fα j − γ jω
2
p j

V 2
jA + c2

)
(19)

This relation shows the classical magneto-acoustic wave
scattering relation. In general, quantum effects have had
a significant impact on the scattering Eq. 16 compared to
its classical state (Eq. 17) and have led to an increase in
scattering.

5. Numerical analysis of the sprinkling
relationship

Equation 16 shows how the Fermi pressure of the Boehm
potential and the Coulomb exchange interaction between
particles change the dispersion relation of hydromagnetic
waves, the term related to spin appeared in the second term
from the right side. As it is clear from Equation 16, the
quantum effects caused by the density fluctuations with
a positive sign increase the scattering. The effect of spin
magnetization and exchange-correlation show a decreasing
contribution to the scattering of these waves, unlike the
quantum diffraction statements. This issue can be seen in
Figure 2, which examines the presence and absence of the
spin quantum term (spin magnetization effect). In numerical
analysis, numerical parameters related to GaAs semicon-
ductor can be used [30], which are:
n0 = 4.7× 1016 cm−3, T = 10 K, VFe = 1.4× 105 cm/s,
ωPe = 1.32 × 1013 Hz, B0 = 10 µG, m∗

e/me = 0.067,
m∗

h/me = 0.5.
According to Figure 2, the effect of electron spin magneti-
zation reduces the scattering of hydromagnetic waves.
Studies on the exchange effects in a quantum plasma by con-
sidering the spin polarization in the external magnetic field
have been done. Since electrons have spin 1/2, therefore, in
an external magnetic field, their spin orientation plays an im-
portant role in the distribution of particles among quantum
states and subsequently creating a new state equation. If the
number of fermions with high and low spins is not the same
in the presence of an external magnetic field, due to the
existence of restrictions on fermion dynamics, which can
for example be caused by the effect of the crystal structure
of the metal and exchanges between fermions, a spin polar-
ization, is created in the plasma. In addition to creating spin
pressure, this polarization is the origin of a completely new
quantum Coulomb exchange interaction in plasma, which
does not exist in the absence of polarization. The spin polar-
ization of electrons can be caused by the external magnetic
field and also related to the effective internal magnetic field
in ferromagnetic materials, which generally have a non-zero
spin polarization. Since the non-conducting plasma is not a
material with ferromagnetic properties, the spin polarization
will only be caused by the external field [27, 32].
According to Fig. 1 the studied hydromagnetic waves prop-
agate in the boundary of this plasma in the same direction as
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Figure 3. Normalized frequency diagram of hydromagnetic
wave (ω) based on normalized wave number (k) for different
values of polarizability.

the external magnetic field. In this case, the Lorentz force
caused by the magnetic field on the particles is equal to zero,
and the effect of the presence of the field appears only in
creating spin polarization in the electrons and changing the
equation of state of the system.
In Figure 3, the hydromagnetic wave frequency diagram is
drawn based on the normalized wave number for different
values of polarizability. It is clear in the figure that the role
of exchange effects in long wavelengths is much stronger
than the Fermi pressure and Boehm potential, therefore it
leads to a decrease in the frequency and phase speed of the
hydromagnetic wave. Also, with the increase of polariza-
tion in the plasma, the speed of the group is also reduced,
and as a result, in the presence of this speed, data transmis-
sion will be reduced. Also, at short wavelengths, all the
curves tend towards 0.7, which is actually the frequency of
surface plasma oscillations in a semi-finite plasma. So it can
be said that the higher the plasma polarization, the greater
the role of the exchange effect, as a result of which the
propagation frequency and subsequently the phase speed of
hydromagnetic waves decrease. Since the plasmonic cou-
pling parameter is related to quantum effects, the decrease
in the value of this parameter means the reduction of the
role of exchange effects and Boehm potential. For here,
where the coupling parameter H = 0.5 is assumed, the role
of polarization in the propagation of hydromagnetic waves
is not significant, and states with different polarizations and
exchange interactions have little differences. On the other
hand, the frequency of hydromagnetic wave propagation
increases compared to the η = 0 state, i.e. the absence of
exchange interaction and in the presence of Boehm poten-
tial, Fermi pressure and exchange potential. As can be seen
from Figure 3, this increase in frequency is greater in short
wavelengths. In the case of low polarization of 0.2, the role
of the exchange effect in long wavelength is greater than
the Bohm potential, and the frequency decreases, and on
the other hand, as is evident, in the high polarization of 0.5
and 1, the role of the exchange effect is much stronger.

6. Conclusion
In this research, the scattering characteristics of hydromag-
netic waves in a semiconductor plasma were studied by
considering the quantum corrections affected by the spin of
electrons, the total quantum Bohm force and the quantum
exchange correlation. The generalized relationship obtained

for different states of the plasma environment and angle
θ led to scattering relationships related to separate wave
modes. The obtained results showed that the quantum
correction is caused by the photo enhancement of the
density of two types of particles in the perpendicular
propagation of order k4 and has a significant effect on
the scattering of these waves. Therefore, the quantum
Bohm correction adds a nonlinear part to the scattering
relation, which can be important for large k. On the other
hand, the spin effect appears in the form of a sentence
with factor (2−η2(α)) from Equation 16, which is always
positive. Therefore, unlike the quantum Bohm potential
which increases the scattering of these waves, the spin
of electrons and exchange correlation have a reducing
effect on the scattering of these waves. On the other hand,
quantum effects do not affect the parallel propagation of
waves; therefore, for any θ = 0, the spin effect appears in
the scattering relation.
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