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Abstract:

In this work, the dynamics and chaotic behavior of ion-acoustic (IA) traveling waves in a collisional plasma consisting of
cold ions, superthermal electrons, and immobile neutral particles are studied. The effect of ion-neutral collisions is also
considered here. Using the reductive perturbation technique, a forced modified Korteweg-de Vries (FMK-dV) equation is
obtained in the presence of an externally applied force. The periodic, quasi-periodic, and chaotic motions of IA waves are
investigated by considering three-dimensional phase portraits and time-series analysis. It is noted that ion-neutral collisional
frequency (vp), strength (fp), and frequency (w) of the external periodic force play an important role in controlling the
dynamic motion of ion-acoustic waves. Moreover, it is found that the strength of the external perturbation can be considered
as the main parameter for the transition from quasi-periodic motion to chaotic motion.
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1. Introduction

The existence of highly energetic particles is well known
in space [1-6] and laboratory plasmas [7-12]. External
forces or interactions between particles can produce these
particles in different types of plasma. These particles gener-
ally result in long-tailed distributions. In such cases, other
non-Maxwellian distributions, such as the kappa distribu-
tion [13, 14] or Tsallis distribution [15], may be appropri-
ate. In this study, we consider a non-Maxwellian plasma
model that is given by the kappa distribution. The three-
dimensional (3D) isotropic kappa-velocity distribution func-
tion (DF) is given as follows [16—18]

1o F(k+1)<1+i
(nk67;)3/2 T(k— %) k67,

fij(v) = )~ED ()

where 6;; = [(1—3/(2k))(2ksT;/m;)]'/? is the effective
thermal velocity, modified by the spectral index k(> 3/2),
m; is the mass of species j, ng; is their number density and
T; is their equivalent temperature [19]. Here, I'(x) is the
usual gamma function and v* = v2 + vf + vg clearly shows
the square velocity norm of the velocity v. The spectral
index k is a measure of the slope of the energy spectrum of
the superthermal particles forming the tail of the velocity

distribution function. The smaller value of k corresponds
to more superthermal particles in the DF tail. The kappa
DF decreases in the limit of the Maxwellian distribution as
k — oo,

It should be noted that the temperature definition, although
suitable for a uniform Maxwellian distribution, is not
valid for the kappa distribution, but there are practical
advantages to using such an equivalent kinetic tempera-
ture, which can be a useful concept already accepted in
practice for non-Maxwellian distributions. According to
the paper by Hellberg et al. [20] and references therein, it
is known that the equivalent temperature 7" can be calcu-
lated from mean particle energy as T = (< mv? >)/(3kg) =
(mv3)/(kg).k/(2k —3), (see relation (8) in Ref. [20]) where
they used vy in place of the notation 6;; that is given in
Eq. (1). This relation shows the relationship between the
temperature 7 and the most probable speed vo (6 in the
present study). Therefore, in plasmas with a kappa distri-
bution, as seen, the characteristic speed (the most probable
speed 6y jis proportional to the thermal speed of the equiv-
alent Maxwellian and this relation is clearly dependent on
k. Therefore, from the definition of temperature, one can
calculate the temperature of superthermal electrons when
the most probable speed of electrons is clear.
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Many researchers have studied the characteristics of soli-
tary waves with superthermal electrons [19-30]. Most of
these studies have been conducted on the propagation of IA
solitary (soliton) waves. Recently, great interest has been
shown in the study of nonlinear traveling waves. In fact, the
bifurcation theory [31] is usually used for planer dynamical
systems to investigate traveling nonlinear plasma waves.
Several authors have studied the dynamical structures of IA
waves in plasmas via the direct approach method [32-35].
It should be remembered that these works are effective for
simple plasma systems where collisional effects and exter-
nal perturbations have been neglected.

However, some authors have investigated the structure of
solitary waves in the presence of damping and external
force conditions. For example, Chatterjee et al. [36] stud-
ied the effects of dust ion-acoustic (DIA) solitary waves
in the framework of damped forced Korteweg-de Vries (K-
dV) equation in the superthermal plasmas with k-distributed
electrons. Chowdhury et al. [37] investigated the properties
of IA solitary waves in the framework of forced K-dV like
the Schamel equation in the presence of the trapped electron
inside the superthermal plasmas. Paul et al. [38] studied the
effects of damping and external periodic force on a solitary
wave solution in the framework of the damped forced mod-
ified K-dV equation. Recently, the properties of the DIA
solitary waves were investigated by a damped forced K-dV
Burgers (K-dVB) equation in an unmagnetized collisional
dusty plasma with g-nonextensive distributed electrons in
Ref. [39]. Very recently, some nonlinear structures like
solitary waves, periodic and quasi-periodic oscillations, and
chaotic motions were studied in a magnetized plasma with
trapped electrons [40].

There is special attention to the study of nonlinear traveling
waves in plasmas and in this work, we will focus on the
traveling wave. It is noted that the traveling wave prop-
erties can be affected by damping and external periodic
perturbations [41-46]. We should note that researchers in
Refs. [41], [45] and [46] investigated various aspects of
DIA waves using planar dynamical systems theory. They
observed that the frequency of dust-ion collisions signifi-
cantly changes the dynamics of DIA waves and plays an
important role in a plasma model. Additionally, in several
articles, nonlinear Zakharov-Kuznetsov (ZK) equation for
IA traveling waves has been developed using the reductive
perturbation method. It should be noted that this general
equation is not an extension of the K-dV equation derived in
the present study. In other words, the K-dV equation derived
from the ZK equation is valid only when the traveling waves
are parallel to the external magnetic field. However, to the
best of our knowledge, ion-neutral collisional effects on the
dynamical structure of IA traveling waves in the presence
of external force have not been recorded in non-Maxwellian
plasmas. In this paper, our aim is to investigate the traveling
IA waves in an unmagnetized plasma with kappa-distributed
electrons in the presence of collisional effects and external
periodic forces. The layout of the manuscript is as follows.
The governing equations are given in Sec.2. The forced
modified K-dV equation is derived in Sec. 3. The periodic
behavior of IAWs is studied in Sec. 4. Quasiperiodic and
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chaotic motions are investigated in Sec. 5 and finally, the
conclusions of this study are presented in Sec. 6.

2. Model equations

We consider an unmagnetized collisional plasma containing
cold ions and non-Maxwellian (kappa) distributed electrons.
We also assume that the electron inertia can be neglected in
the present model because the thermal speed of the electrons
is much larger than the phase velocity of the IA waves. Fur-
thermore, we assume that the temperature of the electrons
is much greater than the temperature of the ions (7, > T;).
This condition satisfies the minimum Landau damping in
our plasma model.

On the other hand, to study the nonlinear dynamics of
ion-acoustic waves, ions are assumed to be inertial. Fur-
thermore, we assume that the ion particles interact with
neutral atoms through mutual ion-neutral collisions with
frequency v;,, where the ion-neutral collision frequency is
much lower than the ion plasma frequency, i.e., viy < @p;.
This interaction is described by the friction force F, =
—minvin(U; — Uy,) (Krook approximation) [47] in the mo-
mentum equation for ions. Here U, is the velocity of ion
(neutral) particles, n; and m; are the ion number density and
the ion mass, respectively. Using the assumption U, = 0, the
collision term can be rewritten as F, = —m;n;v;,U;. There-
fore, the dynamics of the nonlinear IAWSs are given by the
following normalized hydrodynamic equations:

dn o
du du  d¢
82
a—x(g:ne—n+5(x,t), 4

S(x,t) is the variable charge density source which results
in different physical situations. The ‘space debris’ like
dead satellites or parts of smashed spacecraft can be con-
sidered as a factor for the production of this term. When
these space debris are moving in the astrophysical plasmas,
they become charged interacting with ions and electrons.
Movement of this charged debris may produce periodic
perturbations. This external force typically models a lo-
calized topography or a moving source. In this paper, we
will conduct a comprehensive investigation into the inter-
action between nonlinear waves and external forces within
the framework of the K-dV equation. By incorporating an
external force, we will investigate how the presence of this
force affects the dynamics and behavior of the ion-acoustic
waves. Moreover, we considered a slowly varying source
term here. Therefore, we can ignore electromagnetic field
effects.

In addition, we should note that in Eq. (3), the ions are
treated as cold species (i.e., the ion pressure is ignored).
Therefore, the effect of ion temperature on the right-hand
side of Eq. (3). (i.e., —VP, where P, = Cn” is the pressure
of the ionic fluid and 7, is the ratio of specific heats) is
neglected. This assumption is relevant for a typical space
plasma with an electron temperature of 10 — 100 eV so,
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Figure 1. (a) 3D plot of the phase orbits and (b)-(c) nonlinear
IA periodic waves W and electric field structure Z; for the
case vgp = 0. The other parameters are as k =4 and Uy =0.1.
The initial value is (¥, Z;,Z,) = (0.7,0.01,0).

6 =T;/T, 2 0.01 —0.1. Indeed, the addition of the ion
temperature only gives a correction term and is therefore
ignored here.

The normalized kappa distributed electron number density
n. is given by the relation

i)
Ne = 3
k=3

In the above equations, v = v,/ @p; is the ion-neutral colli-
sion frequency where v, is the unnormalized ion collisional
frequency and ®,; = (e?ng/€ym;)'/? is the ion plasma fre-
quency. We have included the following normalization
schemes in the model equations: the number density of ions
(electrons) n (n,) is normalized to ng (i.e., the unperturbed
ion and electron number density in the equilibrium state),
the ion fluid velocity u is normalized by ion sound speed
Cs = (kpT,/m;)"/? and the electrostatic potential ¢ is nor-
malized by kpT,/e. The time 7 and space variable x are nor-
malized by the ion plasma frequency @,; = (€*ng/€ym;) 1/2
and the plasma Debye length Ap; = (gokpT,/ ezno)l/ 2 re-
spectively. Here, e represents the elementary charge of the
electron, m; denotes the mass of the ion, 7, is the electron
temperature, and kp is the Boltzmann constant.

&)
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3. Derivation of the forced modified K-dV
equation

To investigate the nonlinear IA waves in a collisional su-
perthermal plasma in the presence of the external force,
the standard reductive perturbation technique (RPT) [48]
is applied to derive the forced modified Korteweg-de-Vries
(FMK-dV) equation. We rescale independent variables [48]

é:e%(x—Vt) and T=e3r. (6)
The quantity V is the phase speed of waves in the consid-
ered plasma model (normalized by the ion sound speed Cy).
Furthermore, the parameter € is a measure of the smallness
of the perturbed amplitude to the corresponding equilibrium
quantity (e.g., n") /ng < 1 where n(!) is the perturbed den-
sity and ng is the equilibrium density). Generally, this expan-
sion parameter € is defined by € = [Vo — C5|/Cs = |[M — 1|
[49], where Vj is the pulse speed and M is the Mach number
M = Vy/C,. According to the results given in Ref. [49],
it was found theoretically that the accessible range of the
Mach number is [1, 1.58] in an electron-ion plasma with the
Maxwellian distribution and this range of accessible Mach
numbers will be reduced in the presence of superthermal
electrons [19]. Therefore, the real value of the parameter €
can be of the order ~ 1072 — 10!, The dependent plasma
variables n, u, and ¢ are expanded about their equilibrium
values as power series of € as

n= l—i—en(])—|—82n(2)—|—...7 @)
u:0+8u(1)+£2u(2>+..., ®)
0=0+e0) 42 4., 9)

S=ex5(x,1)+ ... (10)

Here, we assume a weak collision and can set v = e/ 2vo,
where vy is a finite quantity. Therefore, substituting Egs.
(6) — (10) into basic Equations (2) - (4) and equating the
coefficients of similar powers of €, one may obtain the
lowest order of € as
(1)

q’V—z, (11
given

and the phase velocity is by V =

V(k=3/2)/(k—1/2).
For the next order of &, the following coupled partial
differential equations for the second-order perturbed
quantities are obtained

an®  9u®  an VM)
@  9¢@  Juh) ou'!)
_ (1) (n—
Vg taE trae T g o =0
229 ) (12 4 ,(2)
S 0P =G0 4 —5s(E.7) =0, (14)

where C; = (k—1/2)/(k—3/2) and C; = [(k—1/2)(k+
1/2)]/[2(k—3/2)%].

By eliminating the second-order perturbed quantities (n(?),
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Figure 2. (a) Phase portrait of the dynamical system (22) for
IA waves in the presence of the collisional effects in three
dimensions. The collisional effects on (b) the profile of
IA periodic waves and (c) the electric field in a collisional
superthermal plasma. The other parameters are the same as
Fig. 1.

2) and ¢), and with the help of Eq. (11), we finally get
an evolution equation for IAWs as
¢ 3(}) ) I _ S,
7 +A¢" JE & +Co¢ BW (15)

where A is the nonlinear and B is the dispersive coefficient.

The term C¢(!) arises due to the collisional effects and the
term B(dS,/d&) indicates the external force effects. These
coefficients are given as

2C 1 y3
1Jr—)B, B=- and C= -2,

A= (=2
(222G + 7 + 73 2 2

(16)

The exact analytical solution of FMK-dV Equation (15), is
not possible. Therefore, we will solve it numerically in the
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following. However, in the absence of collisional effects
(C = 0) and external force (i.e., S» = 0), the solitary wave
solution is expressed as

0V (&,7) = Pusech? (W (& — MT)], (17)

where M is the solitary wave velocity in the co-moving
frame. The maximum amplitude ¢,, and the width W are
given by ¢, = 3M /A and W = 2,/B/M, respectively. Fur-
thermore, for the case C # 0 and S, = 0, the analytical
solution of Eq. (15) in a collisional plasma model is given
by [50-52]

00(&.7) = (epsee 200 (£ [“an(iae).

(18)
where the amplitude, width, and velocity of the pulse are
functions of time given, respectively, by

2
Po(7) = ‘PmeXp(_%T)?
_ B w
L(t) = Ao exp( 3 7), (19)
Ay, 2vo

v(T) = Texp(*T‘E),

oy, is the initial pulse amplitude at the time 7 = 0. It should
be noted that Eqs. (17) and (18) describe the solitary wave
structure in a collisionless/collisional plasma, respectively.
However, in this study, we will investigate other nonlinear
waves (i.e., periodic and quasi-periodic) and their chaotic
behaviors in a collisional superthermal plasma. Therefore,
to evaluate the effects of the plasma parameters in Eq. (15),
we performed the numerical solution Eq. (15) in the follow-
ing.

4. Periodic behavior of IAWs

In this section, we study the structure of the periodic waves
based on Eq. (15) in a collisional superthermal plasma.
Here, for simplicity, we consider S, = 0 in our approach.
This means that we transform the forced modified K-dV
Equation (15) to the damped K-dV equation taking into
account S» = 0. Therefore, in the absence of an external
force we have

¢

8(]) q)(l)
ot +B

og tB g v =0

+A¢M (20)

taking ¢(!1) = W(y) as the traveling wave solution of Eq.
(20) and by introducing a new variable y = & — UyT (where
Uy is the speed of the wave in the moving reference frame
and normalized by Cs), one can rewrite Eq. (20) as

¥y

Uy d¥Y Alpd‘P
dy’

Vo
—¥=0
Bd)(JrB a’)(Jr JrZB

2
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Figure 3. (a) 3D plot of the phase orbits and (b)-(c) time-
series analysis of ¥ and Z; vs. y of the system (24) for
initial conditions: (¥,Z;,Z,) = (0.6,0.01,0) with k = 4,
Up=0.1,vo=0, fo =0.05and = 1.5.

The planar dynamical system (21) can be cast into a more
convenient form, which is given as

d¥
=z
dy
_ g 22)
dy
Z A
2 U, Ay, Yoy
g B7' B 2B

For the numerical study of periodic motions corresponding
to the dynamical system (22), different techniques, such
as (i) phase portrait and (ii) time-series analysis can be
used [53-55]. A geometric structure of the trajectories of a
three-dimensional dynamical system is shown by analyzing
a 3D phase portrait in phase space. In the phase portrait,
each set of initial conditions is represented by a different
curve or point. It consists of a plot of the trajectories in the
state space. This gives information about whether there is
an attractor, a repellor, or a limit cycle for a set of parameter
values. On the other hand, a time-series analysis shows a
series of data points indexed in time series. In fact, non-
linear time-series analysis allows one to extract from the

JTAP17(2023)-172345 5/10

measured time series the physical properties of the system
that generated them.

The dynamical system (22) contains three independent pa-
rameters k, Uy, and vy. Here, we have considered the peri-
odicity structure of the system Eq. (22) using phase plan
analysis for two cases a) without and b) with collisional
effects. Figures 1(a)-(c), present the phase portrait, the
periodic behavior of potential ¥, and electric field Z; in a
collisionless superthermal plasma, respectively (i.e., vo = 0).
Fig 1(a), shows that the periodic orbit of Equation (22) cor-
responds to the periodic traveling wave solution of Equation
(15). Figures 1(b) and 1(c) present a graph for the elec-
trostatic potential W and electric field Z; of the periodic
traveling waves for Up = 0.1 and k = 4 with the initial value
(W,Z1,7,)=(0.7,0.01,0). It is clear that the structure (22)
exhibits a periodic behavior (with a fixed amplitude) when
the ion-neutral collision effect is not considered.

In Fig. 2, we investigated the structure of nonlinear TA
periodic waves in the presence of collisional effects (i.e.,
vo # 0). Fig. 2(a) indicates the periodic behavior of non-
linear waves with vgp = 0.01. Other parametric data are the
same as Fig. 1. On the other hand, it is seen that with an
increase vy, the amplitude of the periodic wave gradually
decreases. This is because as the collision frequency in-
creases, the interaction between the plasma particles in a
narrower region of the plasma space enhance, and hence the
internal potential energy of the nonlinear wave decreases
and as a result, the wave amplitude decreases. See Fig. 2(a)
for more details. The variations of the electric field vs. x
for different values of ion-neutral collision frequency are
identified too in Fig. 2(c). The electric field amplitude in-
creases when ion-neutral collision frequency increases for
periodic ion-acoustic waves.

5. Chaotic structurer of the system

Here, we carry out the investigation of the chaotic behavior
of a perturbed system. In a nonlinear dispersive media,
turbulence is strongly associated with the configurations
of the system. In other words, the chaotic behavior of the
dynamical system is influenced by initial conditions such
that small changes lead to different results as discussed in
Refs. [56,57]. However, we report how the external force
affects the interplay of quasiperiodic motions and chaotic
structures. The external periodic force or the source term
can exist in a variety of forms in the plasma system [58-62].
Some theoretical works have investigated the excitation of
nonlinear waves in plasma models by considering the source
term in the Poisson’s equation [37,39,60]. It is important to
note that the source term may be of different kinds because
of the presence of space debris in plasmas. For example, the
Gaussian forcing term [58], hyperbolic forcing term [58],
and trigonometric forcing term [62]. We consider the source
term as Sy = fy/(Bw) sin(wy) [62], where fj is the strength
of the source, ® is the source frequency, and y = & — UpT
is a new variable. Therefore, Eq. (15) can be rewritten as:

Upd¥ A_d¥ & v,
7FE+ETE+TX3+ET7]CICOS((DX) (23)
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Figure 4. 3D plot of the phase orbits of the system (24)
for (a) fy = 0.01, (b) fo = 0.03, and (c) fy = 0.05. Other
parameters are as k =4, Uy = 0.1, @ = 1.5 and vy = 0.01.

where f1 = fy/B.
Following the procedure mentioned for Eq. (22), the above
equation can be written as

d¥

=7

dy

2 _y (24)
dy *7*

dz, Uy A Vo

2 _ Nz Cgz Ny

iy B2 TBTA 3B + ficos(wy)

Now we investigate the IAW structures in the presence of an
external periodic force governed by the system (24) when
ion-neutral collision frequency is ignored (i.e., vo = 0).

The corresponding 3D phase orbits are presented in Fig.
3(a). Here, k =4, Uy = 0.1, fo =0.05 and w = 1.5. The
initial condition is indicated by (0.6,0.01,0). Figure 3(a)
displays that the ion trajectories lie on the surface of the
torus which is a sign of the quasiperiodic solution. They
confirm that the plasma system produces quasi-periodic

Mehdipoor et. al

Figure 5. Variations of the potential of the nonlinear waves
vs. x for different values of (a) the amplitude, (b) the
frequency of external force and (c) ion-neutral collision
frequency.

oscillation for the IAWs. In Figs. 3(b) - (c), time-series
analysis of ¥ and Z; versus ) are presented for the dynami-
cal system (24) when vg = 0. Other parameters are the same
as Fig. 3(a). In this condition multi-periodic oscillations for
ion-acoustic waves in superthermal plasmas are identified.
In continue, taking into account collisional effects between
ions and neutral particles, we will investigate the dynamical
features of nonlinear waves in the presence of an external
force. To study the structure of nonlinear waves in the pres-
ence of external periodic force with collisional effects on
the system (24), we have depicted a 3D plot of the phase
orbit in Fig. 4 for different values of the source power. Here,
the plasma parameters are considered as k =4, Uy = 0.1,
o = 1.5 and vg = 0.01. In this case, conservative chaotic
oscillation of the ion-acoustic waves is observed. In other
words, chaotic structures appear when the solution demon-
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Figure 6. (a) Profile of the phase portrait (left) and time-series analysis of ¥ vs.  (right) for initial conditions (¥, Z;,2,) =
(2,0.041,0.061). Other parameters are the same as Fig. 4(c), (b) Lyapunov exponent for the chaotic behavior of the

dynamical system (24) for Figure 4(c).

strates a random oscillation instead of periodic behavior.
It is seen that increasing fj, a dynamical transition from
quasi-periodic motion to chaotic motion occurs. Therefore,
the dynamical structure (24) supports the chaotic nature of
the ion-acoustic waves in the presence of the external force
with collisional effects.

As mentioned above, the external force plays an important
role in the dynamics of chaotic structures which is asso-
ciated with ion-acoustic waves. We have examined the
influence of fj, w, and v¢ on the structure of nonlinear trav-
eling waves in the following.

In Fig 5(a) - (c), we presented a time-series analysis of elec-
tric potential ¥ versus y for different values of fjy, @, and vy
respectively. From Fig. 5(a), it is found that if the strength
of the external force gradually increases, the amplitude of
the periodic waves will be increased. It happens because, by
increasing of the strength of external force, the IAW poten-
tial energy enhancements thus, the amplitude of nonlinear
wave will be increased. Here, the plasma parameters are the

same as Fig. 4. In continue, we represent the variation of
the amplitude of nonlinear waves for different frequencies
(w) of the external periodic force with fy = 0.05, in Fig.
5(b). Other parameters are the same as in Fig. 5(a). The
amplitude of periodic waves decreases as the frequency @
of the external periodic force increases. This is because, the
frequency of the external force affects the internal potential
energy of IAWs and consequently, significant changes are
observed in the amplitude of the traveling waves. Moreover,
from Fig. 5(c), it is seen that in the presence of an external
force with fy = 0.05 and w = 1.5, the amplitude of the os-
cillations declines as the collision frequency increases.

A plot of the phase portrait and time-series analysis of W vs.
x of Eq. (24) for the sensibility of the perturbed dynamical
system (24) with initial conditions is depicted in Fig. 6(a).
We find that the structure (24) displays a random oscillation.
It means that the present system can also show the chaotic
feature of the ion-acoustic waves with these initial values.
Furthermore, in Fig. 6(b), the graph of the Lyapunov expo-
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nent of the perturbed system (24) is presented for the same
values of parameters as Fig. 4(c). We observed that the
Lyapunov exponent is positive and this confirms the chaotic
behavior of the perturbed system (24).

To complete the discussion, we should note that the results
of this work differ from other works. See Refs. [36-40],
for example. The characteristics of dust-ion-acoustic (DIA)
waves in a collisional dusty plasma with superthermal elec-
trons were investigated by Chatterjee et al., [36]. They de-
scribed both the rarefactive and compressive solitary waves.
Furthermore, the propagation of IA waves in a plasma with
cold ion fluid, trapped electrons, and in the presence of an
external force was studied by Chowdhury et al., [37]. They
were considered an extension of Schimel’s distribution for
electrons. It was observed that the effect of external force
parameters (i.e., the amplitude fp and the frequency ) on
IA solitons is similar to Ref. [36]. However, we should note
that the present study is focused on traveling waves instead
solitons and our numerical analysis showed that external pe-
riodic force plays a different role on the traveling waves in
comparison to solitons. In other words, The external force
may produce chaotic motions associated with IA waves. On
the other hand, the collisional effects were not investigated
in Refs. [36,37]. However, this study demonstrates that
collisional effects and external periodic force have signifi-
cant effects on ion-acoustic traveling waves and caused our
results to be distinct from the other studies.

Recently, the effects of the strength and frequency of the
external periodic force and also the collision frequency be-
tween dust and ions on dust-ion-acoustic (DIA) solitons
were investigated in the framework of damped forced K-
dV Burger’s equation in a collisional dusty plasma with
g-nonextensive distributed electrons in Refs. [38,39]. Very
recently, nonlinear dynamics of ion-acoustic waves in a
magnetized plasma with vortex-like distributed electrons
were studied by Bellahsene et al., [40]. They found that a
transition from a quasi-periodic to a chaotic behavior can
occur when the magnetic field strength increases [40]. How-
ever, as far as we know, IA traveling wave excitations are
not recorded in non-Maxwellian collisional plasmas. There-
fore, our theoretical results demonstrate that ion-neutral
collision frequency and external periodic force parameters
(i.e., fo and w) have remarkable effects on TAW dynamics.

6. Conclusion

The characteristics and chaotic motions of the nonlinear
ion-acoustic waves were investigated in a non-Maxwellian
collisional plasma containing cold ions and kappa-
distributed electrons, in the presence of an external
periodic force. Using RPT, the modified K-dV equation for
ion-acoustic waves is derived. The effects of ion-neutral
collision frequency vy, the amplitude fy, and the frequency
o of the periodic force on IA wave structures were
discussed through numerical simulations. It is observed that
these parameters have remarkable effects on the nonlinear
structure of the IA waves in collisional non-Maxwellian
plasmas. In other words, they play a crucial role in the
control of the dynamic motions of the system (24) from
quasiperiodic to chaotic behavior. The results of this study

Mehdipoor et. al

may be useful in laboratory plasmas as well as in space
environments (such as mercury, solar wind and Saturn) with
space debris where kappa-distributed electrons are present.
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