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Abstract:
An Approximate bound state solutions of the Dirac equation under the spin and pseudospin symmetries for the deformed
Woods-Saxon potential with a Hellmann-like tensor interaction was examined. With the help of the Nikiforov-Uvarov
functional analysis (NUFA) method and an approximation scheme, the analytical and numerical energies of the combined
potential were obtained for both symmetries, for different quantum numbers. Degeneracies were observed in the energy
values in the absence of the tensor interaction and these degeneracies were removed with the help of the Hellmann-like
tensor interaction. The variations of the energies for spin and pseudospin symmetries were studied for various values of the
quantum numbers and deformation parameters. Our study shows that the relativistic energies obtained are very sensitive to
the quantum numbers and the deformation parameter.
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1. Introduction

Dirac equation is one of the wave equations which have
received much attention by researchers, due to its relativis-
tic background to spin 1/2 particles [1]. It is a relativis-
tic differential equation which describes spinor particles
and relativistic behaviour of molecules and atoms under a
strong potential field [2]. Dirac equation has been applied
in various branches of physics such as nuclear physics and
related areas. It has been recorded that Dirac Hamiltonian
contains two symmetries: the spin and pseudospin sym-
metries, comprising of vector and scalar interaction term.
In the Dirac theory, the concept of spin symmetry is ob-
tained when the magnitude of the attractive Lorentz scalar
potential S(r) and the repulsive vector potential V (r) are
nearly equal but opposite in sign, i.e S(r) ≈ −V (r). On

the other hand, the pseudospin symmetry is obtained when
the sum of the vector and scalar potential term equal to
a constant that is, Σ(r) = V (r)+ S(r) = CPS = const ̸= 0
[3]. The spin symmetry case whose application is seen
in the meson spectroscopy is achieved when the differ-
ence of the scalar S(r) and V (r) potentials are constant, i.e
∆(r) =V (r)−S(r) =CS = const ̸= 0. In literature, the pseu-
dospin symmetry is usually refers to as quasi-degeneracy
of single nucleon doublets with non-relativistic quantum
numbers (n, l, j = l + 1/2) and (n− 1, l + 2, j = l + 3/2),
where n, l, j represent the single nucleon radial, orbital and
total angular momentum quantum numbers, respectively.
The total angular momentum is defined as j = l̃ + s̃, where
l̃ = l+1 is the pseudo-angular momentum and s̃ denotes the
pseudospin angular momentum. Further study had shown
that the pseudo-orbital angular momentum is the orbital an-
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gular momentum of the Dirac spinor lower component [4].
Different researchers have studied the Dirac equation with
different potential models such as the Coulomb oscilla-
tor [5], Yukawa potential [6], Hellmann potential [7], Frost-
Musulin potential [1], hyperbolic potentials [8], shifted
Tietz-Wei potential [9], hyperbolic Poschl-Teller potential
[10], generalized Morse potential [11], etc. In recent times,
the studies of the Dirac equation with tensor interaction have
attracted the attention of many researchers. Chenaghlou et
al. [2] investigated the D-dimensional Dirac equation with
Morse potential, using supersymmetric quantum mechanics
(SUSYQM) approach [12]. Relativistic vibrational ener-
gies for CP and SiF+ molecules were obtained at critical
point. The relativistic energies of one-dimensional Dirac
equation were obtained in the presence of Mathieu poten-
tial, using Fourier grid method [13]. Ahmadov et al. [14]
studied the Dirac equation with Hulthen potential plus a
class of Yukawa potential in the present of Coulomb tensor
interaction using Nikiforov Uvarov (NU) method [15] and
supersymmetry quantum mechanics (SUSYQM) method.
In another development, Chenaghlou et al. [16] studied the
Dirac equation with harmonic oscillator in the presence of
magnetic field, using SUSYQM and asymptotic iteration
method (AIM) [17]. The effect of constant magnetic field
on the relativistic energy levels of Dirac particles was ana-
lyzed.
In this paper, we intend to investigate the deformed Woods-
Saxon potential with a Hellmann-like tensor interaction in
the Dirac theory. The Woods-Saxon potential generally, is
known to be a short-range potential widely studied in dif-
ferent areas of Physics [18]. It is mostly preferred over the
harmonic oscillator in both relativistic and nonrelativistic
theories of mean-field shell model [19, 20]. The deformed
Woods-Saxon potential is defined as [21]

V (r) =− V1e−αr

(1+qe−αr)
+

V2e−2αr

(1+qe−αr)2 (1)

where r is the distance of separation of the potential, α is
the screening parameter, q is the deformation parameter and
V1, V2 are the potential strengths. On the other hand, the
Hellmann-like tensor interaction is made up of the Coulomb
and the Yukawa potentials, given as [22–25]

U(r) =−1
r
(HC +HY e−αr) (2)

where HC and HY are components of the Coulomb and
Yukawa potentials, respectively.
The objectives of this work are to first review the Dirac equa-
tion theory with tensor coupling. Thereafter, the spin sym-
metry and pseudospin symmetry solutions of the Dirac equa-
tion will be obtained analytically by using the Nikiforov-
Uvarov functional analysis (NUFA) method [26]. The ana-
lytical solutions will then be used to obtain the numerical
energies of the deformed Woods-Saxon potential with the
Hellmann-like tensor interaction. The dependence of the
energies obtained on the potential parameters, screening pa-
rameters and quantum numbers is discussed appropriately.

2. Dirac equation with tensor coupling
The Dirac equation for fermionic massive spin-1/2 particles
moving under an attractive scalar potential S(r), a repulsive
vector potential V (r) and a tensor potential U(r)(h̄ = c = 1)
reads

[a ·p+b(M+S(r))− iba · r̂U(r)]ψ(r) = [E −V (r)]ψ(r)
(3)

Here, E is the relativistic energy of the system, p = −i∇∇∇
is the 3-dimensional momentum operator, M is the mass
of the fermionic particle, a, b are the 4×4 Dirac matrices
defined as

a =

[
0 δδδ i
δδδ i 0

]
, b =

[
I 0
0 −I

]
(4)

where I is 2×2 unitary matrix and δδδ i being the three-vector
Pauli spin matrices given as

δ1 =

[
0 1
1 0

]
, δ2 =

[
0 −i
i 0

]
, δ3 =

[
1 0
0 −1

]
(5)

The eigenvalues of the spin-orbit coupling operator are
known to be k = ( j + 1/2) > 0, k = −( j + 1/2) < 0; for
unaligned spin j = l−1/2 and the aligned spin j = l+1/2,
respectively.
The set (H2,K,J2,Jz) forms the complete set of conserva-
tive quantities with J being the total angular momentum
operator and K̂ =−b(∇∇∇ ·L+1) is the spin-orbit where L is
orbit angular momentum.
The spinors can be classified according to their angular mo-
mentum j, the spin-orbit quantum number k and the radial
quantum number n.
The spinors can be written as

ψnk(r) =
1
r

[
Wnk(r) Y l

jm(θ ,ϕ)

iXnk(r) Y l̃
jm(θ ,ϕ)

]
(6)

Here, Wnk(r), Xnk(r) represent the upper and lower compo-
nents of the Dirac spinors; Y l

jm(θ ,ϕ), Y l̃
jm(θ ,ϕ) represent

the spin and pseudospin spherical harmonics and m is the
projection on the z-axis.
With the help of the following identities [27];

(δδδ ·A)(δδδ ·B) = A ·B+ iδδδ · (A×B),

δδδ ·p = δδδ · r̂(r̂ · p̂+ i
δδδ ·L

r
),

(δδδ ·L)Y l̃
jm(θ ,ϕ) = (k−1)Y l̃

jm(θ ,ϕ),

(δδδ ·L)Y l
jm(θ ,ϕ) =−(k+1)Y l

jm(θ ,ϕ),

(δδδ · r̂)Y l
jm(θ ,ϕ) =−Y l̃

jm(θ ,ϕ),

(δδδ · r̂)Y l̃
jm(θ ,ϕ) =−Y l

jm(θ ,ϕ),

(7)

Eq. (3) become the following two coupled first-order Dirac
equations of the form:( d

dr
+

k
r
−U(r)

)
Wnk(r) = (M+Enk −∆(r))Xnk(r) (8)

( d
dr

− k
r
+U(r)

)
Xnk(r) = (M−Enk +Σ(r))Wnk(r) (9)
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where ∆(r) =V (r)−S(r); Σ(r) =V (r)+S(r). Also, ∆(r)
and Σ(r) are the difference and sum potentials, respectively.
By eliminating Wnk(r) and Xnk(r) in Eqs. (8) and (9), the
following second-order Schrodinger-like equations are ob-
tained:[

d2

dr2 − k(k+1)
r2 +

2kU(r)
r

− dU(r)
dr

−U2(r)

− (M+Enk −∆(r))(M−Enk +Σ(r))

+
d∆(r)

dr

( d
dr +

k
r −U(r)

)
(M+Enk −∆(r))

]
Wnk(r) = 0

(10)

[
d2

dr2 − k(k−1)
r2 +

2kU(r)
r

+
dU(r)

dr
−U2(r)

− (M+Enk −∆(r))(M−Enk +Σ(r))

−
dΣ(r)

dr

( d
dr −

k
r +U(r)

)
(M−Enk +Σ(r))

]
Xnk(r) = 0

(11)

where k(k−1) = l̃(l̃ +1), k(k+1) = l(l +1).
For spin symmetry to occur, d∆(r)/dr = 0 and ∆(r) be-
comes a constant, CS [28]. Hence, Eq. (11) becomes[

d2

dr2 − k(k+1)
r2 +

2kU(r)
r

− dU(r)
dr

−U2(r)− (M

+Enk −CS)Σ(r)+(E2
nk −M2 +CS(M−Enk))

]
Wnk(r) = 0

(12)

Here, k = l for k > 0 and k =−(l+1) for k < 0. The lower
spinor component can be obtained from Eq. (8) as

Xnk(r) =
1

(M+Enk(r)−CS)

[
d
dr

+
k
r
−U(r)

]
Wnk(r) (13)

There exist only real positive energy spectrum for exact spin
symmetry where Enk ̸=−M for CS = 0.
In addition, pseudospin symmetry occurs when dΣ(r)/dr =
0 and Σ(r) becomes a constant, CPS [28]. Hence, Eq. (12)
becomes[

d2

dr2 − k(k−1)
r2 +

2kU(r)
r

+
dU(r)

dr
−U2(r)

− (M−Enk +CPS)∆(r)

− (M2 −E2
nk +CPS(M+Enk))

]
Xnk(r) = 0

(14)

Here, k =−l̃ for k < 0 and k = l̃ +1 for k > 0. The SU (2)
pseudospin symmetry can be obtained when l̃ ̸= 0, in which
degenerate states are produced with j = l̃ ±1/2. The upper
spinor component can then be obtained from Eq. (9) as

Wnk(r) =
1

(M−Enk +CPS)

[
d
dr

− k
r
+U(r)

]
Xnk(r) (15)

Here, there exist only real negative energy spectrum for
exact pseudospin symmetry where Enk ̸= M for CPS = 0.

3. Analytical solutions using NUFA

3.1 Spin symmetry solution
First, for the spin symmetry consideration, we substitute
the deformed Woods-Saxon potential of Eq. (1) and the
Hellmann-like tensor interaction of Eq. (2) into Eq. (14) to
obtain[

d2

dr2 − k(k+1)
r2 − 2kHC

r
− 2kHY e−αr

r2 − HC

r2 − HY e−αr

r2

− αHY e−αr

r
− HC

r2 − 2HCHY e−αr

r2 − H2
Y e−2αr

r2

+
γV1e−αr

(1+qe−αr)
− γV2e−2αr

(1+qe−αr)2 − ε
2
nk

]
Wnk(r) = 0

(16)

Here, the sum potential Σ(r) is taken as the deformed
Woods-Saxon potential, the difference potential ∆(r) taken
as constant CS, the tensor potential U(r) taken as the
Hellmann-like tensor interaction and the following parame-
ters γ and ε2

nk are also defined as

γ = (M+Enk −CS), ε
2
nk =−(E2

nk −M2 −CS(M−Enk))
(17)

Due to the presence of the centrifugal terms in Eq. (15), we
employ the following approximation scheme [29]:

1
r2 ≈ α2

(1−qe−αr)2 ;
1
r
≈ α

(1−qe−αr)
(18)

By substituting Eq. (17) and the coordinate transformation
z =−qe−αr, we obtain

d2Wnk(z)
dz2 +

(1− z)
z(1− z)

dWnk(z)
dz

+
(−A1z2 +A2z−A3)

(z(1− z))2 Wnk(z)= 0

(19)
where

A1 =
ε2

nk
α2 +

γ

α2

(
V2

q2 − V1

q

)
+

HY

q

(
HY

q
+1

)
,

A2 =
2ε2

nk
α2 − γV1

α2q
+

2HY

q
(βkC +1),

A3 =
ε2

nk
α2 +H2

C +βkC(βkC ++1),

βkC =k+HC

(20)

By employing the NUFA method and proposing a wave
function of the form

Wnk(z) = zw(1− z)σ fnk(z) (21)

where

w =

√
ε2

nk
α2 +HC +βkC(βkC +1)

σ =
1
2
[1+

√
1+4(H01 +H02 +H2

C)]

(22)

in which
H01 =

γV2

α2q2 +
HY

q

(HY

q
+1

)
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Table 1. Bound State Energies (in fm−1) of the spin symmetry with q = 0.5.

l (n,k < 0) (l, j = l +1/2) En,k<0 En,k<0 (n,k > 0) (l, j = l −1/2) En,k>0 En,k>0
(HC = 0,HY = 0) (HC = 10,HY = 10) (HC = 0,HY = 0) (HC = 10,HY = 10)

1 0, - 2 0p3/2 5.243963495 5.264159191 0, 1 0p1/2 5.243963495 5.260085849
2 0, - 3 0d5/2 5.249876782 5.266100796 0, 2 0d3/2 5.249876782 5.259243556
3 0, - 4 0 f7/2 5.258204302 5.268343814 0, 3 0 f5/2 5.258204302 5.258612904
4 0, - 5 0g9/2 5.268918742 5.270870104 0, 4 0g7/2 5.268918742 5.258164665
1 1, - 2 1p3/2 5.247260650 5.265905682 1, 1 1p1/2 5.247260650 5.261019648
2 1, - 3 1d5/2 5.255212106 5.268187439 1, 2 1d3/2 5.255212106 5.259971612
3 1, - 4 1 f7/2 5.265364042 5.270803226 1, 3 1 f5/2 5.265364042 5.259163362
4 1, - 5 1g9/2 5.277801514 5.273730145 1, 4 1g7/2 5.277801514 5.258562407
1 2, - 2 2p3/2 5.250014094 5.267980104 2, 1 2p1/2 5.250014094 5.262166010
2 2, - 3 2d5/2 5.260901366 5.270650114 2, 2 2d3/2 5.260901366 5.260883351
3 2, - 4 2 f7/2 5.273061928 5.273691023 2, 3 2 f5/2 5.273061928 5.259872953
4 2, - 5 2g9/2 5.287273502 5.277074367 2, 4 2g7/2 5.287273502 5.259098632
1 3, - 2 3p3/2 5.250013634 5.270435604 3, 1 3p1/2 5.250013634 5.263558166
2 3, - 3 3d5/2 5.266154759 5.273550040 3, 2 3d3/2 5.266154759 5.262006826
3 3, - 4 3 f7/2 5.280826410 5.277077179 3, 3 3 f5/2 5.280826410 5.260765257
4 3, - 5 3g9/2 5.296972930 5.280982132 3, 4 3g7/2 5.296972930 5.259793111

H02 = (βkC +1)
(
βkC − 2HY

q

)
the approximate energy spectra of the deformed Woods-

Saxon potential with Hellmann-like tensor interaction for
the spin symmetry limit in closed form is obtained as

M2 −E2
nk +CS(M−Enk) =α

2
[(

T
2(n+σ)

− (n+σ)

2

)2

− (H2
C +βkC(βkC +1))

]
(23)

T =
γ

α2 (
V2

q2 − V1

q
)− HY

q
(

HY

q
+1)−βkC(βkC +1)−H2

C

(24)

3.2 Pseudospin symmetry solution
Here, the deformed Woods-Saxon potential of Eq. (1) and
the Hellmann-like tensor interaction of Eq. (2) are substi-
tuted into Eq. (14) to obtain

[
d2

dr2 − k(k−1)
r2 − 2kHC

r
− 2kHY e−αr

r2 +
HC

r2 +
HY e−αr

r2

+
αHY e−αr

r
−

H2
C

r2 − 2HCHY e−αr

r2 − H2
Y e−2αr

r2

− γ́V1e−αr

(1+qe−αr)
+

γ́V2e−2αr

(1+qe−αr)2 +ζ
2
nk

]
Wnk(r) = 0

(25)

Here, the difference potential ∆(r) is taken as the deformed
Woods-Saxon potential, the sum potential Σ(r) taken as con-
stant CPS, the tensor potential U(r) taken as the Hellmann-
like tensor interaction and the following parameters γ́ and
ζ 2

nk are also defined as

γ́ = (M−Enk +CPS),ζ
2
nk =−(M2 −E2

nk +CPS(M+Enk))
(26)

Table 2. Bound State Energies (in fm−1) of the spin symmetry with q = 1.0.

l (n,k < 0) (l, j = l +1/2) En,k<0 En,k<0 (n,k > 0) (l, j = l −1/2) En,k>0 En,k>0
(HC = 0,HY = 0) (HC = 10,HY = 10) (HC = 0,HY = 0) (HC = 10,HY = 10)

1 0, - 2 0p3/2 5.244947839 5.511021869 0, 1 0p1/2 5.244947839 5.573903795
2 0, - 3 0d5/2 5.252525950 5.494827441 0, 2 0d3/2 5.252525950 5.599398453
3 0, - 4 0 f7/2 5.263243600 5.481107564 0, 3 0 f5/2 5.263243600 5.627020410
4 0, - 5 0g9/2 5.277040677 5.469905182 0, 4 0g7/2 5.277040677 5.656674649
1 1, - 2 1p3/2 5.248367355 5.531423181 1, 1 1p1/2 5.248367355 5.596435754
2 1, - 3 1d5/2 5.258296071 5.514476524 1, 2 1d3/2 5.258296071 5.622559863
3 1, - 4 1 f7/2 5.271055540 5.500008769 1, 3 1 f5/2 5.271055540 5.650757701
4 1, - 5 1g9/2 5.286743469 5.488080914 1, 4 1g7/2 5.286743469 5.680929726
1 2, - 2 2p3/2 5.250079247 5.551499363 2, 1 2p1/2 5.250079247 5.618533317
2 2, - 3 2d5/2 5.264048359 5.533823146 2, 2 2d3/2 5.264048359 5.645242415
3 2, - 4 2 f7/2 5.279112000 5.518620573 2, 3 2 f5/2 5.279112000 5.673970220
4 2, - 5 2g9/2 5.296754421 5.505969498 2, 4 2g7/2 5.296754421 5.704613905
1 3, - 2 3p3/2 5.251117102 5.571062566 3, 1 3p1/2 5.251117102 5.640035203
2 3, - 3 3d5/2 5.268531478 5.552671567 3, 2 3d3/2 5.268531478 5.667294310
3 3, - 4 3 f7/2 5.286743553 5.536739914 3, 3 3 f5/2 5.286743553 5.696515754
4 3, - 5 3g9/2 5.306580556 5.523361116 3, 4 3g7/2 5.306580556 5.727594543
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Table 3. Bound State Energies (in fm−1) of the pseudospin symmetry with q = 0.5.

l̃ (n,k < 0) (l, j) En,k<0 En,k<0 (n−1,k > 0) (l +2, j+1) En,k>0 En,k>0
(HC = 0,HY = 0) (HC = 10,HY = 10) (HC = 0,HY = 0) (HC = 10,HY = 10)

1 1, - 1 1s1/2 -5.222276981 -4.971446730 0, 2 0d3/2 -5.222276981 -4.910214325
2 1, - 2 1p3/2 -5.210094761 -4.986359187 0, 3 0 f5/2 -5.210094761 -4.884719800
3 1, - 3 1d5/2 -5.194414505 -4.998352560 0, 4 0g7/2 -5.194414505 -4.856916198
4 1, - 4 1 f7/2 -5.175492897 -5.007351072 0, 5 0h9/2 -5.175492897 -4.826950116
1 2, - 1 2s1/2 -5.205190638 -4.933711122 1, 2 1d3/2 -5.205190638 -4.870147901
2 2, - 2 2p3/2 -5.191073952 -4.949475854 1, 3 1 f5/2 -5.191073952 -4.844006937
3 2, - 3 2d5/2 -5.173158173 -4.962318754 1, 4 1g7/2 -5.173158173 -4.815636998
4 2, - 4 2 f7/2 -5.152013873 -4.972134337 1, 5 1h9/2 -5.152013873 -4.785187355
1 3, - 1 3s1/2 -5.182173834 -4.895335351 2, 2 2d3/2 -5.182173834 -4.829864759
2 3, - 2 3p3/2 -5.167060348 -4.911820231 2, 3 2 f5/2 -5.167060348 -4.803213147
3 3, - 3 3d5/2 -5.147694853 -4.925394316 2, 4 2g7/2 -5.147694853 -4.774405279
4 3, - 4 3 f7/2 -5.124976086 -4.935928380 2, 5 2h9/2 -5.124976086 -4.743591608
1 4, - 1 4s1/2 -5.154345697 -4.856676918 3, 2 3d3/2 -5.154345697 -4.789657443
2 4, - 2 4p3/2 -5.138873539 -4.873767133 3, 3 3 f5/2 -5.138873539 -4.762607839
3 4, - 3 4d5/2 -5.118721215 -4.887967640 3, 4 3g7/2 -5.118721215 -4.733467652
4 4, - 4 4 f7/2 -5.095016169 -4.899130680 3, 5 3h9/2 -5.095016169 -4.702387436

By employing the approximation scheme of Eq. (18) and
the coordinate transformation z =−qe−αr, we obtain

d2Wnk(z)
dz2 +

(1− z)
z(1− z)

dWnk(z)
dz

+
(−B1z2 +B2z−B3)

(z(1− z))2 Wnk(z) = 0
(27)

where

B1 =
HY

q
(

HY

q
−1)− γ́

α2 (
V2

q2 − V1

q
)−

ζ 2
nk

α2 ,

B2 =
2HY

q
(βkC −1)+

γ́V1

α2q
−

2ζ 2
nk

α2 ,

A3 =βkC(βkC −1)+H2
C −

ζ 2
nk

α2 ,

βkC =k+HC

(28)

By employing the NUFA method and proposing a wave
function of the form

Wnk(z) = zw̄(1− z)σ̄ fnk(z) (29)

where

w̄ =

√
βkC(βkC −1)+H2

C −
ζ 2

nk
α2 ,

σ̄ =
1
2
[1+

√
1+4(H2

C +H00)]

(30)

in which

H00 =
HY

q

(
HY

q
−1

)
+(βkC −1)

(
βkC − 2HY

q

)
− γ́V2

α2q2

the approximate energy spectra of the deformed Woods-
Saxon potential with Hellmann-like tensor interaction for
the pseudospin symmetry limit in closed form is obtained

Table 4. Bound State Energies (in fm−1) of the pseudospin symmetry with q = 1.0.

l̃ (n,k < 0) (l, j) En,k<0 En,k<0 (n−1,k > 0) (l +2, j+1) En,k>0 En,k>0
(HC = 0,HY = 0) (HC = 10,HY = 10) (HC = 0,HY = 0) (HC = 10,HY = 10)

1 1, - 1 1s1/2 -5.217343016 -4.885087768 0, 2 0d3/2 -5.217343016 -4.801129602
2 1, - 2 1p3/2 -5.201621309 -4.906599068 0, 3 0 f5/2 -5.201621309 -4.767376885
3 1, - 3 1d5/2 -5.181313466 -4.924550297 0, 4 0g7/2 -5.181313466 -4.731103143
4 1, - 4 1 f7/2 -5.156847899 -4.938781100 0, 5 0h9/2 -5.156847899 -4.692519509
1 2, - 1 2s1/2 -5.196094644 -4.844754470 1, 2 1d3/2 -5.196094644 -4.759532519
2 2, - 2 2p3/2 -5.178311723 -4.866832585 1, 3 1 f5/2 -5.178311723 -4.725535696
3 2, - 3 2d5/2 -5.155618087 -4.885393942 1, 4 1g7/2 -5.155618087 -4.689110625
4 2, - 4 2 f7/2 -5.128838855 -4.900252831 1, 5 1h9/2 -5.128838855 -4.650465928
1 3, - 1 3s1/2 -5.167959246 -4.804332555 2, 2 2d3/2 -5.167959246 -4.718264511
2 3, - 2 3p3/2 -5.149338733 -4.826839246 2, 3 2 f5/2 -5.149338733 -4.684150440
3 3, - 3 3d5/2 -5.125325293 -4.845882412 2, 4 2g7/2 -5.125325293 -4.647690766
4 3, - 4 3 f7/2 -5.097118557 -4.861257762 2, 5 2h9/2 -5.097118557 -4.609090583
1 4, - 1 4s1/2 -5.134697711 -4.764199417 3, 2 3d3/2 -5.134697711 -4.677616969
2 4, - 2 4p3/2 -5.116009349 -4.787021956 3, 3 3 f5/2 -5.116009349 -4.643483957
3 4, - 3 4d5/2 -5.091507772 -4.806440572 3, 4 3g7/2 -5.091507772 -4.607079065
4 4, - 4 4 f7/2 -5.062619248 -4.822237975 3, 5 3h9/2 -5.062619248 -4.568603243
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as

M2 −E2
nk +CPS(M+Enk) =α

2{
(

T́
2(n+ σ̄)

− (n+ σ̄)

2

)2

− (H2
C +βkC(βkC −1))}

(31)

where

T =
HY

q

(
HY

q
−1

)
− γ́

α2

(
V2

q2 −
V1

q

)
−H2

C −βkC(βkC −1)

(32)

4. Results and discussion
In this study, the numerical analysis of the energies obtained
are carried out in the absence (HC = HY = 0) and the pres-
ence (HC = HY = 10) of the Hellmann-like tensor potential
for various values of the quantum numbers n, l and k. In
addition to the natural units employed, other parameters
used in this study for convenience are given thus:
V1 =V2 =CS = 10 fm−1, CPS =−10 fm−1, α = 0.05 fm−1,
M = 4.76 fm−1. Different energy levels both for spin sym-
metry and pseudospin symmetry are presented Tables 1 – 4.
In obtaining these energies, Eqs. (23) and (31) are employed
respectively, for the spin and pseudospin symmetries.
We have observed also that the energies in both symmetries
increase slightly as the deformation parameter increases,
as seen in the computed tables. The computed energies
increase with increase in quantum numbers n, l and |k| for
both spin symmetry and pseudospin symmetry conditions.
In the absence of the Hellmann-like tensor, degeneracy is
seen to occur. In the case of the spin symmetry, Dirac
spin-doublet eigenstates are observed with the same n and l
states. As the Hellmann-like tensor interaction occurs, the
degeneracies disappear in the spin symmetry. In the case of
pseudospin symmetry, the Dirac spin-doublets eigenstates
are observed when n and l are different. The degeneracies
also disappear in the presence of the Hellmann-like ten-
sor interaction. In addition, we observe that (np3/2,np1/2),
(nd5/2,nd3/2), (n f7/2,n f5/2) etc pair states degenerate in
the case of spin symmetry. Conversely, (ns1/2,(n−1)d3/2),
(np3/2(n− 1) f5/2), (nd5/2,(n− 1)g7/2), etc pair states de-
generate in the case of pseudospin symmetry. The trend of
our results is consistent with the results obtained in litera-
tures [14, 30, 31].

5. Conclusion
In this work, we have employed the Nikiforov-Uvarov
functional analysis (NUFA) method to solve Dirac
equation with the deformed Woods-Saxon potential and
the Hellmann-like tensor interaction with the help of an
approximation scheme to the centrifugal term. Analytical
and numerical energy results were obtained both in
the absence and presence of the Hellmann-like tensor
interaction, for various values of the quantum numbers. In
the absence of the tensor interaction, the energies obtained
for both spin and pseudospin symmetries are seen to be
the same, hence degeneracy occurring. In the presence of
the tensor interaction, there exists variance in energies at

various quantum steps, hence degeneracy disappearing. In
addition, the energies increase with increase in quantum
numbers. Our results agree with the trend seen in literatures,
as our study promises to be applicable in different areas of
physics [32–35].
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