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Abstract:
In this research, we have obtained the energy eigenvalues and the corresponding normalized eigenfunction for the linear
combination of the modified Kratzer and generalized inverse quadratic Yukawa potential using two different analytical
methods: the exact quantization rule and the formula method respectively. The obtained normalized wave function is used
to study the Shannon entropy in position and momentum spaces for the ground and first excited states. It was observed that
the Shannon entropy in position space decreases as the screening parameter is increased and also increases in momentum
space as the screening parameter is increased in such a way that their sum satisfies the Bialynicki-Birula-Mycielski (BBM)
inequality that stipulated lower bound state of Sr +Sp ≥ D(1+ lnπ). Numerical results were generated for some selected
diatomic molecules such as N2, CO, NO, and CH which agreed with other works in the literature. The content of this
research finds application in atomic and molecular physics, quantum chemistry, and physics.

Keywords: Bialynicki-Birula-Mycielski inequality; Wave function; Schrödinger equation; Energy spectra; Shannon
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1. Introduction

The wave function which is the distribution of particles at
any instance in the evolution of a quantum system can only
be obtained as the solution of the Schrödinger equation (SE)
for a given potential function in quantum physics [1–3].
This wave function contains all the information required
for the complete description of the particles at any time [4].
Hence, the attention of most researchers has been drawn
to the quest of devising techniques for obtaining this wave
function owing to the algebraic problem inherent in the
SE, and this is due to the centrifugal barrier posed by the
equation [5]. Analytical techniques such as the Nikiforov-

Uvarov (NU) method [6], and others [7–9] have been pro-
posed and used to determine the energy equation and wave
function [10–14]. It is worth noting here that, if this prob-
lem did not exist, the eigenvalue problem would have been
given less or no curiosity as it could be obtained through
direct algebraic means. However, the development of differ-
ent techniques and potential models has increased because
we seek simpler and better approaches accompanied by
generally real complex potentials that produce approximate
results closer to experimental outcomes [15, 16]. One such
way is the linear combination or superposition of poten-
tials in both relativistic and non-relativistic regimes, this is
nonetheless to further constrain the trajectory of the particle

https://dx.doi.org/10.57647/j.jtap.2023.1704.40
mailto:etidophysics@gmail.com 


2/13 JTAP17(2023)-172340 Inyang et. al

for optimization of the solution and as well provide a wider
range of applications [17]. According to the fundamen-
tal principle of information theory put forward by Claude
Shannon, the global measures of Shannon entropy is crucial
to quantum information-theoretic measures [18]. As a re-
sult of its numerous applications in physics and chemistry,
scientists have actively investigated Shannon and Fisher en-
tropies in various fields in recent years [19, 20]. The theory
of communication is one field in which Shannon entropy
is applied [21]. The significance of the global measure is
to investigate the uncertainty associated with the probabil-
ity distribution [22]. The position and momentum spaces
of the Shannon entropy have an entropic relation derived
by Berkner, Bialynicki-Birula, and Mycieslki (BBM) [23]
and expressed as Sr +Sp ≥ D(1+ lnπ), where D is the spa-
tial dimension. Given this, many scholars have studied the
Shannon and Fisher entropies [19, 20, 24–29], for instance,
Edet et al., [30] used a class of Yukawa potential to study
the global quantum information-theoretic measurements in
the presence of magnetic and Aharanov-Bohm (AB) fields.
Also, Edet et al., [31], investigated quantum information by
a theoretical measurement approach of an Aharanov-Bohm
(AB) ring with Yukawa interaction in curved space with
disclination. They obtained the Shannon entropy through
the eigenfunctions of the system. Furthermore, Amadi et
al. [32] solved the SE with screened Kratzer potential to
study the Shannon entropy and Fisher information. Their
results show that the sum of the position and momentum
entropies satisfies the lower-bound BBM inequality. Addi-
tionally, Ayedun et al., [33], investigated the Fisher infor-
mation and Shannon entropy through the solutions of SE
with the Eckart-Hellmann potential using the NU method.
Their results showed an increase in the accuracy of the loca-
tion of the predicted particles occurring in the position and
momentum spaces. In recent studies, the Shannon entropy
has been done in fractional Schrödinger equation [34–39].
The modified Kratzer potential [40] is used in the descrip-
tion of molecular structures in quantum mechanics in the
areas of quantum chemistry, and atomic and molecular
physics [41]. It is given as

V (r) = De

(
r− re

r

)2

(1)

where De is the dissociation energy and re is the equilib-
rium inter-molecular distance and r is the inter-molecular
distance.
On the other hand, the generalized inverse quadratic Yukawa
potential (GIQYP) was first proposed by Ikhdair et al. [42].
Its application cuts across the fields of atomic physics,
molecular physics, and the cloud of electronic charges
around the nucleus [43]. It is of the form

V (r) =−V
(

1− e−δ r

r

)2

(2)

where V is the potential coupling strength and δ is the
potential range. Combining Eqs. (1) and (2), we obtain the
potential under investigation as

V (r) = D0 −
D1

r
+

D2

r2 −D3 −
D4e−δ r

r
− D5e−2δ r

r2 (3)

where D0 = De, D1 = 2Dere, D2 = Der2
e , D3 = D5 =V and

D4 = 2V . These two potentials have received great atten-
tion from scholars in recent times and in the past to study
selected diatomic molecules [44–46].
Given this, we intend to investigate the Shannon entropy
measures and the energy spectra of selected diatomic
molecules with the combined potential (modified Kratzer
and generalized inverse quadratic Yukawa potential) using
the exact quantization rule approach and formula method.
This paper is organized thus; we present a brief review of
the Exact quantization rule in section 2, while in section 3,
this method is applied to obtain the bound state solutions
of the modified Kratzer plus Generalized Inverse Quadratic
Yukawa Potential (MKGIQYP). In section 4 the Shannon
entropy measure is studied. Section 5 is the results and dis-
cussion., and finally, our concluding remarks are captured
in section 6.

2. Review of exact quantization rule approach
The exact quantization rule (EQR) [47] is an improvement
of the WKB approximation [48] with the addition of a
Nπ term and an integral term (also known as a quantum
correction Qc). The quantum correction term is constant for
exactly solvable potentials, independent of the number of
nodes in the wave function. The exact quantization rule can
be easily generalized to the proper quantization rule [49,50].
The EQR solution for the ground state can be obtained by
solving the Riccati equation [51].
The one-dimensional SE is given by [52]

d2ψ(x)
dx2 =−2µ

h̄2 [E −V (x)]ψ(x), (4)

where V (x) is the piecewise continuous real potential func-
tion of x satisfying the following conditions:

V (x)< E, xa < x < xb,

V (x) = E, xa = x or x = xb,

V (x)> E, x ∈ (−∞,xa) or x ∈ (xb,∞),

(5)

where xa and xb are two turning points determined by E −
V (x) = 0.
In the form of a non-linear Ricatti equation (RE), Equation
(4) can be written as:

d
dx

φ(x) =−2µ

h̄2 [E −V (x)]ψ(x)−φ(x)2 (6)

where φ(x) = ψ(x)−1dψ(x)/dx is the logarithmic deriva-
tive of the wave function ψ(x); for the SE, φ(x) represents
the phase angle of the wave function. The RE as given
by Equation (6) reveals that for E ≥ V (x), as the variable
increases across the nodes of the wave function ψ(x), the
logarithmic derivative decreases to −∞, jumps to +∞, and
then, decreases again.
As proposed and studied by Ma and Xu [53], the EQR for
the one-dimensional SE is given by∫ xb

xa

kn(x)dx = (n+1)π +
∫ xb

xa

φ(x)
[

dkn(x)
dx

][
dφ(x)

dx

]−1

dx

and kn(x) =

√
2µ

h̄2 [E −Ve f f (x)]
1
2 E ≥Ve f f (x),

(7)
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where again, xa and xb are the two turning points obtained
by solving the quadratic equation posed by E −Ve f f (r) = 0.
The first term (n+ 1) is the contribution from the nodes
of φ(x) and the second term is the quantum correction Qc.
For all exactly solvable quantum systems, the quantum
correction (QC) is independent of the number of nodes
of the wave function, so that the ground state quantum
correction Qc0 can be calculated as

Qc0 =
∫ xb

xa

φ0(x)
[

dk0(x)
dr

][
dφ0(r)

dr

]−1

dx. (8)

The Qc0 term is usually evaluated from standard integration
tables, but in a case where the resultant integrand is not
available in the literature, it can be obtained computationally
using any computing package such as Maple, Python, etc.
In the generalization of this method to the three-dimensional
SE with a central potential, the radial part of the SE becomes

d2R(r)
dr2 =−2µ

h̄2 [E −Ve f f (r)]R(r), (9)

where Ve f f (r) =V (r)+ [h̄2l(l +1)]/2µr2.
By comparing Equations (4) and (9), the energy eigenvalues
of the SE can be calculated by simply matching the condi-
tions of the logarithmic derivatives, where, the logarithmic
derivative is defined as φ(r) = [dR/dr]/R(r). Doing so,
we see that from the quantization rule (Equation (7)), the
energy eigenvalues of the three-dimensional SE will thus be

∫ rb

ra

kn(r)dr = (n+1)π +
∫ rb

ra

φ(r)
[

dk(r)
dr

][
dφ(r)

dr

]−1

dr

kn(r) =

√
2µ

h̄2 [E −Ve f f (r)]
1
2 E ≥Ve f f (r)

(10)

where ra and rb are the two turning points obtained by
solving the quadratic equation posed by E =Ve f f (r).

3. Application of the exact quantization rule to
modified Kratzer and generalized inverse

quadratic Yukawa potential
In this section, we use the exact quantization rule technique
to calculate the energy equation of the MKGIQYP. The
SE with interaction potential V (r) in D-dimensions [54] is
given by

− h̄2

2µ
∇

2
Dψ(r,ΩD)+ [E −V (r)]ψ(r,ΩD) = 0 (11)

where D is the dimensionality and D ≥ 2; h̄ and µ are the
reduced Planck constant and mass respectively; ∇2

D is the
Laplacian in D-dimensions; E is the non-relativistic en-
ergy and the wave function is expressed as ψ(r,ΩD) =
r−(D−1)/2Rnl(r)Ylm(ΩD) and Ylm(ΩD) is the generalized
spherical harmonic function. The eigenvalues of the angular
momentum operator L2

D for this function are L2
DYlm(ΩD) =

l(l +D−2)Ylm(ΩD).
From the foregoing, (see Appendix A) the radial SE with

the combined potential can be written as:

d2Rnl(r)
dr2 +

2µ

h̄2

[
Enl−

(
D0 −

D1

r
+

D2

r2 −D3 −
D4e−δ r

r

− D5e−2δ r

r2 +
K(K +1)h̄2

2µr2

)]
Rnl(r) = 0

(12)

where K = l + 1/2(D− 3); n and l are the principal and
orbital angular momentum quantum numbers respectively; r
is the inter-nuclear distance. To overcome the inverse square
term in Eq. (12), the Greene and Aldrich approximation
scheme [55] is introduced, thus;

1
r2 ≈ δ 2e2δ r

(eδ r −1)2 (13)

Using Equation (13), the SE in Equation (12) becomes

d2Rnl(r)
dr2 +

2µ

h̄2

[
Enl −



D0 − D1δ

(1−e−δ r)
+ D2δ 2

(1−e−δ r)2

−D3 − D4δe−δ r

(1−e−δ r)
− D5δ 2e−2δ r

(1−e−δ r)2

+ K(K+1)h̄2
δ 2

2µr2(1−e−δ r)2


]

×Rnl(r) = 0.
(14)

The term in curly brackets in Equation (14) is the effective
potential Ve f f (r), containing the combined potential and the
centrifugal barrier. That is,

Ve f f (r) = D0 −
D1δ

(1− e−δ r)
+

D2δ 2

(1− e−δ r)2

−D3 −
D4δe−δ r

(1− e−δ r)
− D5δ 2e−2δ r

(1− e−δ r)2

+
K(K +1)h̄2

δ 2

2µr2(1− e−δ r)2

(15)

Using the coordinate transformation, x = 1/(eδ r −1), we
will have eδ r = (1+ x)/x, so that

Ve f f (x) =D0 −D1δ (1+ x)+D2δ
2(1+ x)2 −D3

−D4δx−D5δ
2x2 +

K(K +1)h̄2
δ 2

2µ
(1+ x)2.

(16)

From Eq. (16), we obtain

Ve f f (x) =
(
D0 −D1δ +D2δ

2 −D3 +
K(K +1)h̄2

δ 2

2µ

)
+
(
−D1δ +2D2δ

2 −D4δ +
2K(K +1)h̄2

δ 2

2µ

)
x

+
(
D2δ

2 −D5δ
2 +

K(K +1)h̄2
δ 2

2µ

)
x2

(17)

The two turning points xa and xb which are determined by
solving V (x) = Enl quadratically are given as

xa =− G
2C

−
√

G2 −4C(H −Enl)

2C
, (18)
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xb =− G
2C

+

√
G2 −4C(H −Enl)

2C
, (19)

where
H = D0 −D1δ +D2δ 2 −D3 +

K(K+1)h̄2
δ 2

2µ
,

G = −D1δ +2D2δ 2 −D4δ + 2K(K+1)h̄2
δ 2

2µ
,

C = D2δ 2 −D5δ 2 + K(K+1)h̄2
δ 2

2µ
.

(20)

The momentum between the two turning points xa and xb is

k(x) =

√
2µ

h̄2 [Enl −Ve f f (x)]
1
2 (21)

By substituting Equation (20) into Equation (17) and mak-
ing use of the two properties of turning points, that is,
xa + xb =−G/C and xaxb = (H −Enl)/C, we obtain

k(x) =

√
2µC
h̄2 [(−1)(xa − x)(x− xb)]

1
2 (22)

In terms of the variable τ , the non-linear Ricatti equation
for the ground state becomes

−δx(1+x)
d
dx

φ0(x)+φ
2
0 (x)+

2µ

h̄2 [E0l −Ve f f (x)]φ0(x) = 0.

(23)
From its monotonic property, the logarithmic derivative
of φ0(x) for the ground state has one node and no pole,
therefore, we assume a trial solution of the form φ0(x) =
A + Bx. Upon substituting this into Equation (23), and
evaluating, we obtain the following expression:

A2+(2AB−δB)x+(B2−δB)x2 =
2µ

h̄2 [H−E0l+Gx−Cx2]

(24)
Comparing the LHS and RHS of Equation (24), givesA2 = 2µ

h̄2 (H −E0l)

B = δ

2 ± 1
2

√
δ 2 + 8µC

h̄2 .
(25)

The above problem is physically solvable for only B since
here, the logarithmic derivative of φ0(x) will decrease expo-
nentially as physically required.
From the foregoing, the integral of the momentum k(r) (i.e.
LHS of Eq. (10)) for n = 0 is evaluated as follows:

∫ rb

ra

k0(r)dr =−
∫ xb

xa

k(x)
dx

δx(1+ x)

=− 1
δ

√
2µC
h̄2

∫ xb

xa

√
(−1)(x− xa)(x− xb)

x(1+ x)
dx

=−π

δ

√
2µC
h̄2

[√
(xa +1)(xb +1)−1−

√
xaxb

]
=−π

δ

√
2µC
h̄2

[√
H −Enℓ−G+C

C
−1−

√
H −Enl

C

]
(26)

and the ground state quantum correction Qc0(which can be
generalized to any value of n), is evaluated as

Qc0 =
∫ rb

ra

φ0(r)
[

dk0(r)
dr

][
dφ0(r)

dr

]−1

dr

=−
∫ xb

xa

φ0(x)
δx(1+ x)

[
dk0(x)

dx

][
dφ0(x)

dx

]−1

dx

=
1
δ

√
2µC
h̄2

∫ xb

xa

(x− xa+xb
2 )(x+ A

B )

x(1+ x)
√
(−1)(x− xa)(x− xb)

dx

=
π

δ

√
2µC
h̄2

[(A
B −1

)(
1+ xa+xb

2

)√
(xa +1)(xb +1)

−
A
B

( xa+xb
2

)
√

xaxb
+1

]
=

π

δ

√
2µC
h̄2

[
1
B

√
2µC
h̄

+1
]

= π

(
B
δ
−1+

1
δ

√
2µC
h̄

)
(27)

Noting that for all exactly solvable quantum systems, the
quantum correction Qc is independent of the number of
nodes n of the wave function, we can put Equation (26) and
Equation (27), in Equation (10). Doing so, Equation (10)
becomes

−π

δ

√
2µC
h̄2

[√
H −Enl −G+C

C
−
√

H −Enl

C
−1

]
= (n+1)π +π

(
B
δ
−1+

1
δ

√
2µC
h̄

) (28)

From the above expression, the energy spectra Enl is thus
given explicitly as

Enl = D0 −D1δ +D2δ
2 −D3 +

K(K +1)h̄2
δ 2

2µ
− h̄2

8µ[ 2µ

h̄2

(
D1δ −D2δ 2 +D4δ −D5δ 2 − K(K+1)h̄2

δ 2

2µ

)
(B+αn)

− (B+αn)
]2

(29)

where

B =
α

2
+

√
δ 2

4
+

2µC
h̄2 (30)

It is worth noting that one of the major setbacks of the exact
quantization rule is that the wave function of a quantum
system cannot be explicitly obtained within its framework.
In this wise, we apply the techniques used in the formula
method developed by authors in ref. [56] (see Appendix
C), to obtain the wave function of the potential under study.
From this method, we deduced from Equation (14) the
following parameters:

k4 =
√

ε −σ1, (31)

k5 = G, (32)

Thus, in terms of Jacobi polynomials, the resulting wave
function for the MKGIQYP for s = e−δ r is given as

R(s) =Nnle
√

ε−σ1(1− s)G
2F1(−n,n+2(

√
ε −σ1 +G);

2
√

ε −σ1 +1,s),
(33)
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Figure 1. The wave function of the modified Kratzer plus
Generalized Inverse Quadratic Yukawa Potential as a func-
tion of the position for various principal quantum number
at k = 0.

where

G =
1
2
+

√
1
4
+4ε −σ4 −σ2, σ1 =

2µD1

h̄2 ,

σ2 =−2µD1

h̄2 +K(K +1), σ3 =
2µD4

h̄2 ,

ε =−2µ

h̄2 (Enl −D0 +D3), σ4 =
2µD5

h̄2

And from the definition of Jacobi polynomials [57]

P(θ ,ϕ)
n (x) =

Γ(n+θ +1)
n!Γ(θ +1) 2F1

(
−n,θ +ϕ +n+1,

θ +1;
1− x

2
) (34)

R(s) = Nnle
√

ε−σ1(1− s)GP(2
√

ε−σ1,2G−1)
n (1−2s), (35)

where Nnl is the normalization constant and it is obtained
as follows; ∫

∞

0
|Rnl(r)|2dr = 1 (36)

−
∫ 0

1
|Rnl(s)|2

ds
δ s

= 1 (37)

Changing the variable as y = 1−2s, and then, (1−y)/2 = s
and (1+ y)/2 = 1− s, Eq. (37) becomes

N2

2δ

∫ 1

−1

(
1− y

2

)2A−1(1+ y
2

)2G

[P2A,2G−1
n (y)]2dy = 1

andA =
√

ε −σ1

(38)

noting that

N2

2δ

∫ 1

−1

(
1− y

2

)a(1+ y
2

)b

[P(a,b)
n (y)]2dy

=
2Γ(a+n+1)Γ(b+n+1)

n!aΓ(a+b+n+1)

(39)

Figure 2. The probability density of the modified Kratzer
plus Generalized Inverse Quadratic Yukawa Potential as
a function of the position for various principal quantum
number at k = 0.

Hence, our normalization constant becomes

N =

√
2δn!(2A−1)Γ(2A+2G+n)

2Γ(2A+n)Γ(2G+n+1)
(40)

The total wave function is then given as

R(s) = N =

√
2δn!(2A−1)Γ(2A+2G+n)

2Γ(2A+n)Γ(2G+n+1)
e
√

ε−σ1

× (1− s)GP2
√

ε−σ1,2G−1
n (1−2s).

(41)

4. Shannon entropy
The physics of various systems have been aided by quantum
information entropy (QIT) [58, 59]. This is because it

Figure 3. The wave function of the modified Kratzer plus
Generalized Inverse Quadratic Yukawa Potential as function
of the position for various principal quantum number at
k = 1.
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Table 1. Numerical values of Shannon entropy for modified
Kratzer plus Generalized Inverse Quadratic Yukawa
Potential.

n δ Sr Sp ST

0 0.1 9.17887 -1.66212 7.51675
0.2 6.16495 1.06183 7.22678
0.3 4.56399 2.50622 7.07021
0.4 3.52719 3.45174 6.97893
0.5 2.78809 4.13361 6.92171
0.6 2.22580 4.65795 6.88375
0.7 1.77660 5.08082 6.85742
0.8 1.40392 5.43452 6.83844
0.9 1.08551 5.73881 6.82432

1 0.1 8.97945 -0.647543 8.331907
0.2 6.31299 1.633411 7.946401
0.3 4.91064 2.811482 7.722122
0.4 3.99154 3.592791 7.584331
0.5 3.31959 4.174671 7.494261
0.6 2.79324 4.639091 7.432331
0.7 2.36095 5.027031 7.387981
0.8 1.99359 5.361471 7.355061
0.9 1.67348 5.656411 7.329891

contains crucial information about the physical system.
Studies of a trigonometrically symmetric Rosen-Morse
potential [60], a profile of the solitonic mass [61], and a
hyperbolic-single potential well [62] are some examples of
applications of quantum entropy.
Shannon entropy is one of the quantum entropies used to
analyze the information contained in quantum systems.
To characterize the most effective method of information
transmission between a source and a receiver, Shannon’s
entropy was developed [18]. Studies on the thermody-
namics of an ensemble of particles led to mathematical
formulations with a similar profile, which helped establish
the Shannon entropy notion in physics. Because Shannon
information and Boltzmann entropy are similar, Shannon’s
entropy can be used to assess uncertainty in non-Hermitian
particle systems, and to interpret information in quantum
systems [63]. Shannon formalism also made it possible to
investigate fermionic particles [64], issues with effective
mass distribution [65, 66], and mechanical-quantum models
with double-well potential [67]. The degree of uncertainty
in a probability distribution connected to an information
source can be determined by interpreting the Shannon
entropy of a quantum-mechanical system [67, 68]. The
statistical experience of the stationary quantum system is
what the Born interpretation of quantum physics [69] leads
us to understand.

ρ(r)dr = |ψ(r, t)|2dr ≡ |ψ(r)|2dr. (42)

In this case, ρ(r) is the probability of finding the particle
in the state ψ(r, t) between r and r + dr [69]. Further-
more, |ψ(r, t)|2 is the probability density of the quantum-
mechanical system. Now let’s examine Shannon’s entropy

Figure 4. The plot of the position entropy density as a func-
tion of the position for various principal quantum number.

in relation to quantum physics. We define Shannon’s en-
tropy as, keeping in mind that the probability density has
the form of Eq. (42).

S =−∑
i

ρi lnρi, (43)

Hence, Shannon entropy for a probability density of a con-
tinuous system in position space has the following form:

Sr =−
∫

∞

−∞

|ψ(r)|2 ln(|ψ(r)|2)dr. (44)

In momentum space, Shannon entropy is

Sp =−
∫

∞

−∞

|ψ(p)|2 ln(|ψ(p)|2)d p. (45)

Figure 5. The wave function of the modified Kratzer plus
Generalized Inverse Quadratic Yukawa Potential as a func-
tion of the position for various principal quantum number
at k = 2.
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Table 2. Energy eigenvalues (eV) of the modified Kratzer plus generalized inverse quadratic Yukawa potential for N2, CO,
NO and CH diatomic molecules.

n l N2 CO NO CH

0 0 0.142352681 0.079536704 0.014314254 -0.015022938

1 0 0.231091461 0.161726684 0.077928111 0.087074134
1 0.231298580 0.161924070 0.078093559 0.088113175

2 0 0.318667994 0.242811630 0.140618894 0.183536394
1 0.318872465 0.243006426 0.140781998 0.184520073
2 0.319076937 0.243201199 0.140945119 0.185503039

3 0 0.405102462 0.322811236 0.202404332 0.274770012
1 0.405304331 0.323003481 0.202565139 0.275702240
2 0.405506198 0.323195709 0.202725961 0.276633802
3 0.405708049 0.323387955 0.202886761 0.277564692

4 0 0.490414609 0.401744741 0.263301746 0.361145198
1 0.490613911 0.401934494 0.263460301 0.362029544
2 0.490813220 0.402124225 0.263618873 0.362913262
3 0.491012513 0.402313965 0.263777424 0.363796353
4 0.491211784 0.402503688 0.263935964 0.364678821

5 0 0.574623738 0.479630988 0.323328038 0.442999946
1 0.574820524 0.479818282 0.323484388 0.443839670
2 0.575017318 0.480005559 0.323640739 0.444678804
3 0.575214097 0.480192846 0.323797087 0.445517353
4 0.575410853 0.480380105 0.323953415 0.446355317
5 0.575607626 0.480567359 0.324109740 0.447192694

Also, the wave function in reciprocal space ψ(k) is given
by the Fourier transform,

ψ(k) =
1√
2

∫
∞

−∞

ψ(r)e−irkdr. (46)

A comparable function to the Heisenberg uncertainty mea-
sures is played by the entropic quantities in Eqs. (44)
and (45) [63, 64]. In order to relate the entropic uncer-
tainties, Beckner [70] and Bialynicki-Birula and Myciuelski
(BBM) [23] found an entropic uncertainty relation.
The uncertainty BBM is

Sr +Sp ≥ D(1+ lnπ), (47)

where D is the dimension of effective spatial coordinates. In
this instance, the outcomes must adhere to the relationship

Sr +Sp ≥ 2.14473. (48)

5. Results and discussion
We use Eqs. (44) and (45) to calculate the Shannon entropy
in position space and momentum space respectively. The
numerical results of Shannon’s entropy for the ground

and first energy levels are shown in Table 1. As can be
observed in Table1, Shannon entropy in position space
decreases as the screening parameter is increased and also

Figure 6. The probability density of the modified Kratzer
plus Generalized Inverse Quadratic Yukawa Potential as
a function of the position for various principal quantum
number at k = 2.
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Table 3. Energy eigenvalues (eV) of the modified Kratzer potential for NO and CH diatomic molecules.

n l NO NO [45] NO [46] CH CH [45] CH [46]

0 0 0.041123182 0.041123195 0.041118000 0.083229281 0.083224184 0.083214000

1 0 0.122325847 0.122325849 0.122311000 0.241166826 0.241151503 0.241123000
1 0.122532363 0.122738863 0.122724000 0.242796715 0.244409838 0.244381000

2 0 0.202298811 0.202298791 0.202274000 0.389616956 0.389591425 0.389547000
1 0.202502208 0.202705567 0.202681000 0.391149930 0.392656024 0.392611000
2 0.202705589 0.203518990 0.203494000 0.392681567 0.398769202 0.398722000

3 0 0.281066784 0.281066733 0.281033000 0.529324618 0.529288943 0.529229000
1 0.281267123 0.281467399 0.281434000 0.530768211 0.532174862 0.532115000
2 0.281467447 0.282268597 0.282235000 0.532210564 0.537931848 0.537870000
3 0.281667764 0.283470085 0.283436000 0.533651675 0.546530346 0.546467000

4 0 0.358653849 0.358653765 0.358611000 0.660963052 0.660917327 0.660844000
1 0.358851193 0.359048434 0.359006000 0.662324079 0.663638196 0.663565000
2 0.359048521 0.359837651 0.359795000 0.663683954 0.669066127 0.668992000
3 0.359245841 0.361021173 0.360997800 0.665042676 0.677173658 0.677098000
4 0.359443146 0.362598630 0.362555000 0.666400248 0.687920044 0.687842000

5 0 0.435083496 0.435083367 0.435032000 0.785141917 0.785086272 0.785001000
1 0.435277902 0.435472163 0.435421000 0.786426557 0.787654439 0.787569000
2 0.435472295 0.436249637 0.436198000 0.787710125 0.792777921 0.792692000
3 0.435666677 0.437415549 0.437364000 0.788992619 0.800431163 0.800343000
4 0.435861048 0.438969538 0.438917000 0.790274044 0.810576230 0.810487000
5 0.436055409 0.440911128 0.440858000 0.791554398 0.823163305 0.823071000

the Shannon entropy in momentum space increases as the
screening parameter is increased in such a way that their
sum satisfies BBM inequality that stipulated lower bound
state of Sr +Sp ≥ D(1+ lnπ) is verified for the MKGIQYP.
Using Eq. (29) and the spectroscopic parameters of the
selected molecules [45]. The following conversions;
h̄C = 1973.269 eVÅ and 1amu = 931.5 × 106 eV(Å)−1

are used for all computations [71–75]. In Table 2, we
generate the energy eigenvalues for the modified Kratzer
plus generalized inverse quadratic Yukawa potential for
four select diatomic molecules (N2, CO, NO, and CH)
to investigate the nature of the potential on bound state
problems. It is observed that the energy spectrum increases
as the state n, l increase for any bound state system. Table
3, further establishes the reliability of the exact quantization
rule approach in bound state problems by comparing our
results with those in literature for the modified Kratzer
potential for different n, l states. It is seen from Table 3 that
the exact quantization rule approach is exact with other
techniques which agrees with the numerical computation.
The behavior of the wave function and probability density
of the position is plotted for various principal quantum
numbers at angular momentum k equal to 0,1 and 2 are
shown in Figures 1 to 6. Figure 1 displays the wave function
of the combined potential as a function of the position r.
We observed an increase with the increase in the principal

quantum number while other parameters are kept constant
and the wave function showcases intertwining multiple
sinusoidal curves representing the different quantum states.
The same was observed in Figure 2 being the plot of the
probability density with the position and shows a normal
distribution curve with multiple peaks, each depicting a
different quantum state. This physically means that the
lower the Shannon entropies, the higher the accuracy in
predicting the localization of the particles and the more
stable is this quantum system. Figures 3 and 4 illustrate the
plots of the wave function and probability density function
when k = 2. As can be seen in Figure 3, the wave function
increases with various potential parameters to satisfy the
BBM conditions. In Figure 4, the probability density shows
similar trends. However, this indicates that the probability
densities for these entropies are highly localized. In Figures
5 and 6, we depict the variations of the wave function and
probability density as a function of the position space. As
shown in Figure 5, the wave function plot is higher when
the principal quantum number is increased to 3. The same
is also noticed in Figure 6 and it agreed excellently with
the theoretical and experimental descriptions of probability
density. It is expected that in an ideal condition, the peak of
the probability density plot should increase as the quantum
state increases.
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6. Conclusion
The exact quantization rule approach and the formula
method were used to obtain the energy eigenvalues and
the corresponding normalized eigenfunction for the linear
combination of the modified Kratzer plus Generalized
Inverse Quadratic Yukawa Potential. In the ground and first
excited states, the Shannon entropy values were calculated.
For a prospective model to be physically stable in quantum
theoretic information, it must follow the BBM relation
Sr + Sp ≥ D(1 + lnπ), which has been attained in our
findings for our suggested model, as shown in Table 1. The
numerical results in Table 1 reveal that when one entropy
increases, the other decreases in a way that keeps their sum
above the necessary lower bound values. Numerical results
were generated for some selected diatomic molecules such
as N2, CO, NO, and CH which agreed with other works
in the literature. Figures (1-6) show the plots of the wave
function and probability density as functions of position for
various values of n and k. Our research is easily adaptable
to various soluble quantum systems.
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APPENDIX A
Some useful standard integrals used to evaluate the integrals
in Equation (7) are given below.∫

τb

τa

dτ√
(τ − τa)(τb − τ)

= π (49a)

∫
τb

τa

τdτ√
(τ − τa)(τb − τ)

=
π

2
(τa + τb) (49b)

∫
τb

τa

dτ

τ
√
(τ − τa)(τb − τ)

=
π

√
τaτb

(49c)

APPENDIX B
In Cartesian coordinates, the 1D Schrödinger wave equation
with a central potential as given in Equation (4) is

d2ψ(x)
dx2 =−2µ

h̄2 [E −V (x)]ψ(x), (50a)

and in 3D it is given by

∇
2
ψ(r)+

2µ

h̄2 [E −V (r)]ψ(r) = 0, (50b)

where ∇2(r) is the Laplacian operator Cartesian coordi-
nates.
To transform the one-dimensional Schrödinger equation
into a three-dimensional one to accommodate the logarith-
mic derivative, the Laplacian, ∇2and the three-dimensional
Schrödinger equation must be expressed in spherical polar
coordinates. In spherical coordinates ∇2 is given as

∇
2 =

1
r2

∂

∂ r
(r2 ∂

∂ r
)+

1
r2 sinθ

∂

∂ r
(sinθ

∂

∂ r
)+

1
r2 sin2

θ

∂ 2

∂ϕ2 .

(50c)
The three-dimensional form of the Schrödinger equation
in spherical coordinates is written in the form ψ(r,θ ,ϕ)

and it is variable separable, i.e. it can be separated into its
component as

ψ(r,θ ,ϕ) = χ(r)Θ(θ)φ(ϕ) (50d)

Substituting Equations (5 and 6) into Equation (4) yields

Θ(θ)φ(ϕ)

r2
∂

∂ r
(r2 ∂ χ(r)

∂ r
)+

χ(r)φ(ϕ)
r2 sinθ

∂

∂θ
(sinθ

∂Θ(θ)

∂θ
)+

χ(r)Θ(θ)

r2 sin2
θ

∂ 2φ(ϕ)

∂ϕ2

+
2µ

h̄2 [E −V (r)]χ(r)Θ(θ)φ(ϕ) = 0

(50e)

Dividing Eq. (50e) by ψ(r,θ ,ϕ) = χ(r)Θ(θ)φ(ϕ) and
multiplying through by r2 sin2

θ yields

sin2
θ

χ(r)
∂

∂ r
(r2 ∂ χ(r)

∂ r
)+

sinθ

Θ(θ)

∂

∂θ
(sinθ

∂Θ(θ)

∂θ
)

+
2µr2 sin2

θ

h̄2 [E −V (r)] =− 1
φ(ϕ)

∂ 2φ(ϕ)

∂ϕ2

(50f)

The RHS and the LHS of equation (50f) are both indepen-
dent and so they are equal to the same constant m2

l , say.
That is

1
φ(ϕ)

∂ 2φ(ϕ)

∂ϕ2 =−m2
l (50g)

where ml is the magnetic quantum number.
Substituting Equation (50g) into Equation (50f) and divid-
ing through by gives

1
χ(r)

∂

∂ r
(r2 ∂ χ(r)

∂ r
)+

2µr2

h̄2 [E −V (r)]

+
1

sinθ

1
Θ(θ)

∂

∂θ
(sinθ

∂Θ(θ)

∂θ
−

m2
l

sinθ
)

(50h)

The radial and angular parts of equation (50h) are linearly
independent and therefore are equal to a constant, l(l +1)
say. That is,

1
χ(r)

∂

∂ r
(r2 ∂ χ(r)

∂ r
)+

2µr2

h̄2 [E −V (r)] = l(l +1) (50i)

and

1
sinθ

1
Θ(θ)

∂

∂θ
(sinθ

∂Θ(θ)

∂θ
)−

m2
l

sin2
θ
=−l(l +1) (50j)

Equation (50i) is the radial part of the Schrödinger equation
(which is the equation of interest). Solving and re-writing it
as an ordinary differential equation yield

r2 d2χ(r)
dr2 +2r

dχ(r)
dr

+
2µr2

h̄2 [E −V (r)− h̄2

2µr2 l(l +1)]

χ(r) = 0.
(50k)

Multiplying Equation (50k) by r2 yields

d2χ(r)
dr2 +

2
r

dχ(r)
dr

+
2µ

h̄2 [E −V (r)− h̄2

2µr2 l(l +1)]

χ(r) = 0
(50l)
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To solve the above equation, we make use of a trial wave
function that obeys the cusp condition (or Kato’s theorem).
One such function is of the form:
χ(r) = r−1R(r)

d
dr

χ(r) =−r−2R(r)+ r−1 d
dr

R(r),

d2

dr2 χ(r) = 2r−3R(r)− r−2 d
dr

R(r)+ r−1 d2

dr2 R(r)− r−2R(r)

(50m)

Substituting equation (50m) into equation (50l) and simpli-
fying gives

d2R(r)
dr2 =−2µ

h̄2 [E −Ve f f (r)]R(r), (50n)

as given in Equation (9) of the article.
Appendix C
The second-order differential equation can be written in the
form

´́ψ(s)+
(k1 − k2s)
s(1− k3s)

ψ́(s)+
(As2 +Bs+C)

s2(1− k3s)2 ψ(s) = 0 (51a)

The wave function of the differential equation above can be
determined from the formula

ψ(s) = Nnsk4(1− k3s)k5 2F1(−n,n+2(k4 + k5)+
k2

k3

−1;2k4 + k1,k3s)
(51b)

where the parameters are defined as

k4 =
(1− k1)+

√
(1− k1)2 −4C
2

(51c)

and

k5 =
1
2
+

k1

2
− k2

2k3
+

√[
1
2
+

k1

2
− k2

2k3

]2

−
[

A
k2

3
+

B
k3

+C
]

(51d)
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