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Abstract:

In this paper, we perform a nonrelativistic study of Frost-Musulin potential (FMP) impacted by the external magnetic
and AB flux fields for the CO and NO diatomic molecules using the Nikiforov-Uvarov method with the Greene-Aldrich
approximation to the centrifugal barrier. The numerical computation of the proposed potential reveals that the combined
impact of the magnetic and AB flux fields completely removes the degeneracy of the energy spectra and controls the behavior
of the magnetocaloric effect (MCE) by acting as a regulating factor to cool or heat the MCE. Also, the thermomagnetic
plots obtained for the analyzed dimer molecules agreed perfectly with previous work. This research has the potential to be
applied in molecular physics and MCE studies for a variety of molecules.

Keywords: Magnetocaloric effect; Thermomagnetic properties; Nikiforov-Uvarov method; Frost-Musulin Potential;
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1. Introduction scribing intramolecular and intermolecular interactions and
atomic pair correlations [3]. Morse’s prediction of a three-
parameter empirical potential in 1929 [11] paved the way
for research on diatomic molecules (DMs) using various
interaction potential models. This advancement has con-
tributed significantly to our knowledge of quantum me-
chanics, which is utilized in molecular spectroscopy and
dynamics. This is because the potential energy function
incorporates valuable insights that can be used to describe a

The exact and approximate solutions of various quantum
systems have become a fascinating concept due to the re-
modeled nature of wave equations in relativistic and non-
relativistic realms and have continuously piqued the in-
terest of researchers in various branches of quantum me-
chanics [1,2]. Several authors [3—-10] have obtained these
solutions by employing various potential models and meth-
ods. Diatomic molecular potentials are essential for de-
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molecule [12]. Since then, authors have investigated some
of these potentials in their deformed and improved ver-
sions [13]. For instance, Maireche [14], carried out a study
on the improved modified Mobius square potential model
using Bopp’s shift and standard perturbation theory methods.
Also, Desai et al. [15] discovered that the modified Morse
potential function fits the RKR potential energy curve better
than the Morse and the Hulbert-Hirschfelder potential func-
tions, particularly near the dissociation limit. Furthermore,
an enhanced version of the deformed exponential-type po-
tential’s dissociation energy and equilibrium bond length
for some selected DMs was studied by Okorie et al. [12].
Sun et al. [16] demonstrated that the deformed modified
Rosen-Morse potential and the familiar Tietz potential have
the same potential function for DMs. Ikot et al. [17] used
the NUFA method to obtain the relativistic equation for the
recently developed generalized Morse potential. Oluwadare
and Oyewumi [18] studied energy spectra and expectation
values of DMs confined by the shifted Deng-Fan poten-
tial. Eyube et al. [19] developed analytical solutions for
an improved Scarf II potential energy function, which they
applied to the selected DMs. Okorie et al. [20] investigated
the analytical solutions of the SE with the improved de-
formed exponential-type potential for H,, CO, N», and LiH
molecules. Oluwadare et al. [21] investigated the analytical
solutions of an isotropic oscillator plus an inverse quadratic
potential for some DMs.

A diatomic molecular potential of interest is the Frost-
Musulin potential (FMP) that was proposed by Frost and
Musulin [22]. Idiodi and Onate [23] investigated the Shan-
non and Renyi information entropies in position and mo-
mentum space and the Fisher information in the position-
dependent mass SE with the FMP. Adepoju and Eweh [24],
obtained the solutions of FMP using the functional analysis
method. Onate and Onyeaju [25] obtained analytical solu-
tions of the Dirac equation for the FMP via the parametric
Nikiforov-Uvarov method and supersymmetric approach.
The Frost-Musulin potential function is of the form [23-25]

2,—
D.ar;e”*

V(r) = —D.0r.e”* + ,x=r—r, (1)

where D, denotes dissociation energy, ¢ and 7, are the
screening parameter and the equilibrium bond length.

The Aharonov-Bohm (AB) effects, discovered by Aharonov
and Bohm [26], take place when a charge in motion is
transformed by scalar and vector potentials even when no
external EM fields are present [27]. External fields play a
crucial part in changing the behavior of a system’s energy
spectra, primarily by stripping away degeneracy [28]. Sev-
eral researchers have studied the effect of external magnetic
fields and Aharonov-Bohm flux on certain potentials. For
instance, within the framework of quantum theory, Shahin
et al. [29] investigated the atomic and molecular proper-
ties of a pair of homoatomic and heteroatomic molecules
under profound electric fields and discovered that atomic
features interact linearly with field strengths, but molecular
properties display nonlinear reactions to the applied fields.
Horchani et al. [30] investigated the analytical solutions of
inversely quadratic Yukawa potential within the framework
of external magnetic and AB fields using the NUFA method.
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Figure 1. Shape of the Frost-Musulin potential for CO and
NO diatomic molecules.

Ikhdair et al. [31] obtain analytical solutions of SE under
the influence of magnetic and AB fields using the ansatz
analytical procedure.

Another intriguing phenomenon known as magnetocaloric
effects (MCE) is an inherent characteristic of a magnetic
material identified by the temperature change caused by
applying a magnetic field [32]. It is defined as a magne-
tothermodynamic phenomenon where the adiabatic varia-
tion in temperature is identified as the heating or the cool-
ing of magnetic materials caused by changing magnetic
fields [33,34]. Warburg [35] reported this effect in iron.
Subsequently, a significant development in magnetocaloric
studies and the practical application of magnetic refriger-
ation technology from room temperature to hydrogen and
helium temperatures, magnetic sensors, and so on [36, 37]
have been conducted. The MCE is now an efficient tool
than traditional gas compression (CGC). It reduces the
release of some hazardous gases such as chlorofluorocar-
bons (CFCs) and hydrofluoric carbons compared (HFCs)
to CGC. As a result, a reduction in ozone depletion and
environmental health is protected [38]. Recently, William et
al. [39] studied quantum description of magnetocaloric ef-
fect, thermo-magnetic properties and energy spectra of LiH,
TiH, and ScH diatomic molecules under the influence of
magnetic and Aharonov-Bohm (AB) flux fields with Deng-
Fan-Screened Coulomb potential model. Other studies on
MCE materials have been executed in rare earth metals,
alloys, and transition metal-based compounds [40—42].
Over the years, numerous authors have studied the ther-
momagnetic properties of DMs with magnetic and AB
fields [43-47].

Motivated by the works on the effect of external magnetic
and AB flux fields, we attempt to study the bound state
solutions of the FMP function via the Nikiforov-Uvarov ap-
proach with the effect of external magnetic and Aharonov-
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Figure 2. Variation of the energy eigenvalues of CO and NO diatomic molecules with ®,p for various Batm =n=1.

Bohm flux fields, which appears to be lacking in the litera-
ture.

2. Nonrelativistic analytical solutions with
FMP in external fields

The nonrelativistic analytical solutions with FMP exposed
to external fields will be studied using the Nikiforov-Uvarov
(NU) method. A detail of the method can be found in
Ref. [48]. In 2D, the SE is of the form [49]:

1 2 D 2 —ox
[ (mv_ eA) _(_Demeeme%eﬂ
2u c r
Xan(”y Qo) :Enman(rv (P) (2
4
(a) CO /
-3.34 e
/ / 3
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/ .Q.
-45 e g
J / .‘
~ e
_—-"'"'-, ."
§ i 3 3
oA_B
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where the system’s energy is E,,, its effective mass is u,
and the vector potential is A, designated as

Be % @
A:(O,le ¢+ 2B g

2 (p,0>

where B and ®p denotes magnetic and AB fields effect,
respectively, [29]. The wave function in cylindrical coordi-
nates is designated as

3)

e—(X}"

1.
v(re)= Telm(pan(’") 4)

r

In Eq. (4), the magnetic quantum number is represented
as m. Substitute Egs. (3) and (4) into Eq. (2), yield the
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Figure 3. Variation of the energy eigenvalues of CO and NO diatomic molecules with ®ap for various Batm =n = 1.
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differential equation of the form:

E,.,+D,or.e % i
) 2u +Dga2r§e‘°"‘ _ hoc(m+§)oe”
Vin(r) + 25 (= @) U= @7 |y =0
e g2 (g2
2(17e—‘“)2 ﬂ P
(%)

where { = ®ap /o, o = hc/e and @, = eB/ ¢ designates
an integer containing AB field, the flux quantum, and cy-
clotron frequency, respectively. Equation (5) is not analyti-

cally solvable in its current form because of the centrifugal
term. As a result, we employ the Greene and Aldrich ap-
proximation [50], which is valid only when the screening
parameter is small enough and is given as

1 o2
7= (1 —e—ax)2 ©)

By using Eq. (6) and a new parameter,
—0ox (7)

z=e€

Equation (2) can be expressed as follows:
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Iénm (2) + Z(ll;_ZZ)an (2)

_(Snm + ZYO - Y1 +Y3)Z2
+(28nm + Y0 - Yl - YZ)Z

+ Rum(z) =0 (8)
7(8nm Jran) "
22(1-z)?
where
2UE 2uD,r, 2ur?
—&m = hzaz ) YOZ h2a ) Yl = 76’
2Uw, uw? , 1
T, = =5 nm — - =
R AR I O

Because Eq. (8) and Eq. (1) of Ref. [48] are the same, we
obtain the following parameters:

T(z)=1-2z,0(z) =2(1—2), 6(2) = — (€ —2Y0— Y1 +Y3)
X 224 (28 + Yo = Y1 = Y2)z— (€ + Pum)-  (10)

We get 7(z) by plugging Eq. (10) into Eq. (11) of Ref. [48]
as

m(z) = —%i \/(Al k2 +(k+A)z+As (11

where

1
A= Z"’gnm_ZYO_Y] +T3,

Ay =—Q2&m+Yo—Y1—Y2),
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To calculate k, we set the discriminant in Eq. (11) to zero.
As a result, we now have

k=—(A24+2A3) L2/ A3/ Az + Ay + Ay

When Eq. (13) is substituted in Eq. (11), 7(z) is obtained
as

13)

n(z)

_g £ [(/As+ Azt As+ AL )z— /As], (14)

and 7(z) can be written as

T(z) =1 -2z -2/ Asz—2/A3+ Ay + A2+ 21/As.

s5)

Also,
f(Z):—Q—Z\/A3—2 As+Ar+ A (16)
We determine A by using Eq. (10) from Ref. [48] as
1
A= 5 VA3 —+\/Az3+Ary+A; — (A2+2A3)
— 2V A3/ A3+ Ay + A a7
Equation (10) yields &(z) as
6(z) = 2. (18)

We calculate A, by substituting Egs. (15) and (18) into Eq.
(13) of Ref. [48] as follows:
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Table 1. Diatomic molecular data for this study [2].

Molecule D, (eV) r.(A) o (1/A) p (amu)
CcO 10.8451 1.1283 22994  6.8607
NO 8.0437 1.1508 2.7534  7.4684

7L,,=n2+n—|—2n\/A3 +2nv/As+ A+ A

We performed arithmetic operations on Eqgs. (17) and (19)
using Eq.(9), and the resulting equation yields

2
(n—f—%) +2(n+%>a)'
n+%+\/i+pnm+m+r2+n
(20)

19)

1

Eum = —Pnm + Z

where

1 1
o= \/4 + P+ Yo+ T2 +T3=To+1; +T2+Z+2an

The nonrelativistic analytical solutions of FMP under the
influence of external fields can be expressed in the form:

2

QP Py O2R2 | Q1+ 92
Eppy = 2P _ @1
2u 8u 3
where
1 Hrw? 2uw, 2uD,r, ?
1=(n+= ; 2
& <"+2+\/a2h2 an o Tl
_ —4uD.r. 2ur? pro?
Q2= ) + P - 21 + Pnm

1 u2w? 2uw. 2uD.r.
3= = 2 2
Q n+2+\/a2h2 LT +(m+¢)
When there is no field, Eq. (21) generates a 3D SE of FMP
using the boundary condition m = [ + 1/2,where [ is the
orbital momentum quantum number

2
_aPRI(I+1)  ofR | Q4+Q5 )
T 8u Q6
where
1 I 2uD.r. \?
4 = — — 1
Q <n+2+\/4+l(1+ )+ oy >
4uD 2ur?
Q5= —“E7ele L 2 L4y
o /3
o 1 20D, r,
Q6—n+2+\/4+l(l+1)+ oy

We can obtain ¢(z) and p(z) by substituting Egs. (10) and
(11) into Egs. (3) of foundations of special functions and

JTAP17(2023) -172318 7/12

Eq. (3) of basic properties of the hypergeometric type of
Ref. [48]:

0(2) = V(1 — )T HVEH (23)
pl2) = 2VEF(1 gV, 24)

To derive the Rodrigues equation, Egs. (10) and (24) are
substituted into Eq (2) of Ref. [48]

_2./1
y(z) — Nnm272\/€+7(1 _Z) 24/ zt+Y

n
X —

dz" *

Zn+2\/m(1 _Z)n+2 ;+y]

where the normalization constant is denoted as N,,. We
can express Eq. (25) as

(2,r+y,2 }ﬁy)

P, (1-22) (26)

plob)

where Jacobi Polynomials is denoted as Jdikewise,

W,m(z) can be expressed as

| 1 (2@,2 i+y>
WnM(z):Nan £+Y(1*Z)7+ ZJrYPn (I*Zs)-

27)

3. Thermomagnetic properties and
magnetocaloric effect of FMP

The thermomagnetic properties of CO and NO dimer
molecules selected for this study can be calculated using
the exact partition function (PF) expressed as [51].

A

Z(B,A) =Y e PE B =(KT)™",

n=0

(28)

where A is an upper bound of the vibrational quantum
number calculated by summing the available energy lev-
els. B =1/KT, where k and T are Boltzmann constant
and absolute temperature, respectively. To account for the
PF, the energy eigenvalue of Eq. (21) can be expressed as
follows:

03 >2
Eum=01— n+90)+ 29
01 Q2<( ) (n+9) (29)
where
j— azthnm — 27-2
Ql - T? Q2 - (187“17
202 | 200, | 2uDer,
=14\ Wy WDy (g2 (30)
4uD,r, 2 rg 2 LZ
0y =0 2E_ W,
Substituting p = n+ J into Eq. (29), we get
2
Q2Q3 (31)

Eyn = —20,03+ 01 — (Q2p” + )
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Table 2. Eigenvalues (eV) of the FMP for CO dimer molecule with B and ®5p flux fields.

m n B= q)AB:O B:3T, (I)ABZO BZO, (I)ABZ?)T B= @ABZ?’T
0 0 -5.318837025 -4.150194745 -3.417196138 -2.473739598
1 -5.058113683 -3.934667322 -3.188666520 -2.283097356
2 -4.806362727 -3.726604934 -2.968313140 -2.099377814
3 -4.563344245 -3.525832593  -2.755922950 -1.922422312
-1 0 -5315525135  -4.147294597  -3.565478636 -2.605276128
I -5.054858606 -3.931810690 -3.334469566 -2.412701182
2 -4.803163035 -3.723790861 -3.111697356  -2.227090652
3 -4.560198567 -3.523060159  -2.896946940 -2.048284648
I 0 -5.315525135 -4.147294597 -3.263528448  -2.337279848
1 -5.054858606 -3.931810690 -3.037562766 -2.148639064
2 -4.803163035 -3.723790861 -2.819710760 -1.966877834
3 -4.560198567 -3.523060159 -2.609761467 -1.791838807

Now, the substitution of Eq. (31) into Eq. (28) yields:

A

3 ,B201000) - (sz2+Q2Q3

)

z2(B,A) = (32)

n=0

The summation in Eq. (28) is changed into an integral of
the form

0,0}

A
Z(BA) = eﬁ(zQZQrQ')/ eQ2p2+7dP (33)
0

The PF can be evaluated using Maple software as follows:

_ 07408
— ,2B0203-BO; il 34
WP=e ﬁ(‘*\/%) &Y

Q7 = 2V —-0,0%B+/-B0>

where

Gq(@a s \/—QzQzﬁ) 1)

1+erf(\/—BOaA — V‘QZQ* )
2V 02038/ B>

Using Eq. (34), the thermo-magnetic properties [28] and
magnetocaloric effect [40] of FMP under influence of mag-
netic and AB flux fields of CO and NO dimer molecules
can be calculated as follows:

(a) The magnetization at finite temperature is given as

Q8 =

M(B,B,PaB) = Z(B,B,®aB)

(35)

(w3

Table 3. Eigenvalues (eV) of the FMP for NO dimer molecule with B and ®4p flux fields.

m n B= CI)AB=0 B=3T, q)ABZO B=0, q)AB:3T B= q)AB=3T
0 0 -3.980303243 -3.073281966 -1.646856516 -0.998343797
1 -3.729780426 -2.866744062 -1.443134820 -0.828281092
2 -3490118686 -2.669309679 -1.248902712 -0.666380549
3 -3.260972966 -2.480725840 -1.063870249  -0.512422934
-1 0 -3976179138 -3.069650430 -1.826354134 -1.159405211
1 -3.725740642 -2.863177390 -1.619097369 -0.986553256
2 -3.486160706 -2.665806154 -1.421432044 -0.821934442
3 -3.257094366 -2.477283842  -1.233064198  -0.665327029
1 0 -3976179138 -3.069650430 -1.461271281 -0.831563395
1 -3.725740642 -2.863177390 -1.261192996 -0.664381461
2 -3.486160706 -2.665806154 -1.070499628  -0.505288545
3 -3.257094366 -2.477283842  -0.888905372  -0.354068001
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(b) Magnetic susceptibility at finite temperature is given as

IM(B,B, Pap)

xm(ﬁ7B7q)AB): JB

(36)

(c) The entropy of the thermo-magnetic system is given as

d

1HZ(I3,B,<I>AB)—ﬁﬁlnz(ﬁvB@AB) (37
(d) Isothermal magnetocaloric entropy
As=S(B#0,T)—-S(B=0,T) (38)

4. Numerical results

In this study, we obtain analytical solutions of the SE with
FMP for the CO and NO dimer molecules in the presence
of external magnetic and AB flux fields. We use Eq. (21)
to calculate the energy spectra of FMP for the selected di-
atomic molecules based on the spectroscopic data obtained
from [2]. The heterogeneous DMs are selected because of
the purposes which they serve in various aspects of molec-
ular and chemical physics. The spectroscopic parameters
adopted for this study are shown in Table 1. Here, we have
implemented the conversions: 1 amu=931.494028 MeV/c?
and fic=1973.29¢eVA [2]. The calculated explicit bound
state energies for the selected DMs, both with and without
the B and ®4p fields with various quantum states are pre-
sented in Tables 2 and 3. When both fields are switched off,
i.e.B = ®,p, there exists degeneracy in the energy spectra
as the energy increase with the increase in quantum states.
Subjecting the diatomic molecule system to a magnetic field
only cannot eradicates the degeneracy but increases the en-
ergy spectra as the quantum states are increased. Hence, for
a fixed m, as the quantum number 7 increases, the individ-
ual diatomic molecule becomes attractive. By switching on
only the ®,p field, the degeneracy is gradually removed as
the energy spectra of the individual molecule increase with
increased quantum states. However, when both fields are
activated, the combined effects of the two fields outweigh
the individual effects; thereby removing degeneracy com-
pletely from the system and leading to a significant shift in
the energy spectra as the quantum state increases.

The shape of the potential for the selected molecules is pre-
sented in Fig. 1. Figure 2 represents a plot of energy spectra
for various values of the ®p field of the selected DMs.
The plots show that the energy spectra increase gradually
and uniformly as B is increased. Figure 3 depicts a plot of
the FMP energy spectra against the ®ap flux field. For the
diatomic molecule systems considered, the energy spectra
followed a similar trend and increased as the ®p flux field
increased.

Figures 4 (a) and (c) show that the PF increases as the mag-
netic field strength B and inverse temperature parameter (f3)
increase, whereas the PF remains invariant at lower maxi-
mum energy (A1) and begins to increase as A increases as
shown in Fig 4 (d) for the selected DMs. Figure 4 (b) shows
that the PF decreases slowly in a uniform manner to a point
where the ®ap is between 45 T and 55 T depending on the
molecule parameter and begins to increase.

The magnetic susceptibility in Fig. 5 (a) and (c) increases as
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the magnetic field and temperature-dependent term are in-
creased. In Fig 5 (b), the magnetic susceptibility decreases
slowly to the origin and begins to rapidly decrease from the
origin as the AB is increased. The magnetic susceptibility
shows a concave shape from the origin and remains invari-
ant as the maximum energy increases.

In Figure 6 (a), the isothermal magnetocaloric entropy in-
creases from the origin to a maximum turning point and
begins to decrease as the B increases for various magnitudes
of the AB field, temperature-dependent term, and maximum
energy term for CO and NO molecules. At a lower magni-
tude of the varying parameter, the NO molecule decreases to
2 T and begins to increase as the magnetic field strength is
increased. This implies that the introduction of the magnetic
field into the system causes the isothermal entropy to change
in a direction depending on the magnitude of the magnetic
field strength and other varying parameters. In Figure 6 (b),
the isothermal entropy displayed parabolic concave curves
with varying degrees of minimum and maximum turning
points. The isothermal magnetocaloric entropy peaked from
the origin and increased to various maximum turning points
as the AB field increased for the CO and NO molecules be-
fore decreasing exponentially to various minimum turning
points and continuing to increase slowly. The variation of
the magnetic entropy shows a complete waveform pattern
with the external magnetic field and a sinusoidal waveform
showing an increasing and decreasing trend with the AB
field, implying that an external field can be used to control
the behavior of the magnetocaloric molecules. In Figure
6 (c), the isothermal magnetocaloric entropy peaked from
the origin and increased to various maximum turning points
and begins to decrease exponentially as the temperature-
dependent term increases for the selected DMs. This shows
that at a higher temperature, the increases and decreases at
a lower temperature, indicating that the variation of temper-
ature with a varying magnitude of magnetic and AB fields
operate as a controlling factor for the cooling or heating
of the MCE. Figure 6(d) shows that the isothermal magne-
tocaloric entropy decreases exponentially as the maximum
energy term is increased.

5. Conclusion

This research focused on the magnetocaloric effect,
thermomagnetic properties, and energy spectra of CO and
NO diatomic molecules subjected to varying magnitudes of
magnetic and AB flux fields. The SE with FMP is solved
using the NU technique under the influence of magnetic
and AB flux fields to obtain the energy equation and
wave function. The derived energy eigenvalue is used to
calculate the numerical energy spectra and thermomagnetic
properties of the selected diatomic molecules. The results
show that the cumulative impacts of the magnetic and AB
flux fields completely remove the degeneracy on the energy
spectra of the dimer molecules. Also, the net effect of the
combined field with temperature acts as a controlling factor
for the cooling or heating of the magnetocaloric effect.
This research has the potential to be applied in molecular
physics and studies on MCE for several molecules.
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