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analysis of embedded double-walled carbon
nanotubes based on nonlocal Timoshenko beam
theory
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Abstract

The present paper is concerned with the free vibration analysis of double-walled carbon nanotubes embedded
in an elastic medium and based on Eringen's nonlocal elasticity theory. The effects of the transverse shear
deformation and rotary inertia are included according to the Timoshenko beam theory. The governing
equations of motion which are coupled with each other via the van der Waals interlayer forces have been
derived using Hamilton's principle. The thermal effect is also incorporated into the formulation. Using the
statically exact beam element with displacement fields based on the first order shear deformation theory, the
finite element method is employed to discretize the coupled governing equations which are then solved to find
the natural frequencies. The effects of the small scale parameter, boundary conditions, thermal effect, changes
in material constant of the surrounding elastic medium, and geometric parameters on the vibration
characteristics are investigated. Furthermore, our analysis includes nonlocal double-walled carbon nanotubes
with different boundary conditions between inner and outer tubes which seem to be scarcely considered in the
literature, and the corresponding given results for this case can be considered as a benchmark for further
studies. Comparison of the present numerical results with those from the open literature shows an excellent
agreement.

Keywords: Vibration, Double-walled carbon nanotubes, Nonlocal elasticity, Timoshenko beam theory, Finite
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Introduction
Carbon nanotubes (CNTs) have occupied the chief topic
of research in nanotechnology since they were first dis-
covered by Iijima [1] in 1991. During the past two dec-
ades, research on CNTs increased as reflected by
extensive number of publications devoted to synthesis,
fundamentals, and applications of these nanostructured
materials. Their unique physical (mechanical, electrical,
and thermal) as well as chemical properties enable them
for a large variety of new applications in nanoelectronics,
nanodevices, nanocomposites, and so on [2-7]. They
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possess extraordinary strength which is measured up to
100 times that of steel at one-sixth of the weight [8], as
well as superior electrical and thermal conductivities.
Until now, a wide range of studies have been con-

ducted on the mechanical behavior of CNTs such as
buckling and bending problems using experimental
methods and molecular-dynamics (MD) simulations, but
performing experiments at the scale of nanometers is
very difficult and needs high expenses. Also, the atomis-
tic methods such as MD simulations are dependent to
the small-scale modeling. Therefore, developing con-
tinuum models which may overcome these restrictions
are expected to be the dominant tool for modeling
structures at the scale of nanometers and performing
analytical analysis of CNTs of larger scales.
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Recently, many elastic continuum models have been
successfully used for studying the bending, buckling, and
vibrational behaviors of CNTs including cylindrical shell
models [9-12] and beam models [13-21]. The beam
models implemented are often developed on the basis of
the Euler-Bernoulli theory [13-17] and the Timoshenko
beam theory [18-21] which takes the effects of shear de-
formation and rotary inertia into the consideration. Fu
et al. [22] studied the nonlinear vibrations of embedded
multiwalled nanotubes, with the inclusion of intertube
radial displacements and the internal van der Waals
(vdW) forces, using the incremental harmonic balanced
method. They only considered CNTs with simply sup-
ported end conditions. Xu et al. [23] studied free linear
vibrations of double-walled nanotubes (DWNTs) mod-
eled as elastic beams due to different boundary condi-
tions between inner and outer tubes. Related to the
work done by Fu et al. [22], Ansari et al. [24] and Ansari
and Hemmatnezhad [25] investigated the nonlinear
vibrations of single-, double- and triple-walled CNTs on
the basis of a multiple-beam model and found the non-
linear frequencies using the homotopy perturbation
method and the variational iteration method Recently,
they proposed a general finite element formulation for
investigating the nonlinear oscillations of DWNTs with
different boundary conditions [26]. They also extended
the work done by Xu et al. [23] to the large-amplitude
vibrations of DWNTs with different boundary conditions
between inner and outer tubes.
However, the continuum models proposed in all of

these works, so-called the classical continuum models,
are scale-independent and their application in small-
scale nanomaterials are of some concern. In fact, the size
effects are becoming more pronounced as the dimen-
sions of the nanostructures become very small. Hence,
continuum models more appropriate than the classical
elastic continuum models are expected to accommodate
the size dependence of nanomaterials in studies of these
materials at very small scales. Nonlocal elasticity theory
was formally initiated by Eringen [27,28] to account for
the scale effect in elasticity by assuming that the stress
state at a given point is considered as a function of the
strain state of all points in the body. The application of
nonlocal continuum mechanics allowing for the small
scale effects to the vibrational analysis of CNTs has been
suggested by many research workers including both
beam and shell theories [29-35]. Ansari and Ramezan-
nezhad in one of their recent publications studied the
nonlinear vibrations of embedded multiwalled carbon
nanotubes in thermal environments based upon the
nonlocal Timoshenko beam model [36]. They imple-
mented the harmonic balance approach in order to ana-
lytically solve the set of coupled nonlinear differential
equations. The free vibration response of single-walled
carbon nanotubes (SWNTs) using various nonlocal
beam theories was also investigated Ansari and Sahmani
[37]. In that work, the generalized differential quadrature
method (DQM) was employed to discretize the govern-
ing differential equations and obtain the fundamental
frequencies of SWNTs with different boundary condi-
tions. They also implemented MD simulations in order
to validate the obtained results. Based on the nonlocal
Euler-Bernoulli and Timoshenko beam theories, the
Ansari et al. also studied the dynamic stability of embed-
ded SWNTs under axial compression in a thermal envir-
onment [38].
A literature survey shows that the number of publica-

tions conducted on the free vibrations of CNTs using
the finite element method and based on the nonlocal
elasticity theory is scarce. Based upon a nonlocal
Timoshenko beam model, this paper studies the free vibra-
tion analysis of embedded DWNTs with different boundary
conditions between inner and outer tubes in thermal envir-
onments. The Hamilton's principle is employed to derive
the governing differential equations of motion which are
then solved using the finite element method (FEM). The
influences of nonlocal parameter, some commonly used
boundary conditions, stiffness of the elastic medium,
temperature change, and variations of the nanotube's geo-
metrical parameters on the vibration frequencies are
examined.

Nonlocal beam model for double-walled carbon
nanotubes
Unlike the conventional local elasticity, in the nonlocal
elasticity theory, it is assumed that the stress at a point
is a function of strains at all points in the continuum.
The nonlocal constitutive equation given by Eringen is
[27,28] as follows:

1� μ∇2
� �

σ ¼ t; ð1Þ

where t is the macroscopic stress tensor at a point, and
σ is the Hookean stress tensor. μ = e0a/l is the small
scale factor, where e0a is a constant appropriate to each
material, α and l are the internal and external character-
istic lengths, respectively. When the nonlocal parameter
goes to zero, nonlocal elasticity theory reduces to clas-
sical (local) elasticity theory. Hooke's law relates the
stress tensor to strain as the equation below:

t ¼ S : ε; ð2Þ

wherein S is the fourth order elasticity tensor, and ‘:’
stands for the double dot product. Since each of the
tubes is modeled as a single beam, the nonlocal constitu-
tive relations can be approximated to the following
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relations for the beams with transverse motion in the x-
z plane [34]:

σxx � e0að Þ2 d
2σxx
dx2

¼ Eεxx; σxz � e0að Þ2 d
2σxz
dx2

¼ Gγxz:

ð3Þ
In the above equation, E and G are the Young's and

shear modulus, respectively. εxx is the axial strain and
γxz stands for the shear strain. As can be seen from
Equation (3), setting the nonlocal parameter e0a equal to
zero, we arrive at the constitutive relations of the local
theories.

Thermal vibration of nonlocal DWNTs
In the case of DWNTs, each of the tubes is considered
as a beam model. The main point in the analysis is the
consideration of vdW forces between the inner and
outer tubes, that is, the pressure at any point between
any two adjacent tubes depends on the difference of
their deflections at that point. Figure 1 shows the model
of a DWNT with length l, inner diameter d1, and outer
diameter d2 embedded in an elastic medium with mater-
ial constant k as described in the Winkler model [39,40].
According to the Timoshenko beam theory, the axial

and transverse displacement components can be written
as below:

U x; tð Þ ¼ u x; tð Þ � zθ x; tð Þ;W x; tð Þ ¼ w x; tð Þ ð4Þ
in which u(x, t) and w(x, t) are the axial and transverse
displacements of the mid-plane in the x and z directions,
respectively; θ (x, t) is the cross-sectional rotation. At a
distance z from the mid-plane, the strain–displacement
relations can be written as follows:

εxx ¼ ∂u
∂x

� z
∂θ
∂x

; γxz ¼ �θ þ ∂w
∂x

: ð5Þ
Figure 1 Model of an embedded double-walled carbon nanotube.
The strain energy of the DWNT embedded in an elas-
tic medium can be defined as

V ¼ 1
2

Z L
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� �
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ð6Þ
where, A1 and A2 are the cross-sectional areas of the inner
and outer tubes, respectively. The two last integrals in
Equation (6) is the energy induced due to the compressive
loads NTi(i = 1, 2) corresponding to a temperature rise
ΔT. The thermal loads can be defined as

NTi ¼ �EαAiΔT ; ð7Þ
in which α is the thermal expansion coefficient. The re-
sultant force, moment, and the shear force are defined as

Nxi ¼
Z
Ai

σxxidAi;Mxi ¼
Z
Ai

σxxizdAi;Qxi ¼
Z
Ai

σxzidAi:

ð8Þ
Substituting Equation (5) into Equation (6) and using

Equation (8) gives

V ¼ 1
2

Z L

0
Nx1

∂u1
∂x

�Mx1
∂θ1
∂x

þ Qx1 �θ1 þ ∂w1

∂x

� �� �
dx

þ 1
2

Z L

0
Nx2

∂u2
∂x

�Mx2
∂θ2
∂x

þ Qx2 �θ2 þ ∂w2

∂x

� �� �
dx

þ 1
2
k
Z L

0
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2dx� 1
2
NT1

Z L

0
w1

02dx� 1
2
NT2

Z L

0
w2

02dx:

ð9Þ



Table 1 Frequency parameters of DWNTs with different
end conditions (k = 0, e0a = 0)

Mode L/d2 = 10 L/d2 = 50

FEM Wang [31] FEM Wang [31]

SS 1 3.0990 3.0662 3.1399 3.1438

2 5.9711 6.0378 6.2694 5.8453

3 8.4985 8.5758 9.3787 9.3509

4 10.6738 10.850 12.4581 12.536

5 12.5593 13.115 15.4991 15.726

CC 1 4.4744 - 4.7185 4.7224

2 7.0210 - 7.8098 7.8119

3 9.2712 - 10.8883 10.868

4 11.2481 - 13.9269 13.922

5 12.7234 - 16.9242 16.932
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The work done by the vdW interaction forces can be
written as

Γ c ¼ 1
2

ZL
0

f1w1dxþ 1
2

ZL
0

f2w2dx; ð10Þ

where

f1 ¼ c1 w2 � w1ð Þ; f2 ¼ �c1 w2 � w1ð Þ; ð11Þ
in which c1 is the coefficient of the vdW force between
inner and outer tubes defined as in [33]

c1 ¼ 320� 2R1ð Þerg=cm2

0:16△2
;△ ¼ 0:142nm: ð12Þ

The kinetic energy of the DWNT is given by

T ¼ 1
2

Z L

0
ρA1

∂u1
∂t

� �2

þ ρA1
∂w1

∂t

� �2

þ ρI1
∂θ1
∂t

� �2
 !

dx

þ 1
2

Z L

0
ρA2

∂u2
∂t

� �2

þ ρA2
∂w2

∂t

� �2

þ ρI2
∂θ2
∂t

� �2
 !

dx;

ð13Þ

where I1 and I2 denote the second moment of area of
the inner and outer tubes, respectively, and ρ is the mass
density of the nanotubes. The governing equations of
motion for the nonlocal DWNTs can be derived by ap-
plying Hamilton's principle as

Zt
0

δT � δV þ δΓ cð Þdt ¼ 0: ð14Þ

Substituting Equations (9), (10), and (13) into the
above equation, using variation technique and setting
the coefficients of δui, δwi, and δθi equal to zero results
into the following differential equations of motion for a
DWNT

∂Nxi

∂x
¼ ρAi

∂2ui
∂t2

; ð15aÞ

∂Qxi
∂x �mkw2 � NTi

∂2wi
∂x2 þ fi ¼ ρAi

∂2wi
∂t2 ; (15b)

∂Mxi

∂x
� Qxi ¼ ρIi

∂2θi
∂t2

; ð15cÞ

where m = 0 stands for i = 1, and m = 1 for i = 2. Using
Equations (3), (5), (8), and (15), the resultant force,
moment, and shear force of the nonlocal Timoshenko
beam theory can be written as

Nxi � e0að Þ2 ∂
2Nxi

∂x2
¼ EAi

∂ui
∂x

; ð16aÞ

Mxi � e0að Þ2 ∂
2Mxi

∂x2
¼ �EIi

∂θi
∂x

; ð16bÞ

Qxi � e0að Þ2 ∂
2Qxi

∂x2
¼ ksiGAi �θi þ ∂wi

∂x

� �
; ð16cÞ

where ksi(i = 1, 2) is the shear correction factor of the
tubes. Substituting Equation (16) into Equation (15)
gives the expressions for the nonlocal resultant force,
moment, and shear force as follows

Nxi ¼ EAi
∂ui
∂x

þ ρAi e0að Þ2 ∂3ui
∂x∂t2

; ð17aÞ

Mxi ¼ �EIi
∂θi
∂x

þ e0að Þ2 ρIi
∂3θi
∂x∂t2

þ ρAi
∂2wi

∂t2
þmkw2 þ NTi

∂2wi

∂x2
� fi

� �

ð17bÞ

Qxi ¼ ksiGAi �θi þ ∂wi

∂x

� �

þ e0að Þ2 ρAi
∂3wi

∂x∂t2
þmk

∂w2

∂x
þ NTi

∂3wi

∂x3
� ∂fi

∂x

� �
;

ð17cÞ
with fi = (−1)i + 1c1(w2 − w1). Finally, by substituting
Equation (17) into the differential equations of motion



Table 2 Dimensionless fundamental frequencies for different nonlocal parameters (L/d2 = 10, k = 107 N/m2)

Boundary
condition

μ = 0 μ = 0.1 μ = 0.15 μ = 0.2

FEM DQM [34] FEM DQM [34] FEM DQM [34] FEM DQM [34]

SS 0.3060 0.3060 0.2924 0.2920 0.2776 0.2768 0.2603 0.2591

CS 0.4602 0.4606 0.4373 0.4366 0.4128 0.4112 0.3844 0.3820

CC 0.6403 0.6403 0.6090 0.6055 0.5754 0.5687 0.5361 0.5266
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of (15), we arrive at the following set of coupled differ-
ential equations of motion for nonlocal DWNTs

EAi
∂2ui
∂x2

¼ ρAi
∂2

∂t2
ui � e0að Þ2 ∂

2ui
∂x2

� 	
; ð18aÞ

ksiGAi
∂2wi

∂x2
� ∂θi

∂x

� �
�mk w2 � e0að Þ2 ∂

2w2

∂x2

� �

�NTi
∂2wi

∂x2
� e0að Þ2 ∂

4wi

∂x4

� �
þ �1ð Þiþ1c1

� w2 � w1ð Þ � e0að Þ2 ∂2w2

∂x2
� ∂2w1

∂x2

� �� 	

¼ ρAi
∂2

∂t2
wi � e0að Þ2 ∂

2wi

∂x2

� 	
;

ð18bÞ

�EIi
∂2θi
∂x2

� ksiGAi
∂wi

∂x
� θi

� �

¼ ρIi
∂2

∂t2
θi � e0að Þ2 ∂

2θi
∂x2

� 	
: ð18cÞ

Finite element formulation for the vibrations of
DWNTs
Assume that each layer has a periodic motion. There-
fore, the displacement fields of the ith layer can be
expressed in the following form

u ið Þ x; tð Þ ¼ u ið Þ xð Þejωt ;
w ið Þ x; tð Þ ¼ w ið Þ xð Þejωt ; i ¼ 1; 2
θ ið Þ x; tð Þ ¼ θ ið Þ xð Þejωt

ð19Þ

in which w denotes the natural frequencies of DWNTand
Table 3 Dimensionless linear fundamental frequencies for dif

Boundary
condition

k = 0 N/m2 k = 107 N/m2

FEM DQM [34] FEM DQM

SS 0.2924 0.2920 0.2937 0.293

CS 0.4373 0.4366 0.4382 0.437

CC 0.6070 0.6055 0.6076 0.606
u ið Þ xð Þ ¼ N1u1 ið Þ þ N2u2 ið Þ;
w ið Þ xð Þ ¼ N3w1 ið Þ þ N4θ1 ið Þ þ N5w2 ið Þ þ N6θ2 ið Þ;
θ ið Þ xð Þ ¼ N7w1 ið Þ þ N8θ1 ið Þ þ N9w2 ið Þ þ N10θ2 ið Þ

ð20Þ

here Nk(k = 1,⋯,10) are the statically exact shape func-
tions for axial, transverse, and rotational degrees of free-
dom, respectively, and are given as [41]

N1 ¼ 1� x
L
;

N2 ¼ x
L
;

N3 ¼ 1� 12x

L 12þ ηL2
� �� 3ηx2

12þ ηL2
� �þ 2ηx3

L 12þ ηL2
� � ;

N4 ¼
ηL2 þ 6
� �

x

12þ ηL2
� �� 6þ 2ηL2

� �
x2

L 12þ ηL2
� � þ η

6
1� ηL3 þ 6L

� �
L 12þ ηL2
� �

 !
x3;

N5 ¼ 12x

L 12þ ηL2
� �þ 3ηx2

12þ ηL2
� �� 2ηx3

L 12þ ηL2
� � ;

N6 ¼ � 6x

12þ ηL2
� �� ηL2 � 6

� �
x2

L 12þ ηL2
� �þ ηx3

12þ ηL2
� � ;

N7 ¼ � 6ηx

12þ ηL2
� �þ 6ηx2

L 12þ ηL2
� � ;

N8 ¼ 1� 2 2ηL2 þ 6
� �

x

L 12þ ηL2
� � þ η

2
1� ηL3 þ 6L

� �
L 12þ ηL2
� �

 !
x2;

N9 ¼ 6ηx

12þ ηL2
� �� 6ηx2

L 12þ ηL2
� � ;

N10 ¼ � 2 ηL2 � 6
� �

x

L 12þ ηL2
� �þ 3ηx2

12þ ηL2
� �

ð21Þ

wherein η = GA/EI, where G is the shear modulus.
Substituting Equation (19) into Equation (18) and ap-
plying the Galerkin method, one would have a set of
discretized equations which can be written in the
matrix form as

K½ �e � ω2 M½ �e� �
δf ge ¼ 0; ð22Þ
ferent nonlocal parameters (L/d2 = 10, μ = 0.1)

k = 108 N/m2 k = 109 N/m2

[34] FEM DQM [34] FEM DQM [34]

4 0.3052 0.3060 0.4025 0.4112

6 0.4458 0.4461 0.5159 0.5236

2 0.6132 0.6123 0.6662 0.6707
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Figure 2 Effect of the nonlocal parameter on the fundamental frequencies of SS nonlocal DWNT.
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where superscript e stands for an element. Assembling
the element matrices into the global matrix yields

K½ � � ω2 M½ �� �
δf g ¼ 0; ð23Þ

where K and M are the global stiffness and mass
matrices, and ω is the natural frequency to be defined.

Results and discussion
Consider a DWNT with an inner diameter d1 = 2R1 =
0.7 nm and an outer diameter d2 = 2R2 = 1.4 nm, where
R1 and R2 denote the radius of the inner and outer tube
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Figure 3 Effect of the nonlocal parameter on the fundamental freque
centerline, respectively. Both tubes have Young's modu-
lus of E = 1TPa, Poisson's ratio υ = 0.25, effective thick-
ness h = 0.35 nm, mass density ρ = 2,300 kg/m3, and the
shear correction factors for tubes are ks1 = 0.75 and
ks2 = 0.64. For the present DWNT with R1 = 0.35 nm,
Equation (12) gives the vdW coefficient as c1 =
0.06943TPa. Table 1 lists the dimensionless frequen-

cies Ω ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2ρAL4= EIð Þ4

p
of DWNTs in which A = A1 +

A2 and I = I1 + I2. The boundary conditions considered
in the present analysis include combinations of simply
supported (S) and clamped (C) end conditions. A
number of 30 elements for each tube are used in the
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Figure 4 Effect of the nonlocal parameter on the first four modes of SS nonlocal DWNT (L/d2 = 10).

Table 4 Benchmark for the resonant frequencies (THz) of
a DWNT with a simple inner tube and clamped outer
tube with various length to the outer diameter ratios
(k = 0)

L/d2 Mode μ = 0 μ = 0.1 μ = 0.2

FEM Xu [23]

14 ω1 0.9097 1.05 0.8678 0.7103

ω2 2.3601 2.84 1.7807 1.1764

ω3 4.1481 5.18 2.7046 1.7232

18 ω1 0.5751 0.64 0.5471 0.4328

ω2 1.4648 1.75 1.0966 0.7206

ω3 2.6153 3.36 1.6772 1.0936

24 ω1 0.3340 0.36 0.3171 0.2446

ω2 0.8390 1.00 0.6247 0.4089

ω3 1.5162 1.94 0.9606 0.6379

28 ω1 0.2482 0.27 0.2355 0.1800

ω2 0.6203 0.73 0.4610 0.3013

ω3 1.1261 1.43 0.7103 0.4749
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following numerical evaluations. As can be seen from
Table 1, the present results match very well with those
obtained by Wang et al. [31]. Table 2 illustrates a com-
parison of the dimensionless frequencies of local and
nonlocal DWNTs for different boundary conditions
(L/d2 = 10, k = 107 N/m2). It is found that the differ-
ence between the local and nonlocal theories tends to
increase as μ increases. As would be observed, an ex-
cellent agreement is achieved with those via DQM
[34]. Table 3 shows the influence of spring constant k
on the fundamental frequencies of nonlocal DWNTs
with various boundary conditions (L/d2 = 10, μ = 0.1).
The significant dependency of this oscillation to the
surrounding elastic medium is observed. The vibration
frequencies of nanotubes rise rapidly with an incre-
ment in the stiffness of the medium. Once again, a
good agreement has been achieved with those evalu-
ated via DQM [34]. Figure 2 illustrates the variation of
the nonlocal to the local frequency ratio over the non-
local parameter of a SS DWNT for different length to
the outer diameter ratios. It is shown clearly that the
influence of small-scale effect is more significant for
higher length to the outer diameter ratios. Figure 3 is
a similar figure for DWNT with CC end conditions.
Figure 4 examines the effect of the nonlocal parameter
on the first four modes of SS nonlocal DWNT which
shows the obvious dependency of higher modes to the
nonlocal effect.
Since no literature results readily available to the

authors' knowledge, we now investigate the problem of
free vibrations of a nonlocal DWNT with different
boundary conditions of inner and outer tubes. The
material and geometrical parameters are taken from
[23], the coefficient of vdW force c1 is taken as 0.711 ×
1012 N/m2

, and the other parameters are the same as
used before. The first three frequencies of a DWNT with
SS inner tube and CC outer tube for various lengths to
the outer diameter ratios are listed in Table 4. This table
presents new results of the nonlocal effect on the vibra-
tion frequencies of DWNT with different boundary con-
ditions between the tubes which can be used as a
benchmark for further studies. The obtained results are
compared with those presented based upon the Euler-
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Bernoulli beam theory in [23] and admit a remarkable
accuracy. As can be seen, the results given by [23] over-
estimate the frequencies. Also, with the increment of the
length to the diameter of the nanotubes, the linear vibra-
tion frequencies decrease.
The influence of temperature change on the vibration

characteristics of nonlocal DWNTs is discussed. For the
case of high temperature, we set α = 1.1 × 10−6 K−1,
while for the case of low or room temperature, this value
reads as α = −1.6 × 10−6 K−1 [42]. Figure 5 clarifies the
effect of temperature changes on the fundamental fre-
quencies of a DWNT with SS inner tube and CC outer
tube against the small scale factor for the case of high
temperature (L/d2 = 50). Figure 6 is a similar plot for
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Figure 6 Effect of temperature changes on the fundamental frequenc
the case of low or room temperature. It can be con-
cluded that at low or room temperature, the vibration
frequencies for the nanotube including the thermal
effect are larger than those excluding the thermal effect
and increase with the increase of temperature, while
at high temperatures, the trend becomes reverse and
the vibration frequencies decrease with increasing
temperature.

Conclusions
On the basis of Eringen's nonlocal elasticity theory and
Timoshenko beam theory, the free vibration characteris-
tics of embedded double-walled carbon nanotubes with
arbitrary end conditions are investigated in thermal
0.2 0.25 0.3 0.35
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T=0
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ies of a DWNT for low temperatures (L/d2 = 50).
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environments. Theoretical formulations include the small
scale effect and take the effects of transverse shear de-
formation and rotary inertia into account. A multiple-
elastic beam model is used, in which equations of motion
are coupled with the aid of the van der Waals interlayer
interactions between neighbor layers. The finite element
method is employed to obtain the vibration frequen-
cies of DWNT with arbitrary end conditions. The
results obtained have been compared with those avail-
able in the open literature, and excellent correlation
has been achieved. The significant dependency of this
oscillation to the surrounding elastic medium, length
to the outer diameter ratio, and the small-scale effect
is observed. The vibration frequencies of nanotubes
rise rapidly with increasing medium stiffness. Results
obtained show that an increase in the nonlocal param-
eter results into smaller frequencies. The ratio of the
nonlocal frequency to the local frequency increases
with an increase in the length, and decreases with an
increment in the vibrational mode number of the
DWNTs.
The finite element formulation applied here is general

and can be readily extended to DWNTs with different
boundary conditions between inner and outer tubes. In
this regard, the effect of the nonlocal parameter on the
vibration frequencies of a DWNT with different bound-
ary conditions of each tube has been examined in our
analysis, and some novel numerical results are presented
perhaps for the first time. These results can be used as a
benchmark for future works in this field of study.
Furthermore, the influence of temperature change on

the vibrational behavior of DWNTs is discussed. As a re-
sult, the thermal effect on the natural frequency is
related to the temperature changes. It has been shown
that at low or room temperature, the presence of
temperature change increases the natural frequencies,
while at high temperatures, the natural frequencies de-
crease with increasing temperature.
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