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Abstract

Here a Lagrangian mesh-free formalism is presented to simulate the coalescence process between three
unequal-sized liquid drops in the three-dimensional space. The surface tension forces acting on the surface of the
drops cause the formation of a circular flat section when the droplets collide. The effect of polydispersity on the
collision dynamics is simulated using a set of droplets with radius around 30 μm. It is important to see that the
inhomogeneous distribution of the droplets size results in very important changes on the drops dynamics. The
smoothed particle hydrodynamics scheme proposed here can be used to model situations where a continuum
phase is included in the problem. The velocity vector fields are computed for each situation, and it can be seen
that in the zone of contact between the droplets, there is an increment of the velocity value. This is due to the
pressure distribution inside the drops.
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Introduction
In the literature, many studies have been proposed for the
numerical simulation of the coalescence and break up of
droplets. The authors propose different methods to ap-
proach the dynamics of liquid drops by a numerical inte-
gration of the Navier-Stokes equations. These examine the
motion of droplets and the dynamics that it follows in
time and study the liquid bridge that arises when two
drops collide. The effects of parameters such as Reynolds
number, impact velocity, drop size ratio, and internal cir-
culation are investigated, and different regimes for drop-
lets collisions are simulated. In some cases, those
calculations yield results corresponding to the four re-
gimes of binary collisions: bouncing, coalescence, reflexive
separation, and stretching separation. These numerical
simulations suggest that the collisions that lead to re-
bound between the drops are governed by macroscopic
dynamics. In these simulations the mechanism of forma-
tion of satellite drops was also studied, confirming that
the principal cause of the formation of satellite drops is
the ‘end pinching,’ while the capillary wave instabilities are
the dominant feature in cases where a large value of the
parameter impact is employed.
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In this work the smoothed particle hydrodynamics
(SPH) method is applied to simulate for the first time in
three-dimensional space the hydrodynamic coalescence
collision of three liquid drops in a vacuum environment.
This method is employed in order to obtain the approxi-
mate numerical solutions of the equations of fluid dynam-
ics by replacing the fluid with a set of particles. These
particles may be interpreted as corresponding to the
interpolation points from which properties of the fluid can
be determined. Each SPH particle can be considered as a
system of smaller particles. The SPH method is particu-
larly useful when the fluid motion produces big deforma-
tions and a large velocity of the whole fluid.
A brief review of previous studies
Rekvig and Frenkel [1] reported a molecular simulation
study of the mechanism of droplets covered with a sur-
factant monolayer coalesce. The authors proposed a
model system where the rate-limiting step in coalescence
is the rupture of the surfactant film. For this numerical
study, one made use of the dissipative particle dynamics
method using a coarse-grained description of the oil,
water, and surfactant molecules. The authors found that
the rupture rate is highest when the surfactant has a
negative natural curvature, lowest when it has a zero
natural curvature, and lying in between when it has a
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positive natural curvature. Gokhale et al. [2] studied the co-
alescence of two condensing drops and the shape evolution
of the coalesced drops. Image analyzing interferometry is
used to study the coalescence of two drops of 2-propanol,
and the shape evolution after the coalescence is found to be
driven by the capillary forces inside the drop.
Foote [3] proposed a method to study the dynamics of

liquid drops by a numerical integration of the Navier-
Stokes equations. This author examined the motion of
droplets with the application to the raindrop problem.
The study was restricted to the collision of equal-sized
drops along their line of centers. Numerical solutions were
developed to study the rebound of water droplets in air. It
is found that except for a small viscous effect, the Weber
number of the drops determines the dynamics of the colli-
sion and the bounce time. Decent et al. [4] studied the for-
mation of a liquid bridge during the coalescence of
droplets. In this paper, the authors considered a mathem-
atical model where the pressure singularity is removed at
the instant of the impact for the coalescence of two vis-
cous liquid volumes in an inviscid gas or in a vacuum en-
vironment. The formation of the liquid bridge is examined
for two cases: (a) two infinitely long liquid cylinders, and
(b) two coalescing spheres. In both cases the numerical so-
lutions are calculated for the velocity and pressure fields,
and the removal of the pressure singularity is confirmed.
Mohamed-Kassim and Longmire [5] conducted par-

ticle image velocimetry (PIV) experiments to study the
coalescence of single drops through planar liquid/liquid
interfaces. Sequences of velocity vector fields were
obtained with a high-speed video camera and the subse-
quent PIV analysis. Two ambient liquids with different
viscosities but similar densities were examined. After
rupture, the free edge of the thin film receded rapidly,
allowing the drop fluid to sink into the bulk liquid
below. The vorticity generated in the collapsing fluid de-
veloped into a vortex ring, straddling the upper drop
surface. The inertia of the collapse deflected the inter-
face downward before it rebounded upward. During this
time, the vortex core split so that part of its initial vorti-
city moved inside the drop fluid while part of it
remained in the ambient fluid above it. The velocity of
the receding free edge was smaller for higher ambient
viscosity, and the pinching of the upper drop surface
caused by the shrinking capillary ring wave was stronger
when the ambient viscosity was lower. This resulted in a
higher maximum collapse speed and higher vorticity
values in the dominant vortex ring.
Qian and Law [6] proposed an experimental investiga-

tion of binary collision of drops with emphasis on the
transition between different regimes, which may be
obtained as an outcome of the collision between drop-
lets. In this study the authors analyzed the results using
photographic images, which show the evolution of the
dynamics exhibited for different values of the Weber num-
ber. As a result of the experiment reported by Qian and
Law [6], five different regimes governing the collision be-
tween droplets are proposed: (a) coalescence after a small
deformation, (b) bouncing, (c) coalescence after substan-
tial deformation, (d) coalescence followed by separation
for head-on collisions, and (e) coalescence followed by
separation for off-center collisions. Ashgriz and Poo [7]
conducted an experimental study of the binary collision of
water droplets for a wide range of Weber numbers and
impact parameters. These authors identified two types of
collisions leading to the drops separation, which can be re-
flexive separation and stretching separation. It is found
that the reflexive separation occurs in head-on collisions,
while stretching separation occurs in high values of the
impact parameter. Experimentally, the authors reported
the border between the two types of separation and also
collisions that lead to coalescence.
Narsimhan [8] proposed a model for drop coalescence

in a turbulent flow field as a two-step process consisting
in the formation of a doublet due to drop collisions
followed by coalescence of the individual droplets occur-
ring after the drainage of the intervening film by the ac-
tion of van der Waals, electrostatic, and random
turbulent forces. The turbulent flow field was assumed
to be locally isotropic. A first-passage-time analysis was
employed for the random process in the intervening
continuous phase film between the two drops. The first
two moments of coalescence time distribution of the
doublet were evaluated. The average drop coalescence
time of the doublet was dependent on the barrier due to
the net repulsive force. The predicted average drop co-
alescence time was found to decrease whenever the ratio
of the average turbulent force to repulsive force barrier
became larger. The calculated coalescence time distribu-
tion was broader with a higher standard deviation at
lower energy dissipation rates, higher surface potentials,
smaller drop sizes, and smaller size ratios of unequal
drop pairs. Zhang et al. [9] conducted a study on coales-
cence of unequal-sized drops. In this study the coales-
cence of a drop with a flat liquid surface pinches off a
satellite droplet from its top, whereas the coalescence of
two equally sized drops does not appear to produce, in
this case, a satellite drop. The authors found that the
critical ratio grows monotonically with the Ohnesorge
number and, as reported, the experimental coalescence
of two unequal-sized droplets.
Yoon et al. [10] carried out a study about the coalescence

of two equal-sized deformable drops in an axisymmetric
flow using a boundary integral method. The thin film dy-
namics are simulated up to a film thickness of 10 to 4
times the non-deformed drop radius. The authors studied
two different regimes for head-on collisions between the
droplets. At lower capillary numbers, the interfaces of the
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film between the drops remain in a circular flat form up to
the film rupture. At higher capillary numbers, the film be-
comes dimpled at an early stage of the collision process;
also, the rate of the film drainage slows down after the
dimple formation. Mashayek et al. [11] studied the coales-
cence collision of two liquid drops using a Galerkin finite
element method in conjunction with the spine-flux method
for the free surface tracking. The effects of some parame-
ters like Reynolds number, impact velocity, drop size ratio,
and internal circulation on the coalescence process were
investigated. The long-time oscillations of the coalesced
drops and the collision of unequal-sized liquid drops were
studied to illustrate the liquid mixing during the collision.
Aarts et al. [12] proposed a study of droplet coalescence
in a molecular system with a variable viscosity and a
colloid-polymer mixture with an ultra-low surface ten-
sion. When either the viscosity is large or the surface
tension is small enough, one can observe that the open-
ing of the liquid bridge initially proceeds at a constant
speed set by the capillary velocity. In the first system
studied, one finds that the inertial effects become dom-
inant at a Reynolds number of about 1.5, and the neck
then grows as the square root of time. In the second sys-
tem, one finds that decreasing the surface tension by a
factor of 105 opens the way to a more complete under-
standing of the hydrodynamics involved. Thoroddsen et al.
[13] conducted an experimental study of surface profiles
and propagation of Marangoni waves along the surface of a
drop. One finds that the capillary-Marangoni waves along
the water drop show self-similar character when measured
in terms of the arc length of the original surface. The co-
alescence for different liquids is also studied, finding that
the coalescence velocity of a water drop with a more vis-
cous liquid is nearly independent of the viscosity difference
strength.
Cristini et al. [14] proposed an algorithm for the adap-

tive restructuring of meshes on the evolving surfaces. The
resulting discretization depends on the instantaneous con-
figuration of the surface. As an application of the adaptive
discretization algorithm, some simulations of the drop
breakup and coalescence were presented. The results show
that the algorithm can accurately resolve detailed features
of the deformed fluid interfaces and the slender filaments
of the drop breakup as well as dimpled regions with drop
coalescence. Wang et al. [15] studied the effect of glycerol
on the coalescence of water drops in stagnant oil phase. In
this reference the authors considered the binary coales-
cence of water drops formed through capillaries at low in-
let flow rates in an immiscible stagnant oil phase. The
evolution of the coalescence process is shown in this case.
Sun et al. [16] conducted a study of deformation and mass
transfer for binary droplet collisions with the moving
particle semi-implicit method. A surface tension model
is implemented in numerical simulations to study large
deformation processes and a mechanism map is reported
to distinguish different collisions regimes.
Xing et al. [17] put forward a lattice Boltzmann

method-based-single-phase free surface model to study
the interfacial dynamics of coalescence, droplet forma-
tion, and detachment phenomena related to surface ten-
sion and wetting effects. A perturbation similar to the
first step in Gunstensen’s color model is added to the
distribution functions of the interface cells in order to
incorporate the surface tension into the single-phase
model. Implementations of the model are verified by
simulating the processes of droplet coalescence, droplet
formation, and detachment from ceiling and from noz-
zles with different shapes and different wall wetting
properties.
Jia et al. [18] proposed a lattice Boltzmann simulation

for collisions between two liquid drops in an immiscible li-
quid in a linear Stokes flow. The results reported in this
reference were compared to the experimental results and
the asymptotic solutions. The mixing of a contaminant
that is initially contained in one of the drops is discussed
and compared to the results of particle tracking simula-
tions. In this study Jia et al. [18] verified that the Oxford
approach of the lattice Boltzmann method can be used to
perform useful simulations of drop coalescence in which
the mixing of a chemical contaminant that is initially con-
fined to one of the drops occurs. The lattice Boltzmann
method solutions were compared with analytical results.
The most significant finding was that after the coalescence
of a pure drop with a contaminated drop, the contaminant
is initially confined to half of the product drop. The results
for mixing subsequent to coalescence are in agreement
with the results obtained from tracking marker particles in
the exact flow field for a spherical drop in a shear flow.
The simulations with marker particles suggest that mixing
occurs more rapidly in drops with much smaller viscos-
ities than the suspending medium and that diffusion is the
dominant mechanism of mixing for Schmidt numbers
smaller than about 50. For larger values the dimensionless
mixing time is relatively insensitive to the Schmidt
number.
Wu et al. [19] reported experimental results on the co-

alescence of two liquid drops driven by surface tension.
Using a high-speed imaging system, the authors studied
the early-time evolution of the liquid bridge that is formed
upon the initial contact of two liquid drops in air. It is
found that the liquid bridge radius follows the scaling law
in the inertial regime. Further experiments demonstrate
that such scaling law is robust when using fluids of differ-
ent viscosities and surface tensions. The dimensionless
pre-factor is measured to be in the range of 1.03 to 1.29,
which is lower than the pre-factor 1.62 predicted by the
numerical simulation of Duchemin et al. [20] for inviscid
drop coalescence.
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Colagrossi and Landrini [21] put forward an SPH for-
mulation for the simulation of interfacial flows, that is,
flow fields of different fluids separated by interfaces. The
scheme proposed for the simulation of interfacial flows
starts considering that the fluid field is represented by a
collection of N particles interacting with each other
according to evolution equations of the general form

dρi
dt

¼ −ρi∑
j
Mij;

dui

dt
¼ −

1
ρi
∑
j
Fij þ f i;

dxi
dt

¼ ui:

ð1Þ

The terms Mij and Fij arise from the mass and mo-
mentum conservation equations. In the Equation 1, the
density ρi, the velocity ui of the particles, and the force fi
which can be any body force appear. When there are
fluid regions with a sharp density gradient (interfaces),
the SPH standard formulations must be modified in
order to be applied to treat such systems. This difficulty
can be circumvented using the following discrete ap-
proximations

div uið Þ ¼ ∑
j
uj − ui
� �

⋅∇Wji
mj

ρj
;

∇Ai ¼ ∑
j
Aj − Ai
� �

∇Wji
mj

ρj
:

ð2Þ
Here W is the kernel or smoothing function and A

can be any scalar field or continuous function. The small
difference between the Equation 2 and the standard
equation that uses mj/ρi instead mj/ρj is important for
the treatment of the case of small density ratios. On the
other hand, it can be shown that the pressure gradient
can be written as

∇pi ¼ ∑
j
pj þ pi
� �

∇WjidV j: ð3Þ

Equation 3 is variationally consistent with Equation 2. In
this scheme the terms Mij and Fij appearing in Equation 1
are given by the expressions

Mij ¼ uj − ui
� �

⋅∇Wji
mj

ρj
;

Fij ¼ pj þ pi
� �

∇Wji
mj

ρj
:

ð4Þ

A density re-initialization is needed when each particle
has a fixed mass; and when the number of particles is
constant, the mass conservation is satisfied. Yet if one uses
Equation 1 for the density, the consistency between mass,
density, and occupied area is not satisfied. To solve this
problem, the density is periodically re-initialized applying
the expression

ρi ¼ ∑
j
mjWij: ð5Þ

In this formulation special attention must be paid to
the kernel. In fact, depending on which kernel is used,
Equation 5 could introduce additional errors. For this
reason, a first-order interpolation scheme is suitable to
re-initialize the density field by using the equation

ρi
� � ¼ ∑

j
ρjW

MLS
j xið ÞdV j ¼ ∑

j
mjW

MLS
j xið Þ; ð6Þ

where WMLS
j is the moving least-square kernel.

The XSPH (extended smoothed particle hydrodynam-
ics, which is a variant of the SPH method for the model-
ing of free surface flows) velocity correction Δui is
introduced to prevent particles inter-penetration, which
takes into account the velocity of the neighbor particles
using a mean value of the velocity, according to the
equations

uih i ¼ ui þ Δui; Δui ¼ ε0

2
∑
j

mj

�ρij
uj−ui
� �

Wji; ð7Þ

Where �ρij is the mean value of density between the ith

and jth particle, and ε’ is the relative change of an arbi-
trary quantity between simulations. Morris [22] pro-
poses a method for the simulation of two-phase flows
including surface tension forces. The approach is based
on the SPH formalism. Due to the full Lagrangian fea-
tures of the SPH method that maintains fluid-fluid in-
terfaces without employing high-order advection
schemes, several possible implementations of surface
tension force are suggested in this reference. The
author-made comparisons with a grid-based volume of
fluid method for two-dimensional flows are excellent.
The methods presented by Morris [22] apply to prob-
lems involving interfaces of arbitrary shape undergoing
fragmentation and coalescence within a two-phase
system.
Hu and Adams [23] proposed a multi-phase SPH

method for both macroscopic and mesoscopic flows. In
this reference the particle-averaged spatial derivative
approximations are derived from a particle smoothing
function in which the neighboring particles only con-
tribute to the specific volume; this method handles
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density discontinuities across phase interfaces naturally.
The newly formulated viscous terms allow for a discon-
tinuous viscosity and ensure continuity of velocity and
shear stress across the phase interface. Based on this
formulation, thermal fluctuations are introduced in a
straightforward way. A new simple algorithm is pro-
posed. Adami et al. [24] proposed a conservative
method for the simulation of multi-phase flows with
surfactant. The effects of the surface tension active sub-
stances are included by a scalar quantity describing the
local concentration of molecules in the bulk phase and
on the interface. This method can simulate insoluble
surfactant on an arbitrary interface geometry as well as
interfacial transport such as adsorption or desorption.
The flow field dynamics and the surfactant dynamics
are coupled through a constitutive equation, which re-
lates the local surfactant concentration to the local sur-
face tension coefficient. Hence, the surface tension
model includes capillary and Marangoni forces. Hu and
Adams [25] also proposed an incompressible multi-
phase SPH method. A fractional time step method is in-
troduced to enforce both the zero-density-variation
condition and the velocity-divergence-free condition at
each full time step. To obtain sharp density and viscos-
ity discontinuities in an incompressible multi-phase
flow, a new multi-phase projection formulation, in
which the discretized gradient and divergence operators
do not require a differentiable density or viscosity field,
is proposed in [25]. A constant density approach for in-
compressible multi-phase SPH simulations was intro-
duced by Hu and Adams [26], which corrects ([25])
intermediate density errors by adjusting the half-time-step
velocity with exact projection.
Adami et al. [27] proposed a new surface tension

formalism in the framework of the smoothed particle
hydrodynamics scheme to simulate multi-phase flows.
To obtain a stable and accurate scheme for surface
curvature, a divergence approximation is derived. Fur-
thermore, the authors introduce a density-weighted
color-gradient formulation to reflect the reality of an
asymmetrically distributed surface tension force. This
formulation can handle phase interfaces with density
and viscosity ratios of up to 1,000 and 100, respect-
ively. Acevedo-Malavé and García-Sucre [28-31] ap-
plied the SPH method to model for the first time the
hydrodynamical coalescence collisions of two and
many droplets in vacuum environment. In these stud-
ies the authors reported the formation of clusters of
equal-size drops, where the effect of the surface ten-
sion arises due to the formation of flocs. It can be
seen that the smoothing function used here was the
cubic B-spline kernel [32], and the equation of the
state considered was a general Mie-Gruneisen form of
EOS for water drops.
Numerical details
The smoothed particle hydrodynamics formalism
Smoothed particle hydrodynamics is a method to solve
approximately the equations of fluid dynamics, replacing
the fluid by a set of particles. The SPH method was sim-
ultaneously invented by Lucy [33] and Gingold and
Monaghan [34] to solve astrophysical problems.
In the SPH model, the fluid is represented by a

discrete set of N particles. The position of the ith par-
ticle is denoted by the vector ri, i = 1, … , N. The SPH
scheme is based on the idea that a smoothed representa-
tion As(r) of the continuous function A(r) can be
obtained from the convolution integral

As rð Þ ¼ ∫A r0ð ÞW r−r0; hð Þdr0: ð8Þ
Here h is the smoothing length, and the smoothing

function W satisfies the normalization condition

∫W r−r0; hð Þdr0 ¼ 1: ð9Þ
The integration is performed over all spaces. In the

limit of h tending to 0, the smoothing function W be-
comes a Dirac delta function, and the smoothed repre-
sentation As(r) tends to A(r).
In the SPH scheme, the properties associated with par-

ticle i are calculated by approximating the integral in
Equation 8 by the sum

Ai ¼ ∑
j
ΔV jAjW ri−rj; h

� �
¼ ∑

j
mj

Aj

ρj
W ri−rj; h
� �

:
ð10Þ

Here ΔVj is the fluid volume associated with particle j,
and mj, and ρj are the mass and density of the jth par-
ticle, respectively. In the above sum, Aj is the value of a
physical field A(r) in the particle j, and the sum is
performed over all particles. Furthermore, the gradient
of A is calculated using the expression

∇Ai ¼ ∑
j
mj

Aj

ρj
∇iW ri−rj; h

� �
: ð11Þ

In the Equation 10, ρi/mi can be replaced by the par-
ticle number density ni = ρi/mi so that

Ai ¼ ∑
j

Aj

nj
W ri−rj; h
� �

: ð12Þ
The particle number density can be calculated using

the expression

ni ¼ ∑
j
W ri−rj; h
� �

; ð13Þ

and the mass density is given by

ρi ¼ ∑
j
mjW ri−rj; h

� �
: ð14Þ
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Similarly, the gradient can be calculated using the ex-
pression

∇Ai ¼ ∑
j

Aj

nj
∇iW ri−rj; h

� �
: ð15Þ

The velocity and acceleration fields are given by [28]

dri
dt

¼ vi;

dvαi
dt

¼
XN
j¼1

mj
σαβi
ρ2i

þ σαβj
ρ2j

 !
⋅∇Wh

ij;
ð16Þ

where σ is the total stress tensor.
The internal energy evolution is given by the expres-

sion [28]

dEi

dt
¼ 1

2

XN
j¼1

mj
pi
ρ2i

þ pj
ρ2j

 !
vβi −v

β
j

� � ∂Wij

∂xβi
þ μi
2ρi

εαβi εi
αβ;

ð17Þ
In the above equation, p is the pressure, μ is the dy-

namic viscosity, and ε is the shear strain rate.
In the present work, the model is performed in three

dimensions and the cubic B-spline kernel is used [32]. In
this paper, water drops are considered and the equation
of state in the hydrodynamical code was a general Mie-
Gruneisen form of equation of state with different ana-
lytic forms for states of compression (ρ/ρ0-1) > 0 and
tension (ρ/ρ0-1) < 0 [28].
This equation has several parameters, namely, the

density ρ, the reference density ρ0, and the constants A1,
A2, A3, C1, and C2. This equation of state defines the
pressure P as

P ¼ A1
ρ

ρ0
−1

� 	
þ A2

ρ

ρ0
−1

� 	2

þ A3
ρ

ρ0
−1

� 	3

if
ρ

ρ0
−1

� 	
> 0 ð18Þ

and

P ¼ C1
ρ

ρ0
−1

� 	
þ C2

ρ

ρ0
−1

� 	
if

ρ

ρ0
−1

� 	
< 0:

ð19Þ

In all calculations the following values are used for
the constants: A1 = 2.20 × 106 kPa, A2 = 9.54 × 106 kPa,
A3 = 1.46 × 107 kPa, C1 = 2.20 × 106 kPa, C2 = 0.00 kPa,
and ρ0 = 1,000.0 kg/m3.
The convergence of the SPH method
The convergence of the smoothed particle hydrodynamics
method can be proved if one follows the conjectures of Di
Lisio et al. [35]. Theorems 1 and 2 of [35] can be directly ap-
plied to show the convergence of the sequence of empirical
measures {μN(t)}N = 1,2, … , whose evolution is stated, for
any N, by the equations of motion of the SPH scheme, to
the solution of the problem as N → ∞. If the points xi are
independent identically distributed random variables of
probability μ, then the empirical measures

vN ¼ 1
N
∑N

i¼1δxi; N ¼ 1; 2;… ð20Þ

converge to the measure μ, that is, for any measurable
bounded function

f : ∫vN dxð Þf xð ÞN→∞
→ ∫μ dxð Þf xð Þ; ð21Þ

for suitable sequences xl, x2, … , xn, ....
If one considers the quantity

∫vN dxð Þf xð Þ−∫μ dxð Þf xð Þð Þ2; ð22Þ

its expectation value gives

∫
1
N
∑
i
f xið Þ − ∫μ dxð Þf xð Þ

� 	2

μ dx1ð Þ…μ dxNð Þ

¼ 1
N

∫ f 2 xð Þμ dxð Þ − ∫f xð Þμ dxð Þ
� �2
 �

:

ð23Þ

The quantity in the square brackets is bounded and
the expectation value goes to 0 as N → ∞. This means
that for almost all the sequences of initial conditions,
the empirical measures converge to the measure μ0, as
N → ∞ [35].

Results and discussion
Numerical simulation of the coalescence phenomenon
between unequal-sized liquid drops
In order to simulate the hydrodynamical coalescence
collisions between three unequal-sized water drops, the
smoothed particle hydrodynamics formalism has been
employed. Inside the SPH code were defined drops with
10, 16, and 30 μm of diameter and 26,656 SPH particles
for the three drops with a collision velocity of 15.0 mm/
ms directed to the center of the coordinate system.



Figure 1 Sequence of times showing the evolution of the collision between three drops (permanent coalescence). The evolution of time
is given in milliseconds; Vcol = 15.0 mm/ms.

Figure 2 Velocity vector field for collision between three drops at t = 2.7 × 10−4 ms (permanent coalescence). The evolution time is
given in milliseconds; Vcol = 15.0 mm/ms.
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Figure 3 Sequence of times showing the evolution of the collision between three drops (fragmentation). The evolution of time is given
in milliseconds; Vcol = 30.0 mm/ms.

Figure 4 Velocity vector field for the collision between three drops at t = 2.0 × 10−4 ms (fragmentation). The evolution time is given in
milliseconds; Vcol = 30.0 mm/ms.
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Figure 5 Sequence of times showing the evolution of the collision between three drops with Vcol = 0.5 mm/ms. The evolution of time is
given in milliseconds.
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It can be seen in Figure 1 that at t = 1.3 × 10−4 ms, a flat
circular section appears, which increases its diameter as
dynamics progresses. It is observed in the dynamics that
at t = 1.8 × 10−4 ms, a bridge structure between the drops
appears in the region of contact, which disappears at a
later time due to the penetration of SPH particles between
the drops. Figure 2 shows the velocity vector field inside
the droplets as well as in the region of contact between
them at t = 2.7 × 10−4 ms. It is important to see that inside
the drops, the fluid tends to have a velocity value around
Figure 6 Velocity vector field for the collision between three drops a
Vcol = 0.5 mm/ms.
the initial velocity of 12.00 mm/ms, while in the area of
contact between the drops, an increase in the fluid velocity
to a value of 17.0 mm/ms is observed.
The outcomes reported by Qian and Law [6] are in good

agreement with this results; in fact, the experimental study
of these authors shows a similar scenario when two drops
approach each other (see Figure four (a) of reference [6]).
In this SPH calculation, the relative velocity is not enough
to produce fragmentation of the drops and subsequently
to produce small satellite droplets. In this calculation, the
t t = 3.2 × 10−3 ms. The evolution time is given in milliseconds;
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coalescence is permanent and the resulting deformed drop
reaches the equilibrium. On the other hand, the experi-
ments of Qian and Law [6] do not have a sufficient reso-
lution to show in detail the deformation of the drops just
before the formation of the bridge. However, the appear-
ance of the flat circular section shown in Figure 1 is in
good agreement with the experimental and theoretical
outcomes reported in the literature [36-40].
In order to simulate the fragmentation phenomenon,

inside the SPH code were defined drops with 10, 16, and
30 μm of diameter and 26,656 SPH particles for the
three drops with a collision velocity of 30.0 mm/ms di-
rected to the center of the coordinate system. With this
value for the velocity of collision, it is observed that the
fragmentation phenomenon arises. In the first stage of
the calculation at t = 6.5 × 10−5 ms, the collision of the
three droplets is shown in Figure 3. After this slide, a
wave front can be seen traveling at the zone of inter-
action between the drops until at 2.6 × 10−4 ms, which
is the time where the dynamic was stopped. Figure 4
shows the velocity vector field after the fragmentation of
the drops has taken place. As shown in Figure 4, the fluid
velocity inside the drops is 27 mm/ms, which is less than
the initial rate of collision, while the fluid that is spread to
the edges is accelerated reaching a speed of 35.0 mm/ms.
A longer stretched ligament is produced between the
drops, and the amount of satellite droplets increases with
the evolution of dynamics. Figure 3 illustrates that a small
portion of the fluid begins to separate, stretching away
from the bigger drop, and a nonuniform pressure field is
created inside the ligament. This is related to the value in
the velocity vector field differences [22].
Flocculation occurs when the collision velocity is de-

creased below the range corresponding to permanent
coalescence. These calculations were performed for
droplets with 10, 16, and 30 μm of diameter and 26,656
SPH particles for the three drops with a collision velocity
of 0.5 mm/ms directed to the center of the coordinate
system. At the beginning of the calculation, it can be ob-
served at t = 2.0 × 10−3 ms (see Figure 5) that a flat cir-
cular section appears between the three droplets. It can
be seen in this calculation that the surface tension forces
prevailing and the inertial forces are of secondary im-
portance. As the dynamics run, a stretching of the sur-
face of the drops until t = 3.2 × 10−3 ms can be observed
and the droplets form a floc. Figure 6 shows the velocity
vector field at t = 3.2 × 10−3 ms in the flocculation
process. As shown in Figure 6, the fluid velocity inside
the drops is around 0.4 mm/ms and at the zone of con-
tact of the droplets, the velocity is around 0.3 mm/ms.

Conclusions
An adequate methodology using the SPH method in
three-dimensional space was presented for the calculation
of hydrodynamics collisions. As a result of the collision
between droplets, the formation of a flat circular section
was obtained for a range of values of the collision velocity.
This flat circular section appears due to the existence of
surface tension forces acting on each droplet. Some pos-
sible outcomes for the collision process were found: co-
alescence, fragmentation, and flocculation of liquid drops.
The velocity vector fields were constructed for the differ-
ent cases. It can be seen that the fluid inside the drops
tends to accelerate the SPH particles at the zone of contact
between the droplets. This behavior is due to the
nonuniform pressure differential inside the drops. At the
zone of the drops that have no interaction with any other
drop, the fluid tends to diminish the internal velocity. This
can be explained by the behavior of the pressure field in-
side the drops; in fact, in that zone of the droplets, the in-
homogeneous pressure field has a minimal value.
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