
Kabir et al. Journal of Theoretical and Applied Physics 2013, 7:31
http://www.jtaphys.com/content/7/1/31
RESEARCH Open Access
Effects of viscous dissipation on MHD natural
convection flow along a vertical wavy surface
Kazi H Kabir1*, Md A Alim2 and Laek S Andallah3
Abstract

An analysis is presented to investigate the influences of viscous dissipation on MHD natural convection flow along
a uniformly heated vertical wavy surface. The governing equations are transformed into dimensionless non-similar
equations using a set of suitable transformations and solved numerically by the implicit finite difference method
known as the Keller box scheme. Numerical results for the velocity profiles, temperature profiles, skin friction
coefficient, and the rate of heat transfers are shown graphically and in tabular form for different values of the
selective set of parameters.

Keywords: Natural convection; Uniform surface temperature; Wavy surface; Magnetic parameter; Prandtl number
Background
The viscous dissipation effect plays an important role in
natural convection in various devices which are subjected
to large deceleration or which operate at high rotational
speeds and also in strong gravitational field processes on
large scales (on large planets) and in geological processes.
The natural convection along a vertical wavy surface was
first studied by Yao [1] and using an extended Prantdl's
transposition theorem and a finite difference scheme. He
proposed a simple transformation to study the natural
convection heat transfer from isothermal vertical wavy
surfaces, such as the sinusoidal surface. Moulic and Yao
[2] also investigated mixed convection heat transfer along
a vertical wavy surface. Alam et al. [3] have also studied
the problem of free convection from a wavy vertical sur-
face in the presence of a transverse magnetic field. Com-
bined effects of thermal and mass diffusion on the natural
convection flow of a viscous incompressible fluid along a
vertical wavy surface have been investigated by Hossain
and Rees [4]. Wang and Chen [5] investigated transient
force and free convection along a vertical wavy surface in
micropolar fluid. Hossain [6] studied the problem of nat-
ural convection of fluid with temperature-dependent vis-
cosity along a heated vertical wavy surface. Natural and
mixed convection heat and mass transfer along a vertical
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wavy surface have been investigated by Jang [7,8]. Re-
cently, Molla et al. [9] have studied natural convection
flow along a vertical wavy surface with uniform surface
temperature in the presence of heat generation/absorption.
Tashtoush and Al-Odat [10] investigated magnetic field
effect on heat and fluid flow over a wavy surface with a
variable heat flux. Hossain [11] investigated the natural
convection flow past a permeable wedge for the fluid hav-
ing temperature-dependent viscosity and thermal conduct-
ivity. Very recently, Parveen and Alim [12] investigated
Joule heating effect on magnetohydrodynamic natural con-
vection flow along a vertical wavy surface with viscosity
dependent on temperature. The thermal conductivity of
the fluid had been assumed to be constant in all the above
studies. However, it is known that this physical property
may be changed significantly with temperature.
The present study aims to incorporate the idea of the

effects of viscous dissipation on MHD natural convec-
tion flow along a uniformly heated vertical wavy surface.
Numerical results of the velocity profiles, temperature
profiles, local skin friction coefficient, and rate of heat
transfer are shown graphically. Some selected results of
skin friction coefficient and rate of heat transfer for dif-
ferent values of magnetic parameter M have been shown
in tabular form and then discussed.
Formulation of the problem
Steady two-dimensional laminar free convection bound-
ary layer flow of a viscous incompressible and electrically
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conducting fluid along a vertical wavy surface in the
presence of magnetic field is considered. It is assumed
that the wavy surface is electrically insulated and is
maintained at a uniform temperature Tw. The fluid is
stationary above the wavy plate and is kept at a
temperature T∞. The surface temperature Tw is greater
than the ambient temperature T∞, that is, Tw > T∞. The
flow configuration of the wavy surface and the two-
dimensional Cartesian coordinate system are shown in
Figure 1.
The boundary layer analysis outlined below allows

�σ Xð Þ being arbitrary, but our detailed numerical work
assumed that the surface exhibits sinusoidal deforma-
tions. The wavy surface may be defined by:

Yw ¼ �σ Xð Þ ¼ α sin
nπX
L

� �
; ð1Þ

where α is the amplitude and L is the wavelength associ-
ated with the wavy surface.
The governing equations of such flow of magnetic field

along a vertical wavy surface under the usual Boussinesq
approximations can be written in a dimensional form as:
Continuity equation

∂U
∂X

þ ∂V
∂Y

¼ 0; ð2Þ
Figure 1 Physical model and coordinate system.
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ρCP
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� �2

; ð5Þ

where (X, Y) are the dimensional coordinates along and
normal to the tangent of the surface, (U, V) are the vel-
ocity components parallel to (X, Y), g is the acceleration
due to the Earth's gravity, P is the dimensional pressure
of the fluid, T is the temperature of the fluid in the
boundary layer, Cp is the specific heat at constant pres-
sure, μ is the viscosity of the fluid, ρ is the density, ν is
the kinematic viscosity, where ν = μ/ρ, k is the thermal
conductivity of the fluid, β is the volumetric coefficient
of thermal expansion, B0 is the strength of the magnetic
field, σ0 is the electrical conductivity of the fluid, and ∇2

is the Laplacian operator, where ∇2 ¼ ∂2
∂x2 þ ∂2

∂y2 :

The boundary conditions for the present problem are:

U¼0;V¼0;T¼Tw at Y¼Yw¼�σ Xð Þ
U¼0;T¼T∞ as Y→∞ : ð6Þ

Using Prandtl's transposition theorem to transform the
irregular wavy surface into a flat surface as extended by
Yao [1] and the boundary layer approximation, the fol-
lowing dimensionless variables are introduced for non-
dimensionalizing the governing equations:

x ¼ X
L
; y ¼ Y− �σ

L
Gr

1
4; p ¼ L2

ρν2
Gr−1P;

u ¼ U
u0

¼ ρL
μ
Gr−1=2U ; v ¼ ρL

μ
Gr−1=4 V−σxUð Þ;

θ ¼ T−T∞

Tw−T∞
; σx ¼ d�σ

dX
¼ dσ

dx
;Gr ¼ gβ Tw−T∞ð Þ

ν2
L3

ð7Þ

where u0 ¼ μ
ρL Gr

1
2= is the characteristic velocity, θ is the

dimensionless temperature function, and (u, v) are the
dimensionless velocity components parallel to (x, y).
Here, p is the dimensionless pressure of the fluid, L is
the wavelength associated with the wavy surface, and Gr
is the Grashof number. Introducing the above dimen-
sionless dependent and independent variables into
Equations 2 to 5, the following dimensionless form of
the governing equations are obtained after ignoring
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terms of smaller orders of magnitude in the Grashof
number Gr,

∂u
∂x

þ ∂v
∂y

¼ 0; ð8Þ

u
∂u
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þ v
∂u
∂y

¼ −
∂p
∂x

þ Gr1=4σx
∂p
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þ 1þ σ2
x

� � ∂2u
∂y2

−Muþ θ;

ð9Þ
σx u

∂u
∂x

þ v
∂u
∂y

� �
¼ −Gr1=4

∂p
∂y

þ σx 1þ σ2
x

� � ∂2u
∂y2

−σxxu
2;

ð10Þ
u
∂θ
∂x

þ v
∂θ
∂y

¼ 1
Pr

1þ σ2
x

� � ∂2θ
∂y2

þ Ec
∂u
∂y

� �2

: ð11Þ

It is worth noting that the σx and σxx indicate the first
and second derivatives of σ with respect to x; therefore,
σx ¼ d�σ=dX ¼ dσ=dx and σxx = dσx/dx.
In the above equations, Pr, M, and Ec are respectively

known as the Prandtl number, magnetic parameter, and
viscous dissipation parameter (characterized by the
Eckert number), which are defined as:

Pr ¼ Cpμ

k
;M ¼ σ0B2

0L
2

μGr1=2
; Ec ¼ u20

Cp Tw−T∞ð Þ : ð12Þ

For the present problem, this pressure gradient
(∂ p/∂ x = 0) is 0. Thus, the elimination of ∂ p/∂ y from
Equations 9 and 10 leads to:

u
∂u
∂x

þ v
∂u
∂y

¼ 1þ σ2
x

� � ∂2u
∂y2

−
σxσxx

1þ σ2
x
u2−

M
1þ σ2

x
uþ 1

1þ σ2x
θ:

ð13Þ
The corresponding boundary conditions for the

present problem then turn into:

u ¼ v ¼ 0; θ ¼ 1 at y ¼ 0
u ¼ 0; θ ¼ 0 as y→∞

�
: ð14Þ

Now, we introduce the following transformations to
reduce the governing equations to a convenient form:

ψ ¼ x3=4f x; ηð Þ; η ¼ yx−1=4; θ ¼ θ x; ηð Þ; ð15Þ
where f(x, η) is the dimensionless stream function, η is
the dimensionless similarity variable, and ψ is the stream
function that satisfies the continuity Equation 8 and is
related to the velocity components in the usual way as:

u ¼ ∂ψ
∂y

; v ¼ −
∂ψ
∂x

: ð16Þ

Introducing the transformations given in Equation 15
and using (16) into Equations 13 and 11 are transformed
into the new coordinate system. Thus, the resulting
equations are:

1þ σ2x
� �

f ‴ þ 3
4
f f ″−

1
2
þ xσxσxx

1þ σ2x

� �
f ′

2 þ 1
1þ σx

2
θ

−
Mx1=2

1þ σ2x
f ′ ¼ x f ′

∂f ′

∂x
−f ″

∂f
∂x

� � ;

ð17Þ

1
Pr

1þ σ2x
� �

θ″ þ 3
4
f θ′ þ Ecx f ″

� �2

¼ x f ′
∂θ
∂x

−θ′
∂f
∂x

� �
: ð18Þ

The boundary conditions (14) now take the following
form:

f x; oð Þ ¼ f
0 x; oð Þ ¼ 0; θ x; oð Þ ¼ 1

f
0
x;∞ð Þ ¼ 0; θ x;∞ð Þ ¼ 0

g: ð19Þ

Here, the prime denotes the differentiation with re-
spect to η.
However, once we know the values of the functions f

and θ and their derivatives, it is important to calculate
the values of the rate of heat transfer in terms of local
Nusselt number Nux and the shearing stress τw in terms
of the local skin friction coefficient Cfx from the follow-
ing relations:

Cfx ¼ 2τw
ρU2 ;Nux ¼ qwX

k Tw−T∞ð Þ ; ð20Þ

where τw ¼ μ�n:∇�uð Þy¼0

and qw ¼ −k �n:∇Tð Þy¼0:

ð21Þ

Also, U ¼ μ∞Gr
1=2=ρL:

Here, �n ¼ �if xþ�j f yffiffiffiffiffiffiffiffiffi
f 2xþf 2y

p is the unit normal to the surface.

Using the transformations (15) and (21) into Equation 20,
the local skin friction coefficient Cfx and the rate of heat
transfer in terms of the local Nusselt number Nux take
the following forms:

1
2

Gr=xð Þ1=4Cfx ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2x

q
f ″ x; 0ð Þ; ð22Þ

Gr−1=4x−3=4Nux ¼ −
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ σ2x

q
θ
0
x; 0ð Þ: ð23Þ

For computational purpose, the period of oscillations
in the waviness of this surface has been considered to
be π.



Table 1 Comparison of the values of skin friction coefficient and heat transfer coefficient

Pr f′′(x, 0) −θ′(x, 0)

Hossain et al. [11] Present work Hossain et al. [11] Present work

1.0 0.908 0.90813 0.401 0.40102

10.0 0.591 0.59270 0.825 0.82662

25.0 0.485 0.48732 1.066 1.06848

50.0 0.485 0.41728 1.066 1.28878

100.0 0.352 0.35558 1.542 1.54828

Numerical results of Hossain et al. [11] and the present work for different values of Prandtl number Pr while M = 0.0 and Ec = 0.0 with α = 0.2.
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Method
The governing partial differential equations are reduced
to dimensionless local non-similar equations by adopting
appropriate transformations. The transformed boundary
layer equations are solved numerically using the Keller
box method described by Keller [13] and Cebeci and
Bradshaw [14] and used by Hossain et al. [11] and many
other authors.
Results and discussion
The effects of viscous dissipation on a magnetohydro-
dynamic natural convection flow of viscous incompress-
ible fluid along a uniformly heated vertical wavy surface
have been investigated. Although there are four parame-
ters of interest in the present problem, the effects of vis-
cous dissipation parameter which is characterized by the
Eckert number Ec, magnetic parameter M, and Prandtl
number Pr on the surface shear stress, rate of heat trans-
fer, velocity, and temperature are focused.
A comparison of the present numerical results of skin

friction coefficient and rate of heat transfer coefficient
with that of Hossain et al. [11] has been shown in
Table 1. To make the numerical data comparable with
[11] for different values of Prandtl number Pr, the mag-
netic parameter M and the Eckert number Ec are ig-
nored. It is evident from the comparison that the
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Figure 2 Velocity (a) and temperature (b) profiles against η for differe
present results agreed well with the results of Hossain
et al. [11].
Numerical values of local shearing stress and the rate

of heat transfer are calculated from Equations 22 and 23
in terms of the skin friction coefficients Cfx and Nusselt
number Nux, respectively, for a wide range of the axial
distance variable x starting from the leading edge for dif-
ferent values of the parameters Pr, M, Ec, and α.
The velocity and temperature of the flow field is found to

change more or less with the variation of the flow parame-
ters. The effects of the flow parameters on the velocity and
temperature fields are analyzed with the help of graphs.
The effects of Prandtl number Pr on velocity and

temperature are illustrated in Figure 2a,b. For the higher
values of Prandtl number Pr, both the velocity and
temperature decreases such that there exists a local
maximum of the velocity within the boundary layer. The
maximum values of velocities are recorded as 0.53860,
0.49030, 0.43351, 0.39544, and 0.28892 for Prandtl num-
ber Pr = 0.72, 1.0, 1.5, 2.0, and 5.0 at the position of η =
1.36929, 1.30254, 1.23788, 1.23788, and 1.05539, respect-
ively, and the maximum velocity decreases by 46.36%.
The values of temperature are recorded as 0.50125,
0.44706, 0.37840, 0.32953, and 0.18365 for Prandtl num-
ber Pr = 0.72, 1.0, 1.5, 2.0, and 5.0 at the position of η =
1.50946, and the temperature decreases by 63.36%.
Figure 2b displays the results that the change of
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Figure 3 Velocity (a) and temperature (b) profiles against η for different values of M. With Pr = 0.72, α = 0.1, and Ec = 10.0.
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temperature profiles in the η direction reveals the typical
temperature profiles for natural convection boundary
layer flow, i.e., the temperature is 0 at the boundary wall.
It is observed that the velocity as well as the boundary
layer thickness decreases, and the temperature as well as
the thermal boundary layer thickness decreases for the
increasing values of Prandtl number.
The effects for different values of the magnetic param-

eter M on the velocity and temperature profiles have
been presented graphically in Figure 3a,b. It is seen from
Figure 3a that for the higher values of magnetic param-
eter M, the velocity decreases along the η direction. At
the position of η = 4.75, the velocity becomes constant,
that is, velocity profiles meet at a point and then cross
the side, increasing with the magnetic parameter M.
This is because the velocity profiles having lower peak
values for higher values of magnetic parameter M tend
to decrease comparatively slower along the η direction.
The maximum values of velocities are found as 0.52703,
0.50401, 0.46183, 0.42449, and 0.37662 for magnetic par-
ameter M = 0.0, 0.5, 1.5, 2.5, and 4.0, respectively, which
occur at the position η = 1.43822. Here, it is observed
Ec = 0.0
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Ec = 10.0
Ec = 15.0
Ec = 20.0
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Figure 4 Velocity (a) and temperature (b) profiles against η for differe
that at η = 1.43822, the maximum velocity decreases by
28.54% as the magnetic parameter M changes from 0.0
to 4.0. The values of dimensionless temperature are ob-
served as 0.14214, 0.15361, 0.17704, 0.20063, and
0.23522 for the magnetic parameter M = 0.0, 0.5, 1.5,
2.5, and 4.0 occurring at the position of η = 3.4792, and
the temperature increases by 65.49%. The change of
temperature profiles in the η direction also shows the typ-
ical temperature profiles for natural convection boundary
layer flow, that is, the value of temperature is 1.0 at the
boundary wall then the temperature decreases grad-
ually along the η direction to the asymptotic value 0.
Figure 4a,b demonstrate the velocity and temperature

distribution for different values of the Eckert number Ec.
It has been seen from Figure 4a that as the Eckert num-
ber Ec increases, the velocity profiles rise until the pos-
ition of η = 1.43822 for the selective values of the Eckert
number Ec, and from that position of η, velocities fall
slowly and finally approaches to 0. It is also observed
from Figure 4b that the temperature profiles increases
with the Eckert number Ec. The maximum values of vel-
ocities are recorded as 0.52232, 0.52570, 0.52909,
Ec = 0.0
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Figure 5 Skin friction coefficient (a) and rate of heat transfer (b) against x for different Pr values. With α = 0.1, Ec = 10.0, and M = 0.1.
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0.53251, and 0.53595 for the Eckert number Ec = 0.0,
5.0, 10.0, 15.0, and 20.0, respectively, which occur at the
same position η = 1.43822, and the maximum velocity
increases by 2.61%. Temperature is recorded as 0.17726,
0.18163, 0.18604, 0.19050, and 0.19501 for the Eckert
number Ec = 0.0, 5.0, 10.0, 15.0, and 20.0, respectively, at
the same position of η = 3.20, and the temperature profiles
increase by 10.01%, that is, velocity boundary layer thick-
ness and thermal boundary layer thickness are unchanged.
In Figure 5a,b, the skin friction coefficient Cfx and

local rate of heat transfer Nux for different values of
Prandtl number Pr have been displayed. It is observed
from Figure 5a that for higher values of Prandtl number,
skin friction decreases to the axial position of x = 1.0
and then becomes constant for all values of Prandtl
number Pr, that is, the values of skin friction coefficient
meet together at the position of x = 1.0 and cross the
sides that means after the axial position of x = 1.0, skin
friction is increasing with Prandtl number but frictional
force at the wall always rising towards downstream. It is
seen from Figure 5b that for higher values of Prandtl
number, the rate of heat transfer decreases, that is, heat
transfer slows down for higher Prandtl number.
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Figure 6 Skin friction coefficient (a) and rate of heat transfer (b) again
In Figure 6a,b, the effects of magnetic parameter M on
skin friction and the rate of heat transfer have been
presented. From Figure 6a, it is found that skin friction de-
creases significantly for greater magnetic field strength.
This is physically realizable as the magnetic field retards
the velocity and consequently reduces the frictional force
at the wall. However, the rate of heat transfer shows op-
posite pattern due to the change of magnetic parameter M
to higher values as depicted in Figure 6b.
The effect of different values of the Eckert number Ec

on the skin friction coefficients and the rate of heat
transfer are shown graphically in Figures 7a,b, respect-
ively. In this case, the values of local skin friction coeffi-
cient Cfx are recorded to be 0.91799, 1.19362, 1.65790,
2.41420, and 3.60650 for Ec = 0.0, 5.0, 10, 15.0, and 20.0,
respectively, which occur at the same point x = 1.51.
From Figure 7a, it is observed that at x = 1.51, the skin
friction coefficient increases by 292.87% due to the
higher value of the Eckert number Ec. However, the
values of the rate of heat transfer are found to be
0.34382, −1.91932, −7.63071, −21.73558, and −55.25804
for Ec = 0.0, 5.0, 10.0, 15.0, and 20.0, respectively, which
occur at the same point x = 1.51. It is seen from
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Figure 7 Skin friction (a) coefficient and rate of heat transfer (b) against x for different Ec values. With Pr = 0.72, α = 0.1, and M = 0.1.
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Figure 7b that for higher values of the Eckert number Ec,
the rate of heat transfer decreases, that is, heat transfer
slows down significantly for higher Eckert number Ec.
Some numerical values of skin friction coefficient Cfx

and rate of heat transfer Nux calculated from Equa-
tions 22 and 23 for the wavy surface from lower stagna-
tion point at x = 0.0 to x = 2.0 are presented in Table 2.
Table 2 Skin friction coefficient and rate of heat transfer aga

x Ec = 0.0 Ec = 5.0

Cfx Nux Cfx Nux

0.00000 0.89054 0.34850 0.89054 0.34850

0.10500 0.88777 0.34643 0.90137 0.25694

0.20500 0.90018 0.34674 0.92809 0.15979

0.30500 0.91755 0.34769 0.96211 0.04413

0.40500 0.93184 0.34861 0.99526 −0.08888

0.50500 0.93585 0.34897 1.01881 −0.22687

0.60500 0.92673 0.34849 1.02769 −0.35198

0.70500 0.90767 0.34722 1.02364 −0.45407

0.80500 0.88584 0.34551 1.01415 −0.53885

0.90500 0.86868 0.34385 1.00842 −0.62386

1.00500 0.86118 0.34262 1.01374 −0.73030

1.10500 0.86505 0.34206 1.03386 −0.87763

1.20500 0.87854 0.34218 1.06846 −1.07963

1.30500 0.89666 0.34277 1.11274 −1.33723

1.40500 0.91213 0.34344 1.15762 −1.62842

1.50500 0.91802 0.34381 1.19231 −1.90671

1.60500 0.91131 0.34362 1.20956 −2.12335

1.70500 0.89466 0.34285 1.21020 −2.26197

1.80500 0.87475 0.34171 1.20265 −2.35113

1.90500 0.85873 0.34054 1.19810 −2.44416

2.00000 0.85170 0.33970 1.20512 −2.58533

Different values of Eckert number Ec with other controlling parameters Pr = 0.72, α
Conclusion
The effects of the Prandtl number Pr, magnetic parameter
M, Eckert number Ec, and amplitude of wavy surface α on
the magnetohydrodynamic natural convection flow of vis-
cous incompressible fluid along a uniformly heated verti-
cal wavy surface have been studied. From the present
investigations, the following conclusions may be drawn:
inst x

Ec = 10.0 Ec = 15.0

Cfx Nux Cfx Nux

0.89054 0.34850 0.89054 0.34850

0.91545 0.16195 0.93002 0.06107

0.95797 −0.05077 0.98993 −0.28799

1.01153 −0.32014 1.06630 −0.75746

1.06826 −0.65060 1.15213 −1.37193

1.11802 −1.01939 1.23628 −2.10935

1.15306 −1.38341 1.30794 −2.89932

1.17295 −1.71082 1.36371 −3.67511

1.18507 −2.00802 1.41053 −4.43932

1.20076 −2.32048 1.46226 −5.28221

1.23054 −2.71288 1.53413 −6.36013

1.28163 −3.25681 1.63899 −7.87489

1.35664 −4.01868 1.78493 −10.05539

1.45201 −5.03515 1.97182 −13.09772

1.55664 −6.26727 2.18686 −17.02235

1.65357 −7.56767 2.40385 −21.50929

1.72759 −8.73511 2.59395 −25.96354

1.77502 −9.65738 2.74427 −29.93858

1.80640 −10.40497 2.86776 −33.54552

1.84028 −11.18956 2.99585 −37.45445

1.89162 −12.20614 3.15484 −42.34764

= 0.1, and M = 0.1.
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� Velocity, temperature, and the frictional force at the
wall enhance due the higher values of the Eckert
number Ec, while the rate of heat transfer reduces
for the greater values of Eckert number. The effects
of Ec on skin friction and on the rate of heat
transfer are more significant than that on the
velocity and temperature.

� As the Prandtl number Pr increases, the velocity,
temperature, and rate of heat transfer decrease while
the skin friction initially decreases and becomes
constant near x = 1.0 after that position skin friction
increases with Prandtl number Pr.

� Magnetic field strength enhancement causes the
temperature and rate of heat transfer to rise and the
velocity and skin friction coefficient to fall within
the boundary layer. At the position of η = 4.75, the
velocity becomes constant and then crosses the side,
increasing with the magnetic parameter.

Nomenclature
B0, applied magnetic field strength
Cfx, local skin friction coefficient
Cp, specific heat at constant pressure (J kg

−1 K−1)
f, dimensionless stream function
g, acceleration due to gravity (m s−2)
Gr, Grashof number
k, thermal conductivity (W m−1 K−1)
k∞, thermal conductivity of the ambient fluid (W m−1

K−1)
L, characteristic length associated with the wavy sur-
face (m)
�n, unit normal to the surface
Nux, local Nusselt number
P, pressure of the fluid (N m−2)
Pr, Prandtl number
qw, heat flux at the surface (W m−2)
T, temperature of the fluid in the boundary layer (K)
Tw, temperature at the surface (K)
T∞, temperature of the ambient fluid (K)
u, v, dimensionless velocity components along the (x,
y) axes (m s−1)
x, y, axis in the direction along and normal to the tan-
gent of the surface.

Greek symbols
α, amplitude of the surface waves
β, volumetric coefficient of thermal expansion (K−1)
η, dimensionless similarity variable
θ, dimensionless temperature function
ψ, stream function (m2 s−1)
μ, viscosity of the fluid (kg m−1 s−1)
μ∞, viscosity of the ambient fluid
ν, kinematic viscosity (m2 s−1)
ρ, density of the fluid (kg m−3)
σ0, electrical conductivity
τw, shearing stress
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