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Abstract

Uncertainty relations are discussed in detail not only for free particles but also for bound states within the framework
of classical information theory. Uncertainty relation for simultaneous measurements of two physical observables is
defined in this framework for generalized dynamic systems governed by a Sturm-Liouville-type equation of motion. In
the first step, the reduction of Kennard-Robertson type uncertainties because of boundary conditions with a mean
square error is discussed quantitatively with reference to the information entropy. Several concrete examples of
generalized uncertainty relations are given. Then, by considering disturbance effects, a universally valid uncertainty
relation is investigated for the generalized equation of motion with a certain boundary condition. The necessary
conditions for violation (reduction) of the Heisenberg-type uncertainty relation are discussed in detail. The reduction
of the generalized uncertainty relation because of the boundary condition is discussed by reanalyzing experimental
data for measured electron densities in a hydrogen molecule encapsulated in a fullerene C60 cage.
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Background
An important and interesting topic in quantum mechan-
ics is interpretation of the uncertainty relation, which
was first expounded by Heisenberg [1]. He introduced his
uncertainty relation as a principle of quantum mechan-
ics through a Gedanken experiment regarding position
and momentum measurements of a point particle using
an imaginary gamma-ray microscope. Kennard [2] and
Robertson [3] generalized Heisenberg’s uncertainty rela-
tion and proved it mathematically as a relation between
standard deviations (square roots of variances) associated
with noncommuting operator pairs. Recently, technical
terms related to the uncertainty relation, such as vari-
ance of distributions, mean square measurement errors,
and disturbances due to measurements, have been clearly
understood [4,5], and a universally valid uncertainty rela-
tion has been obtained [6-8]. It is still necessary that we
pursue a better understanding of uncertainty relations and
their applications. Experiments claiming to demonstrate
a violation of the Heisenberg-type uncertainty relation
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[9] must be carefully considered from various points of
view. In this study, we present a universal view of physi-
cal measurements on the basis of the classical information
theory. Here “classical” means that aspects such as com-
mutation relations, Hilbert spaces, and operators on those
spaces are not introduced a priori, in contrast to the
usual discourse of quantum measurement theory [10,11].
Hence, all concepts related to physical measurements are
defined in terms of classical information theory. Proba-
bilistic aspects of measurements are introduced through
random variables in the framework of probability theory.
Solutions of a classical equation of motion, such as the
equation for charged spinor fields, represent a classical
charge distribution. The reason we restrict ourselves to
classical theory is that some counterpart of the ‘quantum
effect’, i.e., uncertainty relations, already arises in classical
field theory with no explicit quantization.

Methods
Physical measurement
We define the terms associated with physical measure-
ment according to classical estimation theory [12] as
follows. Let X be a random variable for a given physical
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system described by the N tuple θ = {θ1, · · · , θN }, where
θi is the ith physical parameter. The set of all possible val-
ues of θi ∈ R, denoted by �, is called the parameter set.
The random variable X is distributed according to the
probability density function f(x; θ) ≥ 0, which is normal-
ized as

∫
x∈�

dx f(x; θ) = 1, where x ∈ R is one possible
value of the whole event (= �). For physical applications,
we introduce the probability amplitude as defined by

|ψ(x; θ)|2 = f(x; θ).

It is assumed that the behavior of the physical sys-
tem is determined by the probability amplitude rather
than the probability density. This is analogous with quan-
tum mechanical amplitude. However, the introduction of
amplitude does not immediately mean that the theory has
been quantized. Considering the probability density, the
probability amplitude is only apparent by multiplication
with a unitary operator, which implies that the amplitude
contains more information than the density.
A part of experimental apparatus is assumed to output

numbers distributed according to the probability den-
sity. Any resulting set of numbers Xn = {x1, · · · , xn},
drawn independently and identically distributed (i.i.d.), is
called the experimental data. The estimate of the physical
parameter is called a measurement. Because experimen-
tal data are i.i.d., the corresponding probability density
function can be expressed as a product

f(Xn; θ) =
n∏

j=1
f(xj; θ).

A function mapping the experimental data to one possi-
ble value of the parameter set such as

Ti : Xn → � : {x1, · · · , xn} �→ θ̃i

is called an estimator for the ith physical parameter,
denoted by Ti(Xn) = θ̃i.
The experimental error in the ith physical parameter is

defined as the root mean square error:

εi = E[ (Ti(Xn) − θi)
2]1/2 ,

where θi is the true value of the ith physical parame-
ter. The true values of physical parameters are typically
unknown, but a mean square error can be reduced below
any desired value by accumulating a sufficiently large
amount of experimental data, thanks to the law of large
numbers. If the mean value of the experimental error is
zero, i.e., Eθi [ θ̃i − θi]= 0, after accumulation of infinitely
many statistics, that estimator is called an unbiased esti-
mator. Among such estimators, the one giving the least
error is called the best estimator.
Simultaneous measurements of two physical parame-

ters are described as follows. For the random variable X ,

with two physical parameters θ = {θ1, θ2}T , the experi-
mental data with n samplings can be expressed as Xn =
{x1, · · · , xn} = {(x1, x2)T1 , · · · , (x1, x2)Tn }.
The probability density of the experimental data is

expected to be a Gaussian distribution with two variables:

f(xj; θ) = 1
2π |σ |1/2 exp(−(xj − θ)Tσ−1(xj − θ)/2, ),

thanks to the central limit theorem. Here, σ is the covari-
ance matrix of the data. When two parameters can be
measured independently, the probability density function
of the data becomes

f
(
xj; θ

) =
∏
i=1,2

1√
2πσ 2

i
exp

(−(xij − θi)2

2σ 2
i

)
.

In this case, it is known that the best estimators for
physical parameters and experimental errors are given as
follows:

Ti(Xn) = 1
n

n∑
j=1

xij = θ̃i,

εi(Xn)
2 = 1

n

n∑
j=1

(xij − θ̃i)
2 = σ̃ 2

i , (1)

for i = 1, 2.
We now introduce quantitative informational proper-

ties. The N tuple of random variables,

Vi = ∂ log f(x, θ)

∂θi
,

is called the score. It can be shown that the expectation
value of the score is zero [12]. The score represents the
sensitivity of the experimental data to the ith physical
parameter. A large value of the scoremeans that the exper-
imental data are sensitive to the ith parameter and are
expected to give a small error. The score for the experi-
mental data can be shown to be Vi(Xn) = ∑n

j=1 Vi(xj)
because the data are i.i.d. The covariance matrix of the
score

Jij(θ) =
∫

dx f(x; θ)
∂ log f(x; θ)

∂θi

∂ log f(x; θ)

∂θj
(2)

is called the Fisher information matrix (FIM). FIM of the
experimental data can be shown to be Jij(Xn; θ) = nJij(θ),
once again, because the data are i.i.d. T = {T1, · · · ,TN } is
an unbiased estimator, and 
(θ) is the covariance matrix
of the data. Then, the Cramèr-Rao inequality

�(θ) ≥ J−1(θ) (3)

holds true [13,14] as a matrix inequality, i.e., each element
on the left-hand side is greater than or equal to each cor-
responding element on the right-hand side. This is one
of the key items to consider when discussing uncertainty
relations. The importance of the FIM and Cramèr-Rao
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inequality and their application to the uncertainty rela-
tion were also pointed out by Freiden [15,16] and recently
investigated by Watanabe et al. [17].

Equation of motion
The equation of motion (EoM) is a differential equation
describing the time evolution of a physical system. We
assume that the physical system is governed by the
probability amplitude, which is a solution of the EoM.
Here, we assume the EoM satisfies the following condi-
tions: (1) it is a separable equation with respect to the
time variable, (2) the spatial part after time-variable sep-
aration will be a holomorphic Sturm-Liouville function
[18], and (3) the Sturm-Liouville differential operator (SL
operator) is self-adjoint. The SL operator is defined by

L[ψ(x)]= d
dx

(
p(x)

d
dx

ψ(x)
)

− q(x)ψ(x) + λr(x)ψ(x),

where p(x), q(x), and r(x) are smooth functions given
by the dynamical system under consideration. Solving
the EoM leads to an eigenvalue problem of the form
L[ψ(x)]= 0 with the following boundary conditions on a
finite interval [ a, b]:

ψ(a) + κ1
dψ(x)
dx

|x=a = 0,

ψ(b) + κ2
dψ(x)
dx

|x=b = 0.

Self-adjointness of the SL operator ensures that its
eigenfunctions form a complete orthogonal system. By
using the complete orthogonal system obtained from the
EoM, the generalized Fourier transformation (GFT) can
be defined by

f̂ (λ) =
∫

dξ f (ξ)ψ(ξ ; λ), (4)

where ψ(λ; ξ) is the eigenfunction of the EoM with
eigenvalue λ. The existence of GFT with an appropriate
integration measure and their inverse transformations are
ensured by the generalized expansion theorem [19-22].
For GFT, conservation of normalization of the two func-
tions is ensured by the Parseval theorem [23]. This set
of observables {ξ , λ} is called the GFT dual pair. In the
next section, we will obtain a nontrivial restriction on the
uncertainty of a simultaneous measurement of the GFT
dual pair.

Results and discussion
Generalized uncertainty relations without disturbances
Equation of wavemotion
The equation of wave motion is a typical example of an
EoM as discussed in the last section. After separating

out the time component, the steady-state solution in an
infinitely large box is a plane wave solution of the form

K(ξ1; ξ2) = α1 exp
(
i
h̃
ξ1ξ2

)
+ α2 exp

(
− i
h̃
ξ1ξ2

)
, (5)

where ξi are two physical variables (observables) with
appropriate dimensions and h̃ is a dimensional physical
constant canceling out the dimensions of ξ1ξ2. It is well
known that Equation 5 specifies a complete orthogonal
system, and the integral transformation with a kernel as
given by Equation 5 is the usual Fourier (inverse Fourier)
transformation. Suppose that the experimental apparatus
has been prepared such that the initial probability density
for physical observables (ξ1,2) is the Gaussian distribution

f(ξi, {μi, σi}) = 1√
2πσi

exp
(

− (ξi − μi)2

2σ 2
i

)
, (6)

as we would naturally expect from the central limit
theorem. Then, we assume that these two observables
constitute the GFT dual pair. In the wave function case,
the GFT is equivalent to a usual Fourier transformation.
Probability amplitudes describing the above probability
densities are introduced as follows:

ψ1(ξ1;{μ, σ }) =
√

1√
2πσ1

exp
(

− (ξ1 − μ1)2

4σ 2
1

+ i
μ2(ξ1 − μ1)

h̃

)
.

The Gaussian distribution of Equation 6 is obtained by
squaring it. After performing GFT, the probability ampli-
tude of the GFT dual pair ξ2 becomes

ψ2(ξ2; {μ, σ }) = 1√
2π h̃

∫ ∞

−∞
dξ1 ψ1(ξ1; {μ, σ })

exp
(

− i
h̃
ξ1ξ2

)

=
√√

2
π

σ1

h̃
exp

(
− (ξ2 − μ2)2σ

2
1

h̃2
− i

ξ2μ1

h̃

)
.

(7)

Because the transformation kernel in Equation 5 is a
general solution of the EoM as a function of the vari-
able ξ1, the GFT dual pair amplitude ψ2 is the solution
in the GFT dual space by direct analogy with the rela-
tion between configuration and momentum spaces. By
squaring the probability amplitude of Equation 7, one
obtains the Gaussian distribution in the form

f(ξ2; {μ2, σ2 = h̃
2σ1

}) =
√

2
π

σ1

h̃
exp

(
−2(ξ2 − μ2)2σ

2
1

h̃2

)
,
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which has a standard deviation of σ2 = h̃/2σ1. Then stan-
dard deviations of the two GFT dual parameters satisfy
the relation

σ1σ2 = h̃
2
. (8)

Next, we show that this relation gives a lower bound on
measurement errors. Preparation of the physical system
with observable ξ1 and measurement of the observable
ξ2 for the same system can be performed independently.
This is justified because we are treating a classical field
that has the wave equation as EoM. Then the total
probability density can be expressed as f(ξ ; {μ, σ }) =
f(ξ1; {μ1, σ1})f(ξ2; {μ2, σ2}).
FIM can then be obtained from the above formula as

follows:

J(Xn;μ) =
∫ ∞

−∞
dξ1

∫ ∞

−∞
dξ2 f(ξ ;μ)

∂ log f(ξ ;μ)

∂μi

∂ log f(ξ ;μ)

∂μj
,

=
( n

σ 2
1

0
0 n

σ 2
2

)
= nJ1(μ). (9)

Here we omit the σ -component of FIM because it is not
related to the uncertainty relation. On the other hand, the
covariance matrix for simultaneous measurements of the
two independent parameters is given as follows:


(μ) =
(

σ 2
1
n 0
0 σ 2

2
n

)
, (10)

according to Equation 1. By comparing Equations 9 and
10, it can be observed that this experiment gives the
lower limit of the Cramè-Rao inequality Equation 3. Then
Equation 8 gives a lower bound on the initial distributions
of the two parameters and this, in turn, yields Kennard-
Robertson type uncertainty relation, σ1σ2 ≥ h̃/2.

Hydrogen atom
As a second example, we consider the following EoM of
the SL-type operator [24]:

d2

dr2
rR(r) + 2

aBr
rR(r) − κ2rR(r) = 0. (11)

This is the radial component of the Schrödinger
equation in a Coulomb potential, the when angular
momentum is zero. If we consider a hydrogen atom, aB =
�
2/mee2 = 0.592 × 10−8cm is called the Bohr radius. It

specifies a typical atomic length scale. Because we do not
require any quantization, this is the equation for a classi-
cal electron field called the de Broglie field. Solutions of

this equation give the charge density distribution of a clas-
sical electron field. A set of solutions normalized to unity
in 0 ≤ r < ∞ is given by

Rn(r) =
√(

2
aBn

)3 1
2n2

· exp
(

− r
aBn

)
L1n−1

(
2r
aBn

)
,

where L••(•) are Laguerre polynomials. This set consists of
a complete orthonormal system satisfying∫ ∞

0
dr r2Rn(r)Rm(r) = δnm. (12)

The corresponding eigenvalues can be obtained as
En = −�

2κ2/2me with κ = (aBn)−1. Once again, we
take the initial probability density of the electron to be a
Gaussian distribution:

ψ(r; σr) =
(

1
2πσ 2

r

) 1
4
exp

(
− r2

4σ 2
r

)
, (13)

f(r; σr) = |ψ(r; σr)|2,

=
(

1
2πσ 2

r

) 1
2
exp

(
− r2

2σ 2
r

)
. (14)

One reason we start with the Gaussian distribution is
that we expect it to be obtained from the central limit
theorem for physical measurements of i.i.d. data and will
lead to the minimum uncertainty condition. GFTs of these
eigenfunctions are given as

φn(σr) = C(σr)

∫ ∞

0
dr r2ψ(r; σr)Rn(r), (15)

= C(σr)
n−1∑
m=0

(−1)m2
5
4+m(m + 2)�(n)

π
1
4m!�(n − m)(a0n)

3
2+m

× F
(
m + 3

2
,
1
2
;
(

σr
a0n

)2
)

σ
5
2+m
r , (16)

where F(•, •; •) is the confluent hypergeometric series,
and C(σr) is an appropriate normalization factor. Because
the solutions Ri(r) form a complete orthonormal set of
functions, as shown in Equation 12, the Gaussian distri-
bution can be expressed as the inverse GFT of an infinite
summation:

ψ̃(r; σr) =
∞∑
i=1

φi(σr)Ri(r).

We have checked numerically that this inverse GFT will
transfer φi(σr) back to the original Gaussian distribution,
except it will be close to the origin. Note that atomic units
(a.u.) [24] are used in all numerical calculations in this
study (me = 1, � = 1, and e = 1). In this case, the usual
Fourier transformation of ψ(r; σr) has no clear physical
meaning because the plane wave solution has no vanishing
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values at r = ∞, whereas ψ(r → ∞; σr) = 0 for a hydro-
gen atom. The GFT dual parameter of the radial coordi-
nate rmust be an energy eigenvalue En. Probability density
functions in the GFT dual space have Gaussian distribu-
tions, as shown in Figure 1. The relation between standard
deviations of the initial Gaussian distribution and the cor-
responding energy spectrum is shown in Figure 2. We can
observe that as the uncertainty of the energy spectrum
decreases, the position uncertainty increases. Moreover,
products of these two uncertainties are almost constant at
σrσE 	 1/1.72. This condition also gives the lower bound
from the Cramèr-Rao inequality because the GFT dual
probability density function (φn) has a Gaussian distribu-
tion, and the discussion from the first example can still
be applied. A generalized uncertainty relation for this case
can be expressed as

σr · σE ≥ aBEa
1.72

, (17)

where Ea is the atomic unit of energy. This relation is sim-
ilar to the Kennard-Robertson uncertainty, except that the
coefficient of the dimensional parameters on the right-
hand side is 1/1.72 instead of the usual value of 1/2.

Let us look at this new relation from another point of
view. The reason a hydrogen atom does not collapse to
the size of the proton is usually discussed with only a
qualitative reference to the uncertainty relation. Here, we
investigate this matter in a quantitative way using the new
uncertainty relation. The total energy of the electron can
be given as

EH = 3
p2

2
− 1

r
in a.u. The first and second terms are, basically, kinetic
and potential energies, respectively. The factor of 3 in

Figure 1 The probability density function. Example of probability
density function in GFT dual space for radial distribution of classical
electron field in a hydrogen atom. The solid line is a Gaussian fit. A
Gaussian distribution is assumed for radial variable, with variance
σ 2
r = 102.

Figure 2 Relation between standard deviations of initial
Gaussian distribution and corresponding energy spectrum.
Electron mass and Bohr radius are set to unity (a.u.) in calculations.

front of kinetic energy originates from the spatial degree
of freedom. Suppose now that the uncertainty relation is
σpσr ≥ fu. In a ground state hydrogen atom, the electron
is confined within the Bohr radius, σr = aB = r0, which
suggests that σp = fu/σr = fu/r0. The total energy can
thus be written as

E0H = 3
f 2u
2r20

− 1
r0
,

where r0 is the hydrogen radius in the ground state. The
value r0 must give the minimum energy; then, it can be
obtained as a solution of ∂E0H/∂r0 = 0, i.e., r0 = 3f 2u . If we
set r0 = aB = 1, we get fu = 1/

√
3 = 1/1.732..., which

is close to the factor in the new uncertainty relation. If
one assumes that the uncertainty relation gives the exact
hydrogen radius, then the uncertainty relation between
GFT dual parameters for the system under the SL operator
of Equation11 must be

σr · σE ≥ aBEa√
3
. (18)

We can give yet another view of the hydrogen atom in
terms of classical information theory. The entropy of the
energy spectrum of the hydrogen atom can be calculated
numerically from Equation 16 as

S(E) = −
∞∑
n=1

φn(σr) logφn(σr).

The numerical results are shown in Figure 3 as a function
of the width of the radial distribution. The global mini-
mum point of the entropy coincides with the Bohr radius,
as shown Figure 3.

Classical matter field in a cylinder
We now consider a particle beam entering a cylindri-
cal beam pipe. The Schrödinger equation in cylindrical
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Figure 3 Entropy obtained from hydrogen energy states and
radial distributions. Entropy obtained from hydrogen energy states
and radial distributions as function of width of radial distribution (σr ).
Entropy of hydrogen energy states reaches minimum at Bohr radius.

coordinates is considered an EoM for the classical matter
field. The EoM for a radial variable R(r) with zero angular
momentum can be expressed as

d
dr

(
r
dR(r)
dr

)
− n2

r
R(r) + (k2 − λ2)rR(r) = 0,

which is also an SL-type equation. Solutions with the
infinite potential barrier at r = r0 are obtained as

Rn
l (r) =

√
2

r0|Jl+1(znl )|
Jl

(
znl

r
r0

)
, (19)

where Jl(x) is the lth order Bessel function of the first
kind and znl is its nth zero point. This series of functions
constitutes an orthonormal system with normalization
given as

∫ ∞

0
dr rRn

l (r)R
m
l (r) = δnm.

The corresponding eigenvalues are

k2 =
(znl
r0

)2
+ λ2,

Pnl = � k

= �
znl
r0
. (20)

Here, λ is the eigenvalue from the appropriate bound-
ary condition in the z-coordinate and will be neglected
in the following discussion. Even though a physical con-
stant � arises in the eigenvalues, this is a classical theory,
and the solution Rn

l (r) represents a classical de Broglie
field. Suppose a particle beam with Gaussian distribution
in the radial direction of the cylindrical coordinate enter
a cylinder of radius r0. The beam is assumed to be coax-
ial with respect to the cylinder, so the angular momentum

of the beam is zero (l = 0). This radial distribution can be
expanded in terms of the solutions of Equation 19 as

φn(σR) =
∫ r0

0
dr r ψ(r; σR)Rn

0(r),

where ψ(r; σR) is the radial distribution of the incident
beam represented by Equation 13. When σR 
 r0, the
above integration can be performed analytically to give

φn(σR) ≈ 4σ 3/2
R

(2π)1/4r0J1(zn0)
exp

(
σR zn0
r0

)2
.

The usual Fourier dual pair has no clear physical mean-
ing because the solution of the EoM with a cylindrical
boundary condition is not a plane wave. The GFT dual
pair can be expressed as {r, Pn0 = zn0/r0}, and the GFT
transforms the Gaussian to another Gaussian. The width
of the Pn0 distribution is proportional to the recipro-
cal of σR, as shown in Figure 4. The relation between
the widths of the GFT pair is found numerically to be
σRσP = �/3.0, which gives a smaller uncertainty than
the Kennard-Robertson relation expected from the usual
Fourier dual pair. This reduction of the uncertainty can be
explained with respect to the entropy. The entropy of the
radial distribution, which is contained within the cylinder,
can be calculated from the probability density function
(Equation 14) as

SGauss(r < r0; σR) = −
∫ r0

−r0
dr f(r; σR) log f(r; σR),

whereas the entropy of themomentum distribution can be
obtained as

Scyl(p; σR) = −
∞∑
n=1

φn(σR) logφn(σR).

As the beam width increases, the entropy of the radial
distribution increases; however, that of the momentum

Figure 4Width of radial distribution of beam.Width of radial
distribution of beammultiplied by its momentum as function of
beam width. GFT can maintain product of widths of pair at
σRσP = 1/0.30, where � is set to unity.
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Figure 5 Entropies of radial distribution of beam. Entropies of
radial distribution of beam and those of GFT dual pair of momentum
eigenstate distribution. � and r0 are set to unity.

distribution decreases such that the sum of entropy and
momentum is maintained constant, as shown in Figure 5.
This behavior of entropies is easily understood qualita-
tively if we recall that entropy is a measure of the total
amount of information in distributions. Under the mini-
mum uncertainty condition, the total amount of informa-
tion can be maintained constant. Here, let us consider the
total amount of information quantitatively in order to esti-
mate the information gain obtained from the boundary
condition. When there are no boundary conditions on the
radial distributions, the information entropy of the usual
Fourier dual pair is

SGauss(σx) + SGauss(σp) = 1
2
log (4π2e2σ 2

x σ 2
p ) + 2�,

where � is an arbitrary value because of ambiguity in the
choice of integration measure. Then, the relation between
the entropy and the mean square errors can be expressed
as

σxσp = 1
2π

exp
(
S(σx) + S(σp) − 1 − 2�

)
,

= �

2
exp

(
S(σx) + S(σp)

)
.

Here, we set � equal to −1/2 log (eπ�) to obtain the
minimum uncertainty relation when S(σx) + S(σp) = 0.
The average information due to the cylindrical boundary
condition can be estimated as follows. The radial distribu-
tion of the incident beam is assumed to be the Gaussian
distribution, as given in Equation 6. The total amount of
information in the cylinder of radius r0 can be calculated
as

I(r0, σ) =
∫ r0

−r0
dr f(r, {0, σR})

= erf
(

r0√
2σR

)
,

where erf (•) is the error function. The entropy within the
cylinder can be calculated as

Scyl(r0; σR) = −I(r0, σR) log I(r0, σR).

The maximum value of the total information is found
to be Scyl = e−1 by solving ∂Scyl/∂r0 = 0. This amount
of information gain due to the cylindrical boundary con-
dition can decrease the minimum uncertainty according
to

σxσp = �

2
exp

(
−1
e

)
,

	 �

2.9
,

which is consistent with the numerical result shown in
Figure 4. This reduction of the uncertainty relation is
due to information gain from the cylindrical boundary
condition.

Classical matter field in a sphere
The last example is one of a classical matter field confined
in a sphere. The calculations are almost the same as those
in last the section; we list only the results here:

• EOM for the radial coordinate with zero angular
momentum

d
dr

(
r
dR(r)
dr

)
+ k2rR(r) = 0

• Solutions of EoM

Rn(r) =
√

2
r0

sin (nπr/r0)
r

• Orthonormality relation∫ r0

0
dr r2Rn(r)Rm(r) = δnm

• Eigenvalue for the radial equation

Pn = �k

= �
nπ

r0
, (n = ±1, ± 2, · · · )

• GFT and inverse GFT for the Gaussian distribution

φn(σR) =
∫ r0

0
dr r2 ψ(r; σR)Rn(r)

ψ(r; σR) =
∞∑
i=1

φi(σR)Ri(r)

• GFT dual integration with approximation σR 
 r0

φn(σR) 	
∫ ∞

0
dr r2 ψ(r; σR)Rn(r)

= 29/4π5/4

r3/20
nσ

5/2
R exp

(
−nπσR

r0

)2
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• Generalized uncertainty relation (see Figure 6)

σRσp 	 �

2.9
In this case, mean square errors once again give the
Kennard-Robertson-type uncertainty relation with a fac-
tor of �/2.9 instead of �/2, which is consistent with the
information gain because of the boundary condition and
which is also the same as in the previous example.

Generalized uncertainty relations with disturbances
The universally valid uncertainty relation
Next we consider a disturbance because of the measure-
ments themselves. It is assumed that the initial condi-
tions of the physical system agree with the minimum
uncertainty condition, with mean values of {μ1, σ 2

1 } and
variances of {μ2, σ 2

2 }. The two observables {μ1,μ2} are
assumed to be a GFT pair. Estimators associated with this
measurement are assumed to be unbiased. After simul-
taneous measurements of physical parameters {μ1,μ2},
final distributions are expected to be Gaussian because of
the central limit theorem. The disturbance δ2i is defined
as an increase in variance in the distribution of the ith
observable after measurement. The convolution of two
Gaussian distributions with mean values and variances as
{μ1, σ 2

1 } and {μ2, σ 2
2 } yields the Gaussian distribution with

{μ1, σ̃ 2
1 = σ 2

1 + δ21} and {μ2, σ̃ 2
2 = σ 2

2 + δ22}. Initial and
final distributions are not necessarily GFT pair. To find the
minimum uncertainty condition after measurement, we
assume that measurement has been performed with very
weak coupling and gives a minimum uncertainty pair of
disturbances with δ1δ2 = h̃/2. Then, standard deviations
after measurement can be written in the form

min[ σ̃ 2
1 σ̃ 2

2 ]=
(
σ 2
1 + δ21

) (
σ 2
2 + h̃2

4δ21

)
. (21)

The minimum uncertainty condition after measure-
ment is given by δ1 as ∂min[ σ̃ 2

1 σ̃ 2
2 ] /∂δ1 = 0 such that

∂min[ σ̃ 2
1 σ̃ 2

2 ]
∂δ1

= 2δ1σ 2
2 − h̃2σ 2

1
2δ31

= 0

⇒ σ1 =
√
h̃
2

σ1
σ2

. (22)

Then, the formula

σ̃1σ̃2 ≥ σ1σ2 + h̃
2

(23)

follows from (21) and (22). Under this condition, we derive
the universally valid uncertainty relation (UVUR) [6-8]:

σ1δ2 + δ1σ2 + δ1δ2 ≥ h̃
2
. (24)

Figure 6Width of radial distribution of initial field.Width of radial
distribution of initial field multiplied by its GFT dual momentum. GFT
can maintain product of widths of pair at σrσP = 1/2.9, where � is set
to unity.

From Equation 23 and the positivity of standard devia-
tions σi, δi ≥ 0, one can obtain

(σ1 + δ1)
2(σ2 + δ2)

2 ≥ (σ 2
1 + δ21)(σ

2
2 + δ22)

= σ̃ 2
1 σ̃ 2

2

≥
(

σ1σ2 + h̃
2

)2

.

Then, the inequality

σ1σ2 + σ1δ2 + δ1σ2 + δ1δ2 ≥ σ1σ2 + h̃
2

is obtained. The UVUR, Equation 24, follows immediately
from this formulaa.

Example: hydrogen atom in a C60 cage
We now discuss the possibility of observing a violation
of the lower bound in the Heisenberg-type uncertainty
relation, δ1δ2 ≥ �/2 (h̃ is written as � in this section).

Table 1 Energy eigenvalues of hydrogen atomwith
boundary condition

n H2 (vac) H2@C60 (sol) 1 H2@C60 (sol) 2

1 −13.62 −13.62 −13.62

2 − 3.41 − 1.14 − 1.14

3 − 1.51 - + 1.14

4 − 0.85 - +13.62

Energy eigenvalues of hydrogen atom with boundary condition from C60 cage.
Here, n is the principal quantum number. In C60 cage, solutions proportional to
e+r (sol 2) are permitted, as are those proportional to e-r (sol 1), in contrast with
the situation in a vacuum (vac).
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We reinvestigated position measurements of electrons in
a hydrogen molecule trapped in a fullerene C60 cage.
In 2005, Komatsu et al. succeeded in encapsulating molec-
ular hydrogen in fullerene C60 (H2@C60) with an effi-
ciency of approximately 100% [25]. Sawa et al. measured
the electron density in the closed C60 cage using X-rays
from a synchrotron light source. At first, the electron
density in an open C60 cage was measured by using a BL-
1A beamline at KEK [26]. After Komatsu succeeded in
encapsulating molecular hydrogen in a closed C60 cage,
Sawa et al. measured the electron density again (H Sawa,
personal communication). Electron density was measured
using X-rays of wavelength 0.0998 nm. The H2@C60
sample was maintained at 50 K. It has been confirmed
experimentally that the rotational mode of H2@C60 is
almost eliminated at this temperature [27]. The inner
diameter of fullerene C60 is known to be approximately
0.7 nm. Here, we employ a radius of 0.36 nm, as used
in [26]. Electrons belonging to H2@C60 can be described
by the Schrödinger equation with the boundary condi-
tion that the electron density is zero for r ≥ 0.36 nm.
The equation for the hydrogen atom has been solved
numerically using Mathematica [28]. Here, we assume
that energy eigenvalues are well approximated by those of
the hydrogen atom for smaller principal quantum num-
bers. The solution proportional to e+r , which is aban-
doned as a solution for molecular hydrogen in a vacuum,
is allowed for H2 in the C60 cage. Energy eigenvalues
are listed in Table 1, along with the values in a vacuum.
All solutions have zero angular momentum because there
are no solutions with nonzero angular momentum in a
spherically symmetric cage of radius 0.36 nm. Before mea-
surement is taken, the electrons must be in the ground
state. The uncertainty in the electron energy originates
only from thermal fluctuations in electron energies, which
is estimated to be σE = 4.31 × 10−3 eV at a tempera-
ture of 50 K. The electron position in the ground state
has a distribution with variance equal to the square of
the Bohr radius. Hence, the Bohr radius is considered as
the uncertainty in the initial electron position, i.e., σr =
aB = 5.29 × 10−2 nm. The electron may be excited to
one of the excited states listed in Table 1 after the mea-
surement. Then the energy uncertainty of the electron is
at most δE = 27.24 eV. The uncertainty in the electron
density measurement is not clearly given, but the distri-
bution of the electron density with respect to the radius
has been measured very clearly, and the estimated num-
ber for the electrons in H2@C60 is given as 1.9 ± 0.4 [26]
(H Sawa, personal communication). If we assume δr =
1 × 10−2 nm, the calculated electron density distribution
is consistent with the figure and the estimated number of
electrons in the cage is found to be 2.0 ± 0.4, which is
consistent with the experimental result. We thus use the
value δr = 1 × 10−2 nm for the position uncertainty of

the measurement. In conclusion, we obtain the following
uncertainties:

δE × σ r 	 1.44 eV nm,
σE × δr 	 4.31 × 10−5 eV nm,
δE × δr 	 2.72 × 10−1 eV nm,
abE0
2

	 3.60 × 10−1 eV nm.

Here, we observe that Heisenberg uncertainty pair δE ×
δr exhibits smaller values than the expected vales abE0/2.

Conclusions
We formulated the physical measurement process on the
basis of classical information theory without introducing
any quantization of the physical system. The probabilis-
tic behavior of the physical measurements arises from
the assumption that the experimental data are random
variables obeying a probability law. Even in this classi-
cal context, essential properties of uncertainty relations
are exhibited. The Kennard-Robertson type of uncer-
tainty relation arises for two physical quantities related to
one another by Fourier transformation. Although Fourier
transformation plays an essential role, it is not the only
transformation leading to an uncertainty relation. We
investigated GFT dual pairs of physical quantities gov-
erned by Sturm-Liouville-type differential equations and
obtained a generalized uncertainty relation for such GFT
dual pairs. In addition, we showed that Gaussian distri-
butions realize the minimum uncertainty condition using
the Cramèr-Rao inequality, and the minimum uncertainty
condition can give a smaller error than that implied by the
usual Kennard-Robertson lower limit. This reduction of
uncertainties can be understood quantitatively in terms of
information entropy because of boundary conditions.

Endnote
aAccording to the proof of the UVUR in [6], the UVUR

proposed must be AND of Equation (28) to (31) rather
than the single inequality of Equation (26) in [6].
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