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Abstract

In the framework of fractional action cosmology, we have reconstructed the scalar potentials and scalar fields, namely,
quintessence, phantom, tachyon, k-essence, Dirac-Born-Infeld-essence, hessence, dilaton field, and Yang-Mills field. To
get more physical picture of the variation of the scalar field and potential with time, we express a scale factor in
emergent, logamediate, and intermediate scenarios, under which the universe expands differently.
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Background
Fractional action cosmology (FAC) is based on the prin-
ciples and formalism of the fractional calculus applied to
cosmology. The fractional derivative and fractional inte-
grals are the main tools in fractional calculus, where the
order of differentiation or integration is not an integer.
The fractional calculus is immensely useful in various
branches of mathematics, physics, and engineering [1]. In
doing FAC, one can proceed in two different ways [2,3]:
the first one is quite easy as one has to replace the par-
tial derivatives in the Einstein field equations with the
corresponding fractional derivatives [2]; the second tech-
nique involves deriving the field equations and geodesic
equations from a more fundamental way, namely start-
ing with the principle of least action and replacing the
usual integral with a fractional integral. In the framework
of FAC, the gravitational field is represented by an affine
connection on a curved manifold, and the free fall for a
particle of massm corresponds to a geodesic motion with
an action given by [4,5]:

S = − m
2�(ξ)

∫
ẋμẋνgμν(x)(t − τ)ξ−1dτ . (1a)
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Here �(ξ) = ∫ ∞
0 tξ−1e−tdt is the gamma function, 0 <

ξ ≤ 1, 0 < τ < t, m = constant, and ẋμ = dxμ

dτ
. The

gμν is the metric tensor. The variation yields an extra term
in the field equations which he termed as ‘variable gravi-
tational constant G’. Moreover, when the weight function
in the fractional time integral is replaced with a sinu-
soidal function, then the solution of the corresponding
field equations yields a variable cosmological constant and
an oscillatory scale factor [6]:

S = m
2

∫ τ

0
ẋμẋνgμν(x)e−χ sin(βt)dt, (1b)

where χ = 0 reduces to the standard action. In [7], the
authors extended the previous study by working out with
a general weight function:

S = m
2

τ∫
0

gμν(x)ẋμẋνμ(χ , t)dt. (1c)

Several examples were studied, and cosmological
parameters were calculated in there. An interesting fea-
ture of FAC is that it yields an expanding universe, the
scale factor of which goes like a power law form or expo-
nential form depending on the choice of the weight func-
tion. Hence, cosmic acceleration can be modeled in FAC.
It should also be mentioned that FAC modeled not only
late acceleration but also graviton field [4].
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Reconstruction of potentials has been done by several
authors in various cases [8-16]. Also, various scenarios
of the universe have been considered in the works of
[17-22]. Capozziello et al. [23] considered scalar-tensor
theories and reconstruct their potential and coupling
by demanding a background �CDM cosmology. In the
framework of phantom quintessence cosmology, [24] used
the Noether symmetry approach to obtain general exact
solutions for the cosmological equations. In the present
paper, we are going to reconstruct the potentials and
scalar fields, namely, quintessence, phantom, tachyonic,
k-essence, Dirac-Born-Infeld (DBI)-essence, hessence,
dilaton field, and Yang-Mills field. Such reconstructions
have been studied previously in other gravitational setups
[8-16]. To get more physical insight into the model, we
express scale factor in three useful forms [17-22] (emer-
gent, logamediate, and intermediate scenarios) under
which the universe expands differently. Such expansion
scenarios are consistent with the observations with some
restrictions on their parameters [17-22].

Fractional action cosmological model
For a Friedmann-Robertson-Walker (FRW) spacetime,
the line element is

ds2 = −dt2 +a2(t)
[

dr2

1 − kr2
+ r2(dθ2 + sin2 θdφ2)

]
,

(2)

where a(t) is the scale factor, and k (= 0,±1) is the curva-
ture scalar. We consider that the universe contains normal
matter and dark energy. From Equation (1a), the Einstein
equations for the space-time given by Equation (2) are
[4,5]

H2 + 2(ξ − 1)
T1

H + k
a2

= 8πG
3

ρ, (3)

Ḣ − (ξ − 1)
T1

H − k
a2

= −4πG(ρ + p), (4)

where T1 = t − τ , ρ = (ρm + ρφ), and p = (pm + pφ).
Here, ρm and pm are the energy density and pressure of the
normal matter connected by the equation of state (EoS)

pm = wmρm , − 1 ≤ wm ≤ 1, (5)

and ρφ and pφ are the energy density and pressure due to
the dark energy, respectively.
Now, consider there is an interaction between normal

matter and dark energy. Dark energy interacting with dark
matter is a promising model to alleviate the cosmic coinci-
dence problem. In [25], the authors studied the signature
of such interaction on large scale cosmic microwave back-
ground (CMB) temperature anisotropies. Based on the
detailed analysis on perturbation equations of dark energy
and dark matter when they are in interaction, they found

that the large scale CMB, especially the late integrated
SachsWolfe effect, is a useful tool to measure the coupling
between dark sectors. It was deduced that in the 1σ range,
the constrained coupling between dark sectors can solve
the coincidence problem. In [26], a general formalism to
study the growth of dark matter perturbations when dark
energy perturbates and interacts between the dark sectors
were presented.
They showed that the dynamical stability on the growth

of structure depends on the form of coupling between
dark sectors. Moreover, due to the influence of the inter-
action, the growth index can differ from the value without
interaction by an amount up to the observational sensibil-
ity, which provides an opportunity to probe the interac-
tion between dark sectors through future observations on
the growth of the structure.
Due to this interaction, the normal matter and dark

energy are not separately conserved. The energy conser-
vation equations for normal matter and dark energy are

ρ̇m + 3H(pm + ρm) = −3δHρm, (6)
and

ρ̇φ + 3H(pφ + ρφ) = 3δHρm, (7)

respectively, where H = ȧ/a is the Hubble parameter.
From Equation (6), we have the expression for energy

density of matter as

ρm = ρ0a−3(1+wm+δ), (8)

where ρ0 is the integration constant.

Emergent, logamediate, and intermediate
scenarios

• Emergent scenario: For emergent universe, the scale
factor can be chosen as [27,28]

a(T1) = a0
(
λ + eμT1

)n
, (9)

where a0, μ, λ, and n are positive constants. (1)
a0 > 0 for the scale factor a to be positive; (2) λ > 0,
to avoid any singularity at finite time (big rip); (3)
a > 0 or n > 0 for expanding model of the universe;
(4) a < 0 and n < 0 imply big bang singularity at
t = −∞.
So, the Hubble parameter and its derivatives are
given by

H = nμeμT1(
λ + eμT1

) , Ḣ = nλμ2eμT1(
λ + eμT1

)2 ,

Ḧ = nλμ3eμT1(λ − eμT1)(
λ + eμT1

)3 .
(10)

Here, H and Ḣ are both positive, but Ḧ changes sign
at T1 = 1

μ
log λ. Thus H, Ḣ , and Ḧ all tend to zero as
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t → −∞. On the other hand, as t → ∞, the solution
gives asymptotically a de Sitter universe.

• Logamediate scenario: Consider a particular form of
logamediate scenario, where the form of the scale
factor a(t) is defined as [17-22]

a(T1) = eA(lnT1)α , (11)

where Aα > 0 and α > 1. When α = 1, this model
reduces to a power law form. The logamediate form
is motivated by considering a class of possible
cosmological solutions with indefinite expansion
which results from imposing weak general conditions
on the cosmological model. Barrow and others
[17-22] have found that, in their model, the
observational ranges of the parameters are as follows:
1.5 × 10−92 ≤ A ≤ 2.1 × 10−2 and 2 ≤ α ≤ 50. The
Hubble parameter H = ȧ

a and its derivative become

H = Aα

T1
(lnT1)

α−1 , Ḣ = Aα

T2
1

(lnT1)
α−2(α−1−lnT1).

(12)

• Intermediate scenario: Consider a particular form of
intermediate scenario, where the scale factor a(t) of
the Friedmann universe is described as [17-22]

a(t) = eBT
β
1 , (13)

where Bβ > 0, B > 0, and 0 < β < 1. Here, the
expansion of universe is faster than the power law
form, where the scale factor is given as a(T1) = Tn

1
(where n > 1 is a constant). Also, the expansion of
the universe is slower for standard de Sitter scenario,
where β = 1. The Hubble parameter H = ȧ

a and its
derivative become

H = BβTβ−1
1 , Ḣ = Bβ(β − 1)Tβ−2

1 . (14)

Various candidates of dark energymodels
Quintessence or phantom field
Quintessence is described by an ordinary time-dependent
and homogeneous scalar field φ which is minimally cou-
pled to gravity but with a particular potential V (φ)

that leads to the accelerating universe. The action for
quintessence is given by [29]

S =
∫

d4x
√−g

[
−1
2
gij∂iφ∂jφ − V (φ)

]
.

The energy momentum tensor of the field is

Tij = − 2√−g
δS
δgij

,

which gives

Tij = ∂iφ∂jφ − gij
[
1
2
gkl∂kφ∂lφ + V (φ)

]
.

The energy density and pressure of the quintessence
scalar field φ are as follows:

ρφ = −T0
0 = 1

2
φ̇2 + V (φ),

pφ = Ti
i = 1

2
φ̇2 − V (φ).

The EoS parameter for the quintessence scalar field is
given by

ωφ = pφ

ρφ

= φ̇2 − 2V (φ)

φ̇2 + 2V (φ)
.

For ωφ < −1/3, we find that the universe accelerates
when φ̇2 < V (φ). The energy density and the pressure
of the quintessence (phantom field) can be represented by
the minimally coupled spatially homogeneous and time-
dependent scalar field φ having positive (negative) kinetic
energy term given by

ρφ = ε

2
φ̇2 + V (φ) (15)

and

pφ = ε

2
φ̇2 − V (φ), (16)

where V (φ) is the relevant potential for the scalar field φ;
ε = +1 represents quintessence, while ε = −1 refers to
phantom field.
Scalar field models of phantom energy indicate that it

can behave as a long range repulsive force [30]. More-
over, the phantom energy has few characteristics different
from normal matter, for instance, the energy density ρ(t)
of the phantom field increases with the expansion of the
universe. It can be used as a source to form and stabi-
lize traversable wormholes [31-35]. The phantom energy
can disrupt all gravitationally bound structures, i.e, from
galaxies to black holes [36-41]. It can produce infinite
expansion of the universe in a finite time, thus causing the
‘big rip’ [42,43]. In Equations (3) and (4), we put the forms
of pφ and ρφ expressed above. The Hubble parameter (H)
is obtained based on the form of the scale factor. First, we
separate the scalar field and potential as follows:

φ̇2 = − (1 + wm)

ε
ρm + 1

4πεG

[
−Ḣ + (ξ − 1)

T1
H + k

a2

]
,

(17)

and

V = (wm − 1)
2

ρm + 1
8πG

[
Ḣ + 3H2 + 5(ξ − 1)

T1
H + 2k

a2
.
]

(18)

Similar approach would be adopted for other scalar
field models of dark energy. Now, we consider the various
choices of scale factor:
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• For emergent scenario, we get the expressions for φ and V as

φ =
∫ √√√√− (1 + wm)ρ0a−3(1+wm+δ)

0

ε
(
λ + eμT1

)3n(1+wm+δ)
+ 1

4πεG

{
− nλμ2eμT1(

λ + eμT1
)2 + (ξ − 1)nμeμT1

T1(λ + eμT1)
+ k a−2

0(
λ + eμT1

)2n
}

dT1, (19)

and

V = (wm − 1)ρ0a−3(1+wm+δ)
0

2
(
λ + eμT1

)3n(1+wm+δ)
+ 1

8πG

{
nμ2eμT1(λ + 3neμT1)(

λ + eμT1
)2 + 5(ξ − 1)nμeμT1

T1(λ + eμT1)
+ 2k a−2

0(
λ + eμT1

)2n
}
. (20)

• For logamediate scenario, we get the expressions for φ and V as

φ =
∫ √√√√− (1 + wm)ρ0

ε
e−3A(1+wm+δ)(lnT1)α + 1

4πεG

{
Aα

T2
1

(lnT1)α−2(1 − α + ξ lnT1) + k e−2A(lnT1)α

}
dT1 (21)

and

V = (wm − 1)ρ0
2

e−3A(1+wm+δ)(lnT1)α + 1
8πG

[
Aα

T2
1

(lnT1)
α−2{α − 1 + (5ξ − 6) lnT1 + 3Aα(lnT1)

α} + 2k e−2A(lnT1)α
]
.

(22)

• For intermediate scenario, we get the expressions for φ and V as

φ =
∫ √

− (1 + wm)ρ0
ε

e−3B(1+wm+δ)Tβ
1 + 1

4πεG

{
Bβ(ξ − β)Tβ−2

1 + k e−2BTβ
1
}

dT1, (23)

and

V = (wm − 1)ρ0
2

e−3B(1+wm+δ)Tβ
1 + 1

8πG

[
BβTβ−2

1 (5ξ + β + 3BβTβ
1 ) + 2k e−2BTβ

1
]
. (24)

In Figures 1, 2, and 3, we have plotted the potentials versus the scalar fields for the quintessence and phantom fields in
emergent, logamediate, and intermediate scenarios of the universe, respectively, in fractional action cosmology. It has
been observed in Figure 1 that after gradual decay, the potential starts increasing with scalar field for quintessence as
well as phantom field models of dark energy in the emergent scenario of the universe irrespective of its type of curvature.
On the contrary, when logamediate scenario is considered, the Figure 2 exhibits a continuous decay in the potential V
with increase in the scalar field φ. A different behavior is observed in Figure 3 that depicts the behavior of the potentialV
versus scalar field φ in the case of intermediate scenario of the universe. The blue lines in this figure show a continuous
decay in V with increase in φ for quintessence model. However, the red lines exhibit an increasing pattern of V with
scalar field φ.

Tachyonic field
A rolling tachyon has an interesting equation of state, the state parameter of which smoothly interpolates between −1
and 0 [44]. Thus, tachyon can be realized as a suitable candidate for the inflation at high energy [45-47] as well as a source
of dark energy, depending on the form of the tachyon potential [48-51]. Therefore, it becomesmeaningful to reconstruct
tachyon potential V (φ) from some dark energy models. An action for tachyon scalar φ is given by Born-Infeld-like
action

S = −
∫

d4x
√−gV (φ)

√
1 − gij∂iφ∂jφ, (25)

where V (φ) is the tachyon potential. Energy-momentum tensor components for tachyon scalar φ are obtained as

Tij = V (φ)

⎡
⎢⎣ ∂iφ∂jφ√

1 − gij∂iφ∂jφ
+ gij

√
1 − gkl∂kφ∂lφ

⎤
⎥⎦ . (26)
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Figure 1 Variations of V against quintessence or phantom field
φ in the emergent scenario. Solid, dash, and dotted lines represent
k = −1, k = +1, and k = 0, respectively. Blue and red lines represent
quintessence field (ε = +1) and phantom field (ε = −1), respectively.

The energy density ρφ and pressure pφ due to the
tachyonic field φ have the expressions

ρφ = V (φ)√
1 − εφ̇2

, (27)

pφ = −V (φ)

√
1 − εφ̇2, (28)

whereV (φ) is the relevant potential for the tachyonic field
φ. It is to be seen that pφ

ρφ
= −1 + εφ̇2 > −1 or < −1

accordingly as normal tachyon (ε = +1) or phantom
tachyon (ε = −1). From above, we get

φ̇2 =
[
− (1 + wm)

ε
ρm + 1

4πεG

{
−Ḣ + (ξ − 1)

T1
H + k

a2

}]

×
[
−ρm + 3

8πG

{
H2 + 2(ξ − 1)

T1
H + k

a2

}]−1

(29)

and

V =
[
wmρm + 1

8πG

{
2Ḣ + 3H2 + 4(ξ − 1)

T1
H + k

a2

}] 1
2

×
[
−ρm + 3

8πG

{
H2 + 2(ξ − 1)

T1
H + k

a2

}] 1
2
.

(30)

• For emergent scenario, we get the expressions for φ

and V as

φ =
∫ [

− (1 + wm)ρ0a−3(1+wm+δ)
0

ε
(
λ + eμT1

)3n(1+wm+δ)

+ 1
4πεG

{
− nλμ2eμT1(

λ + eμT1
)2 + (ξ − 1)nμeμT1

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}] 1
2

×
[
− ρ0a−3(1+wm+δ)

0(
λ + eμT1

)3n(1+wm+δ)

+ 3
8πG

{
n2μ2e2μT1(
λ + eμT1

)2 + 2(ξ − 1)nμeμt

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}]− 1
2

dT1

(31)

and

V =
[

wmρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

+ 1
8πG

{
nμ2eμT1(2λ + 3neμT1)(

λ + eμT1
)2

+4(ξ − 1)nμeμT1

T1(λ + eμT1)
+ k a−2

0(
λ + eμT1

)2n
}] 1

2

×
[
− ρ0a−3(1+wm+δ)

0(
λ + eμT1

)3n(1+wm+δ)

+ 3
8πG

{
n2μ2e2μT1(
λ + eμT1

)2 + 2(ξ − 1)nμeμT1

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}] 1
2

.

(32)

• For logamediate scenario, we get the expressions for φ

and V as
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Figure 2 Variations of V against quintessence or phantom field φ in the logamediate scenario. Solid, dash, and dotted lines represent
k = −1, k = +1, and k = 0, respectively. Blue and red lines represent quintessence field (ε = +1) and phantom field (ε = −1), respectively.

φ =
∫ [

− (1 + wm)ρ0
ε

e−3A(1+wm+δ)(lnT1)α

+ 1
4πεG

{
Aα

T2
1

(lnT1)
α−2(1 − α + ξ lnT1)

+ k e−2A(lnT1)α
}] 1

2

×
[

− ρ0 e−3A(1+wm+δ)(lnT1)α

+ 3
8πG

{
Aα

T2
1

(lnT1)
α−1{Aα(lnT1)

α−1 + 2(ξ − 1)}

+ k e−2A(lnT1)α
}]− 1

2

dT1

(33)
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Figure 3 Variations ofV against quintessence or phantom field φ

in the intermediate scenario. Solid, dash, and dotted lines represent
k = −1,k = +1, and k = 0, respectively. Blue and red lines represent
quintessence field (ε = +1) and phantom field (ε = −1), respectively.

and

V =
[

− ρ0 e−3A(1+wm+δ)(lnT1)α

+ 3
8πG

{
Aα

T2
1

(lnT1)
α−1{Aα(lnT1)

α−1 + 2(ξ − 1)}

+ k e−2A(lnT1)α
}] 1

2

×
[
wmρ0 e−3A(1+wm+δ)(lnT1)α + 1

8πG

×
{
Aα

t2
(lnT1)

α−2 {2(α − 1) + 2(ξ − 3) ln t

+3Aα(lnT1)
α
} + k e−2A(lnT1)α

}] 1
2

.

(34)

• For intermediate scenario, we get the expressions for φ

and V as

φ =
∫ [

− (1 + wm)ρ0
ε

e−3B(1+wm+δ)Tβ
1

+ 1
4πεG

{
Bβ(ξ − β)Tβ−2

1 + k e−2BTβ
1
}] 1

2

×
[
−ρ0 e−3B(1+wm+δ)Tβ

1

+ 3
8πG

{
BβTβ−2

1 (2(ξ − 1) + BβTβ
1 )

+k e−2BTβ
1
}]− 1

2 dT1

(35)
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and

V =
[

− ρ0 e−3B(1+wm+δ)Tβ
1

+ 3
8πG

{
BβTβ−2

1 (2(ξ − 1) + BβTβ
1 ) + k e−2BTβ

1
}]1

2

×
[
wmρ0 e−3B(1+wm+δ)Tβ

1

+ 1
8πG

{
BβTβ−2

1 (2(2ξ + β − 3) + 3BβTβ
1 )

+ k e−2BTβ
1
} ] 1

2
.

(36)

In Figure 4, the V -φ plot for normal tachyon and
phantom tachyon models of dark energy is presented for
emergent scenario of the universe. The potential of nor-
mal tachyon exhibits decaying pattern. However, it shows
an increasing pattern for phantom tachyonic field φ. It
happens irrespective of the curvature of the universe.
In the logamediate scenario (Figure 5) the potentials for
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0.4

0.5

0.6

V

Figure 4 Variations of V against tachyonic field φ in the
emergent scenario. Solid, dash, and dotted lines represent k = −1,
k = +1, and k = 0, respectively. Blue and red lines represent normal
tachyonic field (ε = +1) and phantom tachyonic field (ε = −1),
respectively.
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Figure 5 Variations of V against tachyonic field φ in the
logamediate scenario. Solid, dash, and dotted lines represent
k = −1, k = +1, and k = 0, respectively. Blue and red lines represent
normal tachyonic field (ε = +1) and phantom tachyonic field
(ε = −1), respectively.

normal tachyon and phantom tachyon exhibit increasing
and decreasing behavior, respectively, with the increase
in the scalar field φ. From Figure 6, we see a continu-
ous decay in the potential for normal tachyonic field in
the intermediate scenario. However, in this scenario, the
behavior of the potential varies with the curvature of the
universe characterized by interacting phantom tachyonic
field. For k = −1 and k = 1, the potential increases
with phantom tachyonic field; for k = 0, it decays after
increasing initially.

k-essence
In the kinetically driven scalar field theory, we have non-
canonical kinetic energy term with no potential. Scalars
modelling this theory are popularly known as k-essence.
Motivated by Born-Infeld action of String Theory, it was
used as a source to explain the mechanism for producing
the late time acceleration of the universe. This model is
given by the action [52-57]

S =
∫

d4x
√−gL̃(φ̃, X̃), (37)

with

L̃(φ̃, X̃) = K(φ̃)X̃ + L(φ̃)X̃2, (38)

ignoring the higher order terms of

X̃ = 1
2
gij∂iφ̃∂jφ̃. (39)
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Figure 6 Variations of V against tachyonic field φ in the
intermediate scenario. Solid, dash, and dotted lines represent
k = −1, k = +1, and k = 0, respectively. Blue and red lines represent
normal tachyonic field (ε = +1) and phantom tachyonic field
(ε = −1), respectively.

Using the following transformations, φ =∫
dφ̃

√
|L(φ̃)|/K(φ̃), X = |L|

K X̃, and V (φ) = K2/|L|, the
action can be rewritten as

S =
∫

d4x
√−gV (φ)L(X), (40)

with

L(X) = X − X2. (41)

From the action, the energy-momentum tensor compo-
nents can be written as

Tij = V (φ)

[
dL
dX

∂iφ∂jφ − gijL
]
. (42)

The energy density and pressure of k-essence scalar field
φ are given by

ρk = V (φ)(−X + 3X2) (43)

and

pk = V (φ)(−X + X2), (44)

where φ is the scalar field having a kinetic energy X =
1
2 φ̇

2, and V (φ) is the k-essence potential.
From above, we get

φ̇2=
[
2(wm − 1)ρm+ 1

2πG

{
Ḣ+3H2+ 5(ξ − 1)

T1
H+ 2k

a2

}]

×
[
(3wm − 1)ρm+ 3

4πG

{
Ḣ+2H2+ 3(ξ − 1)

T1
H+ k

a2

}]−1
,

(45)

and

V =
[
(3wm − 1)ρm+ 3

4πG

{
Ḣ+2H2+ 3(ξ − 1)

T1
H+ k

a2

}]2

×
[
2(wm − 1)ρm+ 1

2πG

{
Ḣ+3H2+ 5(ξ − 1)

T1
H+ 2k

a2

}]−1
.

(46)

• For emergent scenario, we have

φ =
∫ [

2(wm − 1)ρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

+ 1
2πG

×
{
nμ2eμT1(λ + 3neμT1)(

λ + eμT1
)2 + 5(ξ − 1)nμeμT1

T1(λ + eμT1)

+ 2k a−2
0(

λ + eμT1
)2n

}] 1
2

×
[

(3wm − 1)ρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

+ 3
4πG

×
{
nμ2eμT1(λ + 2neμT1)(

λ + eμT1
)2 + 3(ξ − 1)nμeμT1

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}]− 1
2

dt,

(47)
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and

V =
[

(3wm − 1)ρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

+ 3
4πG

×
{
nμ2eμT1(λ + 2neμT1)(

λ + eμT1
)2 + 3(ξ − 1)nμeμT1

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}]2

×
[
2(wm − 1)ρ0a−3(1+wm+δ)

0(
λ + eμT1

)3n(1+wm+δ)
+ 1

2πG

×
{
nμ2eμT1(λ + 3neμT1)(

λ + eμT1
)2 + 5(ξ − 1)nμeμT1

T1(λ + eμT1)

+ 2k a−2
0(

λ + eμT1
)2n

}]−1

.

(48)
• For logamediate scenario, we get the expressions for

φ and V as

φ=
∫ [

2(wm−1)ρ0 e−3A(1+wm+δ)(lnT1)α + 1
2πG

×
{
Aα

T2
1

(lnT1)
α−2(α−1+(5ξ−6) lnT1+3Aα(lnT1)

α)

+2k e−2A(lnT1)α
}] 1

2

×
[
(3wm − 1)ρ0 e−3A(1+wm+δ)(lnT1)α + 3

4πG

×
{
Aα

T2
1

(lnT1)
α−2(α−1+(3ξ − 4) lnT1 + 2Aα(lnT1)

α)

+ k e−2A(lnT1)α
}]− 1

2

dT1,

(49)

and

V =
[
(3wm − 1)ρ0 e−3A(1+wm+δ)(lnT1)α + 3

4πG

×
{
Aα

T2
1

(lnT1)
α−2(α−1+(3ξ−4) lnT1+2Aα(lnT1)

α)

+k e−2A(lnT1)α
}]2

×
[
2(wm − 1)ρ0 e−3A(1+wm+δ)(lnT1)α + 1

2πG

×
{
Aα

T2
1

(lnT1)
α−2(α−1+(5ξ−6) lnT1+3Aα(lnT1)

α)

+ 2k e−2A(lnT1)α
}]−1

.

(50)

• For intermediate scenario, we get the expressions for
φ and V as

φ =
∫ [

2(wm − 1)ρ0 e−3B(1+wm+δ)Tβ
1 + 1

2πG

×
{
Bβ(5ξ + β − 6 + 3BβTβ

1 )Tβ−2
1 + 2k e−2BTβ

1
} ] 1

2

×
[
(3wm − 1)ρ0 e−3B(1+wm+δ)Tβ

1 + 3
4πG

×
{
Bβ(3ξ+ β−4+2BβTβ

1 )Tβ−2
1 +k e−2BTβ

1
}]− 1

2
dT1,

(51)

and

V =
[
(3wm − 1)ρ0 e−3B(1+wm+δ)Tβ

1 + 3
4πG

×
{
Bβ(3ξ + β − 4 + 2BβTβ

1 )Tβ−2
1 + k e−2BTβ

1
} ]2

×
[
2(wm − 1)ρ0 e−3B(1+wm+δ)Tβ

1 + 1
2πG

×
{
Bβ(5ξ + β − 6 + 3BβTβ

1 )Tβ−2
1 + 2k e−2BTβ

1
} ]−1

.

(52)

From Figures 7, 8, and 9, we see that for interact-
ing k-essence, the potential V always decreases with the
increase in the scalar field φ in all of the three scenarios. It
happens for open, closed, and flat universes.

0 1 2 3 4
0

1

2

3

4

V

Figure 7 Variations of V against k-essence field φ in the
emergent scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.
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Figure 8 Variations of V against k-essence field φ in the logamediate scenario. Red, green, and blue lines represent k = −1, k = +1, and
k = 0, respectively.

Dirac-Born-Infeld-essence
Consider that the dark energy scalar field is a DBI scalar
field. In this case, the action of the field be written as
[58-61]

SD = −
∫

d4xa3(t)

⎡
⎣T(φ)

√
1 − φ̇2

T(φ)
+ V (φ) − T(φ)

⎤
⎦ ,

(53)

0.0 0.2 0.4 0.6 0.8 1.0

0.2

0.4

0.6

0.8

1.0

V

Figure 9 Variations of V against k-essence field φ in the
intermediate scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.

where T(φ) is the warped brane tension, and V (φ) is the
DBI potential. The energy density and pressure of the
DBI-essence scalar field are, respectively, given by

ρD = (γ − 1)T(φ) + V (φ) (54)

and

pD = γ − 1
γ

T(φ) − V (φ), (55)

where γ is given by

γ = 1√
1 − φ̇2

T(φ)

. (56)

Now, we consider here a particular case γ = constant. In
this case, for simplicity, we assumeT(φ) = T0φ̇2 (T0 > 1).
So, we have γ =

√
T0

T0−1 . In this case, the expressions for
φ, T(φ), and V (φ) are given by

φ̇2=
√
T0 − 1
T0

[
−(1+wm)ρm+ 1

4πG

(
−Ḣ+ ξ − 1

T1
H+ k

a2

)]

(57)

T=√
T0(T0 − 1)

[
−(1+wm)ρm+ 1

4πG

(
−Ḣ+ ξ − 1

t
H+ k

a2

)]
,

(58)
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and

V =
[(

T0 − √
T0(T0 − 1)

)
(1 + wm) − wm

]
ρm

− 1
8πG

[(
1 − T0 + √

T0(T0 − 1)
)
Ḣ + 3H2

+ 2
(
T0 − √

T0(T0 − 1) + 2
) ξ − 1

T1
H

+
(
2T0 − 2

√
T0(T0 − 1) + 1

) k
a2

]
.

(59)

• For emergent scenario, we get the expressions for φ,
T, and V as

φ =
(
T0 − 1
T0

) 1
4
∫ [

− (1 + wm)ρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

+ 1
4πG

×
{

− nλμ2eμT1(
λ + eμT1

)2 + (ξ − 1)nμeμT1

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}] 1
2

dT1,

(60)

T = √
T0(T0 − 1)

[
− (1 + wm)ρ0a−3(1+wm+δ)

0(
λ + eμT1

)3n(1+wm+δ)
+ 1

4πG

×
{

− nλμ2eμT1(
λ + eμT1

)2 + (ξ − 1)nμeμt

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}]
,

(61)

and

V =
[(

T0 − √
T0(T0 − 1)

)
(1 + wm) − wm

]

× ρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

− 1
8πG

×
[(

1 − T0 + √
T0(T0 − 1)

) nλμ2eμT1(
λ + eμT1

)2 + 3n2μ2e2μT1(
λ + eμT1

)2
+ 2

(
T0 − √

T0(T0 − 1) + 2
) (ξ − 1)

T1

nμeμT1(
λ + eμT1

)
+
(
2T0 − 2

√
T0(T0 − 1) + 1

) k a−2
0(

λ + eμT1
)2n

]
.

(62)

• For logamediate scenario, we get the expressions for
φ, T, and V as

φ=
(
T0 − 1
T0

) 1
4
∫ [

−(1 + wm)ρ0 e−3A(1+wm+δ)(lnT1)α + 1
4πG

×
{
Aα

T2
1

(lnT1)
α−2(1 − α + ξ lnT1)

+k e−2A(lnT1)α
}] 1

2

dT1,

(63)

T=√
T0(T0 − 1)

[
−(1+wm)ρ0 e−3A(1+wm+δ)(lnT1)α + 1

4πG

×
{
Aα

T2
1

(lnT1)
α−2(1 − α + ξ lnT1)

+k e−2A(lnT1)α
}]

,

(64)

and

V =
[(
T0−

√
T0(T0−1)

)
(1+wm)−wm

]
ρ0 e−3A(1+wm+δ)(lnT1)α

− 1
8πG

[
2
(
T0 − √

T0(T0−1)+2
) (ξ − 1)Aα

T2
1

(lnT1)
α−1

+ 3A2α2

T2
1

(lnT1)
2α−2 +

(
1 − T0 + √

T0(T0 − 1)
)

× Aα

T2
1

(lnT1)
α−2(α − 1 − lnT1)

+
(
2T0 − 2

√
T0(T0 − 1) + 1

)
k e−2A(lnT1)α

]
.

(65)
• For intermediate scenario, we get the expressions for

φ, T, and V as

φ =
(
T0 − 1
T0

) 1
4
∫ [

−(1 + wm)ρ0 e−3B(1+wm+δ)Tβ
1 + 1

4πG

×
{
Bβ(ξ−β)Tβ−2

1 +k e−2BTβ
1
} ] 1

2
dT1,

(66)

T = √
T0(T0 − 1)

[
−(1 + wm)ρ0 e−3B(1+wm+δ)Tβ

1 + 1
4πG

×
{
Bβ(ξ − β)Tβ−2

1 + k e−2BTβ
1
} ]

,

(67)
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Figure 10 Variations of V against DBI field φ in the emergent
scenario. Solid, dash, and dotted lines represent k = −1, k = +1,
and k = 0, respectively.

and

V =
[(

T0−
√
T0(T0−1)

)
(1+wm)−wm

]
ρ0 e−3B(1+wm+δ)Tβ

1

− 1
8πG

[ (
1 − T0 + √

T0(T0 − 1)
)
Bβ(β − 1)Tβ−2

1

+ 3B2β2T2β−2
1 +2

(
T0−

√
T0(T0−1)+2

) (ξ − 1)
T1

×BβTβ−1
1 +

(
2T0−2

√
T0(T0−1)+1

)
k e−2BTβ

1
]
.

(68)

When we consider an interacting DBI-essence dark
energy, we get a decaying pattern in the V -φ plot for
emergent and intermediate scenarios in the Figures 10
and 11, respectively. However, from Figure 12, we see an
increasing plot of V -φ for interacting DBI-essence in the
logamediate scenario.

Hessence
Wei et al. [62,63] proposed a novel non-canonical complex
scalar field named ‘hessence’ which plays the role of quin-
tom. In the hessence model, the so called internal motion
θ̇ , where θ is the internal degree of freedom of hessence,
which plays a phantom-like role. The phantom divide
transitions are also possible. The Lagrangian density of the
hessence is given by

Lh = 1
2
[ (∂μφ)2 − φ2(∂μθ)2]−V (φ). (69)

The pressure and energy density for the hessence model
are given by

ph = 1
2
(φ̇2 − φ2θ̇2) − V (φ), (70)

and

ρh = 1
2
(φ̇2 − φ2θ̇2) + V (φ), (71)

with

Q = a3φ2θ̇ = constant, (72)

where Q is the total conserved charge, φ is the hessence
scalar field, and V is the corresponding potential.
Equation 71 is conserved, but in FAC (proposed in [4,5]),
there is a violation of energy, charge, and the Noether
symmetry theorem. For reference, see [64-66].
From above, we get

φ̇2 − Q2

a6φ2 = −(1 + wm)ρm + 1
4πG

(
−Ḣ + ξ − 1

T1
H + k

a2

)
,

(73)

and

V = 1
2
(wm − 1)ρm + 1

8πG

(
Ḣ + 3H2 + 5(ξ − 1)

T1
H + 2k

a2

)
.

(74)

• For emergent scenario, we get the expressions for φ

and V as

φ̇2 − Q2

a60
(
λ + eμT1

)6n
φ2

= − (1 + wm)ρ0a−3(1+wm+δ)
0(

λ + eμT1
)3n(1+wm+δ)

+ 1
4πG

{
− nλμ2eμT1(

λ + eμT1
)2 + (ξ − 1)nμeμt

T1(λ + eμT1)
+ k a−2

0(
λ + eμT1

)2n
}
,

(75)
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Figure 11 Variations of V against DBI field φ in the intermediate
scenario. Solid, dash, and dotted lines represent k = −1, k = +1,
and k = 0, respectively.
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Figure 12 Variations of V against DBI field φ in the logamediate scenario. Solid, dash, and dotted lines represent k = −1, k = +1, and k = 0,
respectively.

and

V = (wm − 1)ρ0a−3(1+wm+δ)
0

2
(
λ + eμT1

)3n(1+wm+δ)
+ 1

8πG

×
{
nμ2eμT1(λ + 3neμT1)(

λ + eμT1
)2 + 5(ξ − 1)nμeμT1

T1(λ + eμT1)

+ 2k a−2
0(

λ + eμT1
)2n

}
.

(76)

• For logamediate scenario, we get the expressions for
φ and V as

φ̇2 − Q2e−6A(lnT1)α

φ2 = −(1 + wm)ρ0 e−3A(1+wm+δ)(lnT1)α

+ 1
4πG

{
Aα

T2
1

(lnT1)
α−2(1 − α + ξ lnT1) + k e−2A(lnT1)α

}

(77)

and

V = (wm − 1)ρ0
2

e−3A(1+wm+δ)(lnT1)α + 1
8πG

×
[
Aα

T2
1

(lnT1)
α−2{α − 1 + (5ξ − 6) lnT1 + 3Aα(lnT1)

α}

+2k e−2A(lnT1)α
]
.

(78)

• For intermediate scenario, we get the expressions for
φ and V as

φ̇2 − Q2e−6BTβ
1

φ2 = −(1 + wm)ρ0 e−3B(1+wm+δ)Tβ
1

+ 1
4πG

{
Bβ(ξ − β)Tβ−2

1 + k e−2BTβ
1
}
,

(79)

and

V = (wm − 1)ρ0
2

e−3B(1+wm+δ)Tβ
1 + 1

8πG
×

[
BβTβ−2

1 (5ξ + β + 3BβTβ
1 ) + 2k e−2BTβ

1
]
.

(80)
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Figure 13 Variations of V against hessence field φ in the
emergent scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.

For interacting hessence dark energy, Figure 13 shows
an increase in the potential with scalar field. Figures 14
and 15 show decay in the potential with scalar field. This
means that the potential for interacting hessence increases
in the emergent universe and decays in logamediate and
intermediate scenarios.

Dilaton field
Phantom field with a negative kinetic term has a prob-
lem with quantum instabilities [29]. Copeland et al. [29]
reviewed the issues that led to the introduction of dila-
ton dark energy. The energy density and pressure of the
dilaton dark energy model are given by [29]

ρd = −X + 3CeλφX2 (81)

and

pd = −X + CeλφX2, (82)

3.0 3.5 4.0 4.5 5.0 5.5 6.0
0.0

0.5

1.0

1.5

2.0

V

Figure 14 Variations of V against hessence field φ in the
logamediate scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.
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Figure 15 Variations of V against hessence field φ in the
intermediate scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.

respectively, where φ is the dilaton scalar field having a
kinetic energy X = 1

2 φ̇
2, λ is the characteristic length

which governs all non-gravitational interactions of the
dilaton, and C is a positive constant.
We get

φ =
∫ [

1
2
(3wm − 1)ρm + 3

8πG

×
(
Ḣ + 2H2 + 3(ξ − 1)

T1
H + k

a2

)] 1
2
dT1.

(83)

• For emergent scenario, we have

φ =
∫ [

(3wm − 1)ρ0a−3(1+wm+δ)
0

2
(
λ + eμT1

)3n(1+wm+δ)
+ 3

8πG

×
{
nμ2eμT1 (λ + 2neμT1 )(

λ + eμT1
)2 + 3(ξ − 1)nμeμT1

T1(λ + eμT1 )

+ k a−2
0(

λ + eμT1
)2n

}] 1
2

dT1.

(84)

• For logamediate scenario, we get

φ =
∫ [

3
8πG

{
Aα

T2
1

(lnT1)
α−2

× (α − 1 + (3ξ − 4) lnT1 + 2Aα(lnT1)
α)

+k e−2A(lnT1)α
}

+1
2
(3wm − 1)ρ0 e−3A(1+wm+δ)(lnT1)α

] 1
2

dT1.

(85)
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Figure 16 Variations of dilaton field φ against time T1 in the
emergent scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.

• For intermediate scenario, we get

φ =
∫ [

1
2
(3wm − 1)ρ0 e−3B(1+wm+δ)Tβ

1 + 3
8πG

×
{
Bβ(3ξ+β−4+2BβTβ

1 )Tβ−2
1 +k e−2BTβ

1
}] 1

2
dT1.

(86)

For interacting dilaton field, the scalar field φ always
increases with cosmic time T1, irrespective of the scenario
of the universe we consider. This is displayed in Figures 16,
17, and 18 for emergent, logamediate, and intermediate
scenarios, respectively.

Yang-Mills dark energy
Recent studies suggest that Yang-Mills field can be con-
sidered as a useful candidate to describe the dark energy.
As in the normal scalar models, the connection of field to
particle physics models has not been clear so far, and the
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Figure 17 Variations of dilaton field φ against time T1 in the
logamediate scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.
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Figure 18 Variations of dilaton field φ against time T1 in the
intermediate scenario. Red, green, and blue lines represent k = −1,
k = +1, and k = 0, respectively.

weak energy condition cannot be violated by the field. In
the effective Yang-Mills condensate (YMC) dark energy
model, the effective Yang-Mills field Lagrangian is given
by [67-69]

LYMC = 1
2
bF(ln

∣∣∣∣ FK2

∣∣∣∣ − 1), (87)

where K is the re-normalization scale of dimension of
squared mass. F plays the role of the order parameter of
the YMC where, F is given by F = − 1

2F
a
μνFaμν = E2 −B2.

The pure electric case we have is B = 0, i.e., F = E2.
From the above Lagrangian, we can derive the energy

density and the pressure of the YMC in the flat FRW
spacetime as

ρy = 1
2
(y + 1)bE2 (88)

and

py = 1
6
(y − 3)bE2, (89)

respectively, where y is defined as,

y = ln
∣∣∣∣ E2K2

∣∣∣∣ . (90)

We get

E2 =
[
1
2b

(3wm − 1)ρm + 3
8πGb

×
(
Ḣ + 2H2 + 3(ξ − 1)

T1
H + k

a2

)]
.

(91)
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• For emergent scenario, we have

E2 =
[

(3wm − 1)ρ0a−3(1+wm+δ)
0

2b
(
λ + eμT1

)3n(1+wm+δ)
+ 3

8πbG

×
{
nμ2eμT1(λ + 2neμT1)(

λ + eμT1
)2 + 3(ξ − 1)nμeμT1

T1(λ + eμT1)

+ k a−2
0(

λ + eμT1
)2n

}]
.

(92)

• For logamediate scenario, we get

E2 =
[

3
8πbG

{
Aα

T2
1

(lnT1)
α−2

× (α − 1 + (3ξ − 4) lnT1 + 2Aα(lnT1)
α)

+ k e−2A(lnT1)α
}

+ 1
2b

(3wm − 1)ρ0 e−3A(1+wm+δ)(lnT1)α
]
.

(93)

• For intermediate scenario, we get

E2 =
[
1
2b

(3wm − 1)ρ0 e−3B(1+wm+δ)Tβ
1 + 3

8πbG

×
{
Bβ(3ξ + β − 4 + 2BβTβ

1 )Tβ−2
1 + k e−2BTβ

1
} ]

.

(94)

When we consider Yang-Mills dark energy, we find that
E2 is always increasing with cosmic time T1. This is dis-
played in Figures 19, 20, and 21 for emergent, logamediate,
and intermediate scenarios, respectively.
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Figure 19 Variations of E2 against time T1 in the emergent
scenario. Red, green, and blue lines represent k = −1, k = +1, and
k = 0, respectively.
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Figure 20 Variations of E2 against time T1 in the logamediate
scenario. Red, green, and blue lines represent k = −1, k = +1, and
k = 0, respectively.

Conclusion
This paper is dedicated to the study of the reconstruction
of scalar fields and their potentials in a newly developed
model of fractional action cosmology by El-Nabulsi [4,5].
The FAC was constructed by means of Riemann-Liouville
fractional integral. Also, it is possible to construct FAC by
means of Erdeyi-Kober fractional integral for example or
hyperdifferential non-local operators. Detailed discussion
on these are available in [70-73]. The fields that we used
are quintessence, phantom, tachyonic, k-essence, DBI-
essence, hessence, dilaton field, and Yang-Mills field. We
assumed that these fields interact with the matter. These
fields are various options to model dark energy which is
varying in density and pressure, the so called variable dark
energy. Different field models possess various advantages
and disadvantages. The reconstruction of the field poten-
tial involves solving the Friedmann equations in the FAC
model with the standard energy densities and pressures of
the fields, thereby solving for the field and the potential.
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Figure 21 Variations of E2 against time T1 in the intermediate
scenario. Red, green, and blue lines represent k = −1, k = +1, and
k = 0, respectively.
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For simplicity, we expressed these complicated expres-
sions explicitly in time-dependent form. We plotted these
expressions in various figures throughout the paper.
In plotting the figures for various scenarios, we choose

the following values: For the emergent scenario, the val-
ues are ξ = 0.6, n = 4, λ = 8, μ = 0.4, a0 = 0.7, and
G = 1 (all DE models); for logamediate ξ = 0.6, α = 3,
A = 5, and G = 1 (all DE models); and for intermediate
ξ = 0.6, β = 0.4, B = 2, and G = 1 (all DE mod-
els). 0 Moreover, in all cases δ = 0.05, wm = 0.01. In
Figures 1, 2, and 3, we show the variations of V against
φ in the emergent, logamediate, and intermediate scenar-
ios, respectively for phantom and quintessence field. In
the first two cases, the potential function is a decreasing
function of the field. For the quintessence field, the poten-
tial is almost constant, while for the phantom field, the
potential increases for different field values. Figures 4, 5,
and 6 show the variations of V against φ in the emergent,
logamediate, and intermediate scenarios, respectively for
the tachyonic field. In Figure 4, the V -φ plot for normal
tachyon and phantom tachyon models of dark energy is
presented for emergent scenario of the universe. Potential
of normal tachyon exhibits decaying pattern. However, it
shows an increasing pattern for phantom tachyonic field
φ. It happens irrespective of the curvature of the universe.
In the logamediate scenario (Figure 5), the potentials for
normal tachyon and phantom tachyon exhibit increas-
ing and decreasing behaviors, respectively, with increase
in the scalar field φ. From Figure 6, we see a continu-
ous decay in the potential for normal tachyonic field in
the intermediate scenario. However, in this scenario, the
behavior of the potential varies with the curvature of the
universe characterized by interacting phantom tachyonic
field. For k = −1 and k = 1, the potential increases with
phantom tachyonic field, and for k = 0, it decays after
increasing initially.
Similarly, Figures 7, 8, and 9 show the reconstructed

potentials for the k-essence field. We have seen that for
interacting k-essence, the potential V always decreases
with the increase in the scalar field φ in all of the three
scenarios, and it happens for open, closed, and flat uni-
verses. When we consider an interacting DBI-essence
dark energy, we get a decaying pattern in the V -φ plot
for emergent and intermediate scenarios in the Figures 10
and 11. However, from Figure 12, we see an increasing
plot ofV -φ for interacting DBI-essence in the logamediate
scenario. For interacting hessence dark energy, Figure 13
shows an increase in the potential with scalar field, and
Figures 14 and 15 show decay in the potential with
scalar field. This means that the potential for interacting
hessence increases in the emergent universe and decays
in logamediate and intermediate scenarios. Figures 16,
17, and 18 discuss the dilaton field, while Figures 19, 20,
and 21 show the behavior of the Yang-Mills field in the

FAC. For interacting dilaton field, the scalar field φ always
increases with cosmic time T1, irrespective of the sce-
nario of the universe. When we consider Yang-Mills dark
energy, we find that E2 is always increasing with cosmic
time T1.
Since the emergent, logamediate, and intermediate

expansions derive accelerating model of the universe, dif-
ferent types of dark energy models give the nature of their
scalar field and potential in different phases of the expan-
sion. For the emergent scenario, the potentials are increas-
ing for hessence and tachyonic fields, but are decreasing
for quintessence, phantom, k-essence, and DBI-essence
models. For the logamediate scenario, the potentials are
increasing for tachyon and DBI-essence models. How-
ever, in this scenario, the potentials are decreasing for
quintessence, phantom, and k-essence models. For the
intermediate scenario, the potentials are increasing for
phantom and tachyonic field, but are decaying for k-
essence, hessence, and DBI-essence models. Thus, the
increasing or decreasing nature of the potentials of all
dark energy models completely depend on the expansion
nature of the universe.
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