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Abstract

We hereby introduce a research about a grand canonical ensemble for the extended two-site Hubbard model, that is,

we consider the intersite interaction term in addition to those of the simple Hubbard model. To calculate the

thermodynamical parameters, we utilize the nonextensive statistical mechanics; specifically, we perform the

simulations of magnetic internal energy, specific heat, susceptibility, and thermal mean value of the particle number

operator. We found out that the addition of the intersite interaction term provokes a shifting in all the simulated

curves. Furthermore, for some values of the on-site Coulombian potential, we realize that, near absolute zero, the

consideration of a chemical potential varying with temperature causes a nonzero entropy.
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Introduction
Currently, several researches exist on the subject of the

application of a generalized statistics for magnetic sys-

tems in the literature [1-3]. Specially, we are encour-

aged by the recent interesting results for small magnetic

systems obtained in [4-6]. Nevertheless, herein, we will

utilize a different system to that utilized in the previ-

ously cited references. Thus, the scope of our investiga-

tion is the computer simulation on the one-dimensional

extended Hubbard model for M dimers by considering

a grand canonical ensemble. The tool we utilize to cal-

culate several thermodynamical parameters is the nonex-

tensive statistical mechanics; along with it, we use the

Newton-Raphson method for numerical approximations.

With regard to applications, we must mention that, in

the scientific literature, the organic compound called

tetracyanoquinodimethane has been studied as a dimer

gas [7,8]; also, there are studies on a dimerized Hub-

bard chain [9,10]. We expect our results to contribute
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to the clarification of the possible use of nonexten-

sive statistical mechanics to research low-dimensional

systems. Also, as a particular case of our outcomes,

we expect to confirm previous results from the simple

Hubbard model.

The Hubbard model was proposed in the early 1960s

by the British physicist John Hubbard [11-13]; basically,

this model is the simplest one that takes into account

the degrees of freedom linked to the electronic transla-

tional components. It has been applied to explain certain

physical phenomena such as the metal-insulator transi-

tion, Mott insulators, ultracold atoms trapped in optical

lattices, etc. [14,15]. On another side, in considering the

several generalized statistical theories, the nonextensive

statistical mechanics, also known as Tsallis statistics, is

undoubtedly the most widely researched [16-20]. It was

invented by the Brazilian professor C. Tsallis as a theory

that generalizes the Boltzmann-Gibbs-Shannon statistics

[21]. Although several versions of the Tsallis statistics

exist, in this article we will deploy the third version that

was proposed in 1998 [22]. All of those versions differ in

the way of defining the thermal mean values.
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This paper is structured as follows: the section ‘The-

oretical frame’ contains the theoretical aspects, the sub-

section ‘Two-site Hubbard model’ tackles the two-site

Hubbard model, and the subsection ‘Nonextensive sta-

tistical mechanics’ deals with the nonextensive statis-

tical mechanics. The section ‘Computer simulations’

introduces the utilized numerical procedure as well as

the results of the computer simulations carried out.

In the section ‘Conclusions’, we express the conclu-

sions concerned with this investigation. Also, in the

‘Acknowledgements’, we thank the esteemed colleagues

who provided useful information for this work.

Theoretical frame

In this section, we will display the fundamentals of

the one-dimensional extended Hubbard model as well

as the elementary features of the nonextensive statisti-

cal mechanics. We will study the Hubbard model in a

Hilbert-Fock quantum space; also, we will show how to

get the Tsallis distribution through the maximum entropy

method.

Two-site Hubbardmodel

In a grand canonical ensemble, the one having a variable

particle number, the Hamiltonian operator of the simple

Hubbard model for a dimerized system is as follows:

Ĥdimer = − t
∑

σ

(c+1,σ c2,σ + c+2,σ c1,σ )

+ U
∑

j

nj,↑nj,↓ − h
∑

j

(nj,↑ − nj,↓), (1)

where the indexes σ represent spins which may be up

(↑) or down (↓), the indexes j designate sites 1 and 2

of the respective dimer, and t is the hopping integral

for the kinetic energy term (the first one). Besides, in

the framework of the second quantization, c+1,σ is the

creation operator that originates a particle with spin σ

in site 1, and c2,σ symbolizes the annihilation opera-

tor that destructs a particle with spin σ in site 2. For

the on-site interaction term (the second one), U stands

for the Coulombian potential energy, n1,↑ represents

the operator of particle number with spins ↑ in site

1 and n1,↓ symbolizes the operator of particle number

with spins ↓ in site 1; all terms are similar for site 2.

Lastly, in the third summand, h is an external magnetic

field.

To take into account the extended Hubbard model

[23],we need to add another energy term to Equation 1,

namely the intersite Coulombian interaction:

Ĥintersite = J1
∑

σ

n1,σn2,σ + J2
∑

σ

n1,σn2,−σ , (2)

with J1 and J2 denoting interactions between neighbor-

ing sites 1 and 2 inside each dimer; they are Coulombian

repulsions modified by polaron effects. Consequently, we

can group the two earlier equations to form the total

Hamiltonian operator:

Ĥdimer = −t
∑

σ

(c+1,σ c2,σ + c+2,σ c1,σ ) + U
∑

j

nj,↑nj,↓+ J1

∑

σ

n1,σn2,σ +J2
∑

σ

n1,σn2,−σ −h
∑

j

(nj,↑−nj,↓).

(3)

Energy eigenvalues and eigenvectors in the two-site Hubbard

model

To attain the energy eigenvalues, we have to build the

Hamiltonianmatrix; for that purpose, in the context of the

Dirac algebra, we make use of the following basis of 16

vectors:

| 81 〉 = | 0, 0 〉, | 82 〉 =| ↑, 0 〉, | 83 〉=| ↓, 0 〉, |84 〉
= | 0,↑〉, | 85 〉 = | 0,↓〉, | 86 〉 = | ↑↓, 0〉,

| 87 〉 =| ↑,↑ 〉, | 88 〉=|↑,↓ 〉, |89 〉=|↓,↑ 〉, |810 〉
= | ↓,↓〉, |811〉 = | 0,↑↓〉, |812〉 = | ↓,↑↓〉,

|813〉 = | ↑,↑↓〉, |814〉 = | ↑↓,↓〉, |815〉
= | ↑↓,↑〉, and |816〉 = | ↑↓,↑↓〉. (4)

Inside each ket, the comma symbol separates site 1 from

site 2, and the spinsmay be up or down. Then, eachmatrix

element of Ĥdimer is obtained from the next bracketing

operation:

[Hdimer]m,n = 〈8m|Ĥdimer|8n〉, (5)

that is, to get each of the 256 matrix elements, we must

consider two steps: (1) apply Ĥdimer on the respective ket
and (2) apply the respective bra to the expression obtained
from step 1. Making this, we have for step 1 (we lay down

Ĥd ≡ Ĥdimer)

Ĥd|81〉 = 0, Ĥd|82〉 = −t|84〉 − h|82〉, Ĥd|83〉
= −t|85〉 + h|83〉, Ĥd|84〉=−t|82〉− h|84〉,

Ĥd|85〉 = −t|83〉 + h|85〉, Ĥd|86〉
= −t (|89〉 + |88〉) + U|86〉, Ĥd|87〉
= (J1 − 2h)|87〉,

Ĥd|88〉 = −t (|86〉 + |811〉) + J2|88〉, Ĥd|89〉
= −t (|86〉 + 811〉) + J2|89〉, (6)

Ĥd|810〉 = (J1 + 2h)|810〉, Ĥd|811〉
= −t (|88〉 + |89〉) , Ĥd|812〉
= −t|814〉 + x|812〉,

Ĥd|813〉 = −t|815〉 + y|813〉, Ĥd|814〉
= −t|812〉 + x|814〉, Ĥd|815〉
= −t|813〉 + y|815〉

and Ĥd|816〉 = 2(U + J1 + J2)|816〉,
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where we set x = U+J1+J2+h and y = U+J1+J2−h. By

applying step 2, we achieve the 16 × 16 Hermitian matrix

of Equation 3:

Hd=̇



































0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 −h 0 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 h 0 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 −h 0 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 h 0 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 U 0 −t −t 0 0 0 0 0 0 0
0 0 0 0 0 0 J1−2h 0 0 0 0 0 0 0 0 0
0 0 0 0 0 −t 0 J2 0 0 −t 0 0 0 0 0
0 0 0 0 0 −t 0 0 J2 0 −t 0 0 0 0 0
0 0 0 0 0 0 0 0 0 J1+2h 0 0 0 0 0 0
0 0 0 0 0 0 0 −t −t 0 U 0 0 0 0 0
0 0 0 0 0 0 0 0 0 0 0 x 0 −t 0 0
0 0 0 0 0 0 0 0 0 0 0 0 y 0 −t 0
0 0 0 0 0 0 0 0 0 0 0 −t 0 x 0 0
0 0 0 0 0 0 0 0 0 0 0 0 −t 0 y 0
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2(x+y)



































(7)

where the symbol =̇means represented by. After diagonal-

izing this mathematical object, we accomplish the energy

eigenvalues given by the following:

ε1 = 0, ε2 = −t + h, ε3 = t + h, ε4 = t − h,

ε5 = −t − h, ε6 = J2, ε7 = U ,

ε8 = C + U + J2

2
, ε9 = −C + U + J2

2
,

ε10 = J1 − 2h, ε11 = J1 + 2h, ε12 = t + U + J1 + J2,

ε13 = −t + U + J1 + J2, ε14 = t + U + J1 + J2,

ε15 = −t + U + J1 + J2, and ε16 = 2(U + J1 + J2)

(8)

with

C =

√

(

U − J2

2

)2

+ 4t2. (9)

Concerning the corresponding eigenvectors, they are the

following:

|E1〉 = |81〉, |E2〉 = 1√
2

(|82〉 + |84〉) ,

|E3〉 = 1√
2

(|82〉 − |84〉) , |E4〉=
1√
2

(|83〉 + |85〉) ,

|E5〉 = 1√
2

(|83〉 − |85〉) , |E6〉=
1√
2

(|88〉 + |89〉) ,

|E7〉 = 1√
2

(|86〉 − |811〉) , |E8〉 = a1 (|86〉 + |811〉)

− a2 (|88〉 − |89〉) , |E9〉 = a2 (|86〉 + |811〉)
+ a1 (|88〉 − |89〉) , |E10〉 = |87〉, |E11〉 = |810〉,

|E12〉 = 1√
2

(|812〉 + |814〉) ,

|E13〉 = 1√
2

(|812〉 − |814〉) ,

|E14〉 = 1√
2

(|813〉 + |815〉) ,

|E15〉 = 1√
2

(|813〉 − |815〉) , and|E16〉 = |816〉;

(10)

the meanings of a1 and a2 are as follows:

a1 = 1

2

√

1 + U − J2

2C
and a2 = 1

2

√

1 − U − J2

2C
.

(11)

Finally, we take advantage of the energy eigenstates to

affirm they are also eigenstates of the magnetic dipolar

momentum operator m̂; the respective kth eigenvalue of

this last operator is as follows:

mi = nu − nd (12)

where nu means the particle number with spins ↑ at

the kth eigenstate, and nd means the particle number

with spins ↓ at the kth eigenstate. We want to empha-

size these particle numbers are not evaluated at the states

of Equation 4, but they are determinate from the states

of Equation 10. Explicitly, the eigenvalues of m̂ are the

following:

m1 = 0, m2 = m3 = 1, m4 = m5 = −1,

m6 = m7 = m8 = m9 = 0, m10 = 2,

m11 = −2, m12 = m13 = −1, m14 = m15 = 1,

and m16 = 0.

(13)

Nonextensive statistical mechanics

The Tsallis entropy underlies this theorywhichwas postu-

lated in 1988 [21]. The entropic form is shown as follows:

Sq = kB

1 −
∑

i

(p
q
i )

q − 1
, (14)

with pi being the probability distribution to find the sys-

tem in the ith state, p
q
i represents pi powered to the

entropic index q, kB is the Boltzmann constant, and
∑

i

(p
q
i ) symbolizes the quantum operation of trace over all

states of the matrix p
q
i . In Equation 14, the limit q tending

to 1 allows us to recover the well-known Boltzmann-

Gibbs-Shannon entropy:

S = − kB
∑

i

[

piLn(pi)
]

. (15)

The nonextensive probability distribution pi is obtained

by application of the maximum entropy method, a pro-

cedure formulated by the American Edward T. Jaynes

[24,25]. In that method we consider these constraints for

a grand canonical system:

∑

i

pi = 1, Eq =

∑

i

p
q
i εi

∑

i

p
q
i

, and Nq =

∑

i

p
q
i ni

∑

i

p
q
i

(16)

where Eq is the internal energy, εi denotes the energy

eigenvalues of the energy operator Ĥ , Nq is the quantum

mean value of the particle number operator N̂ , and ni is
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Figure 1 Entropy vs. normalized temperature. The values for q, Ut , Jt and ht are indicated inside each graphic. On the left side (a to c), we have

no intersite interplay, but on the right side (d to f), we take into account it.

the eigenvalue of this last operator. As a final result of

applying the maximum entropy method, we obtain the

probability distribution

pi =

[

1 − (1 − q) β
Cq

(εi − Eq − µni + µNq)

] 1
1−q

Zq
, (17)

Zq being the partition function:

Zq =
∑

i

[

1 − (1 − q)
β

Cq
(εi − Eq − µni + µNq)

]
1

1−q

,

(18)

where Cq =
∑

i

p
q
i , β and µ are two out of the three

Lagrange parameters - because of the three above con-

straints - utilized to optimize the Tsallis entropy, and the

third parameter is one. Logically, we recover the standard

distribution for q = 1:

pi = exp (−β(εi − µni))
∑

j

exp
(

−β(εj − µnj)
) . (19)

When we carry out the computer simulations, we will

deploy the next definition of temperature T :

1

kBT
= β

Cq
; (20)

however, we must mention that apart of this definition,

in the literature, there are other ones because so far the

matter regarding temperature is an open problem [26]. In

addition, in Equations 17 and 18, it is mandatory to take

into account the Tsallis cutoff (to guarantee the positivity

of the probabilities):

1 =
[

1 − (1 − q)
1

kBT
(εi − Eq − µni + µNq)

]

≥ 0.

(21)

Thereupon, the distribution of probability can be com-

pacted as follows:

pi =







[

1−(1−q) 1
kBT

(εi−Eq−µni+µNq)

]
1

1−q

Zq
, if 1 ≥ 0

0, otherwise.

(22)

Thus, we can state a critical value of temperature Tc.

Above it, the ith probability is different from zero; below

it, the ith probability is zero (but the other 15 prob-

abilities which may be nonzero for T ≤ Tc exist).
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Figure 2 Internal energy vs. normalized temperature. Inside each graphic, the respective values for q, Ut , Jt , and ht are shown. Side by side (a to

f), we have internal energy with and without intersite interaction.

Considering kB = 1, this decisive temperature is as

follows:

Tc = (1 − q)(εi − Ec − µni + µNc) (23)

where Ec and Nc are respectively Eq and Nq evalu-

ated at T = Tc. It is obvious that the last equation

is a recursive formula. Thus, in the section ‘Com-

puter simulations’, we will use the Newton-Raphson

method to calculate the thermal mean values. On

another side, the expressions for Sq and pi can be

rewritten utilizing the q-exponential and q-logarithmic

functions

eq(x) =
[

1 + (1 − q)x
]

1
1−q and Lnq(x) = x1−q − 1

1 − q
;

(24)

thus, the replacement of these expressions into Sq and pi,

Equations 14 and 17, gives the following:

pi =
eq(− 1

kBT
[ εi − Eq − µni + µNq] )

∑

j

eq(− 1
kBT

[ εj − Eq − µnj + µNq] )
and

Sq = −k
∑

i

[

piLnq(pi)
]

(25)

which, clearly, remember the entropy and the probability

distribution for the Boltzmann-Gibbs-Shannon statistics.

The quantum mean values of any observable, represented

by the operator Ô, in the Hilbert-Fock space are calculated

through the following formula:

Oq = 〈Ô〉 =

∑

i

p
q
i Oi

∑

i

p
q
i

, (26)

whereOi stands for the ith eigenvalue of the observable Ô.

Naturally, the limit q → 1 of the last expression becomes

the known one

O = 〈Ô〉 =
∑

i

piOi. (27)

Thus, using Equations 17, 18 and 26, we have the internal
energy and mean value of the particle number operator
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Figure 3 Specific heat vs. normalized temperature. The values for q, Ut , Jt and ht are shown inside each graphic. The left side graphics (a to c)

have no intersite interplay, but the right side graphics (d to f) present it.

which can be expressed explicitly as follows:

Eq =

∑

i

[

1−(1−q) 1
kBT

(εi−Eq− µni+µNq)

]

q
1−q

εi

∑

j

[

1−(1−q) 1
kBT

(εj−Eq − µnj + µNq)

]

q
1−q

and

Nq =

∑

i

[

1−(1−q) 1
kBT

(εi−Eq− µni+µNq)
]

q
1−q

ni

∑

j

[

1 − (1−q) 1
kBT

(εj−Eq−µnj+µNq)

]

q
1−q

. (28)

Undeniably, these two thermodynamical parameters are

defining two recurrence relations. These parameters will

be found via Newton-Raphson method, as shown in the

next section. Also, with respect to the magnetization, it is

determined from the following formula:

Mq =
〈

m̂
〉

=

∑

i

p
q
imi

∑

i

p
q
i

, (29)

where mi stands for eigenvalues of the magnetic dipolar

momentum operator m̂. Additionally, other two thermo-

dynamical parameters can be obtained if we derive the

internal energy and magnetization, respectively. Thus, we

obtain the specific heat

Ce =
∂Eq

∂T
(30)

and the magnetic susceptibility

χ = ∂Mq

∂h

∣

∣

∣

∣

h=0

. (31)

Finalizing this section, we want to lay emphasis upon the

fact that it is the chemical potential µ that controls the

results for the grand canonical ensemble. Thus, we will

utilize the following relation to that parameter:

µ = µ0 + α(T − T0) (32)

where µ0 represents the initial chemical potential, α is

a constant, T is the changing temperature and T0 is the

initial temperature.

Computer simulations
In this section, we display the numerical procedure we

utilized and the computer simulations obtained from it.
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Figure 4Magnetic susceptibility vs. normalized temperature. The values for q, Ut , Jt and ht are indicated inside each graphic. On the left side

(a to c), we have no intersite interplay. However, on the right side (d to f), we have that interaction.

Numerical procedure

As mentioned before, the formulas of Equation 28 are

recursive, and it will be necessary to apply the Newton-

Raphson method to find Eq and Nq. In consequence, we

have to form two functions in which Eq and Nq will be the

respective roots. Therefore, we define F1(Eq,Nq) ≡ F1 = 0

with

F1 = Eq −

∑

i

[

1−(1−q) 1
kBT

(εi−Eq−µni+µNq)

]

q
1−q

εi

∑

i

[

1−(1− q) 1
kBT

(εi−Eq−µni+µNq)

]
q
1−q

,

(33)

and F2(Eq ,Nq) ≡ F2 = 0 with

F2 = Nq −

∑

i

[

1−(1−q) 1
kBT

(εi−Eq−µni+µNq)

]
q
1−q

ni

∑

i

[

1−(1−q) 1
kBT

(εi−Eq−µni+µNq)

]

q
1−q

.

(34)

Furthermore, the earlier mentioned method provides us

the following iterative relations:

Eq,k+1 = Eq,k −
F1,k

∂F2,k
∂Nq

− F2,k
∂F1,k
∂Nq

∂F1,k
∂Eq

∂F2,k
∂Nq

− ∂F1,k
∂Nq

∂F2,k
∂Eq

(35)

and

Nq,k+1 = Nq,k −
F2,k

∂F1,k
∂Eq

− F1,k
∂F2,k
∂Eq

∂F1,k
∂Eq

∂F2,k
∂Nq

− ∂F1,k
∂Nq

∂F2,k
∂Eq

. (36)
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Figure 5Mean value of particle number operator vs. normalized temperature. Inside each graphic, the respective values for q, Ut , Jt and ht are

indicated. On the left side (a to c), we have no intersite interplay, though on the right side (d to f), we have that interaction.

We will deploy as initial guesses those from the standard

statistics, namely Eq and Nq with q = 1.

Magnetic thermodynamical parameters

We will display computer simulations of the follow-

ing magnetic thermodynamical properties: entropy per

dimer, internal energy per dimer, specific heat per dimer,

susceptibility per dimer, and mean value per dimer of

the particle number operator. Furthermore, in order to

reduce the parameters involved in the simulations, we

will assume the relation J1 = J2 ≡ J for the intersite

interaction term as well as kB = 1 for the Boltzmann

constant. Even more, we define the normalized variables

Tt ≡ T
t , Ut ≡ U

t , Jt ≡ J
t , and ht ≡ h

t . Figure 1

shows the entropy vs. the normalized temperature, i.e.,

Sq vs. Tt , with entropic index values q = 1.0, 1.2, 1.4,

1.7 and 2.0. On the left side of Figure 1, we do not

consider the intersite interaction, that is, Jt = 0; we

have Ut = 1, 6 and 10, respectively, to Figure 1a, b,

c. For these three graphics, we deploy ht = 0 as well.

In Figure 1a, at low temperature when T → 0, Sq → 0; the

existence of a region where augmenting q means increas-

ing Sq is apparent. However, at high temperature, we

perceive that the landscape is completely opposite: aug-

menting qmeans decreasing Sq. With regard to Figure 1b,

c, different nonzero values for entropy approaching to

0 exist; however, if we consider µ = Ut
2 (independent

of temperature), the entropy will be zero, as reported in

[4]. On the right side of Figure 1, we take into account

the intersite interaction term, that is, Ut = 1 and Jt =
0.2 in Figure 1d, Ut = 6 and Jt = 3 in Figure 1e, and

Ut = 10 and Jt = 5 in Figure 1f; also, we lay down

ht = 0 to these three subfigures. In Figure 1d, it is evi-

dent that there is a small displacement towards the right

side. However, this shift is enough notorious in Figure 1e,

f. Likewise, in these last two graphics, we perceive that

the entropy saturates so much before Tt borders on the

absolute zero.

In Figure 2, we exhibit the normalized internal energy

vs. the normalized temperature, Eq vs. Tt ; the values of q

are 1.0, 1.2, 1.4, 1.7 and 2.0. On the left side of Figure 2,

we have no intersite interaction, Jt = 0. We take into

account Ut = 1 in Figure 2a, Ut = 6 in Figure 2b and

Ut = 10 in Figure 2c; besides, we consider ht = 0 in the

three left subfigures. When contrasting Figure 2a from

Figure 2b, c, we notice that the increase of Ut causes

the expansion of the curves Eq. On the right side of

Figure 2, we consider the interplay between neighbor-

ing sites for each dimer. Thus, we set Jt = 0.2, 3 and 5,

respectively, to Figure 2d, e, f; the respective values of Ut



Navarro et al. Journal of Theoretical and Applied Physics 2013, 7:20 Page 9 of 10

http://www.jtaphys.com/content/7/1/20

and ht are those from the left graphics. In Figure 2d, we

realize the ground-state energy augments approximately

to −1.4 (when it is contrasted with Figure 2a). How-

ever, in Figure 2e, f, we perceive the following: (1) the

ground-state energy holds immutable when we add the

intersite interaction term, and (2) in the low tempera-

ture range, the curves shift to the right side. However,

at high temperatures, an increase of the values of Eq is

visible.

Figure 3 displays graphs of the specific heat vs. the nor-

malized temperature, C vs. Tt , with entropic index q =
1.0,1.2, 1.4, 1.7 and 2.0. In Figure 3a, we have Ut =
1, in Figure 3b we set Ut = 6 and in Figure 3c, we

lay down Ut = 10. For all three earlier cases, Jt = 0

and ht = 0. In Figure 3a, we have only a peak due to

the antiparallel order; we perceive three regions verify-

ing only one of the following statements: (1) the greater

q, the lesser C and (2) the greater q, the greater C.

In Figure 3b, c, we have two peaks: the first one is due

to the antiparallel order, and the second one is pro-

voked by the metal-insulator transition. In Figure 3b,

three regions similar to those from Figure 3a are evi-

dent; however, between Tt ≈ 0.7 and Tt ≈ 1.7,

the existence of a region that does not verify the

above statements 1 and 2 is visible. In Figure 3c,

four regions verifying either statement 1 or 2 exist.

On another side, in contrast with the left side graph-

ics, the right side graphics set the intersite interac-

tion. Thus, we have Jt = 0.2, 3 and 5, respectively,

in Figure 3d, e, f. In Figure 3d, an almost impercep-

tible movement of the curves towards the right side

has happened. However, that displacement is more than

noticeable in Figure 3e and Figure 3f. The intersite interac-

tion causes the destruction of the second peak appearing

in Figure 3b, as seen in Figure 3e. Notwithstanding, in

Figure 3f, for q = 1, the peak due to antiparallel order

maintains yet; for q 6= 1, that first peak does not exist

anymore.

Figure 4 brings forward the magnetic susceptibility vs.

the normalized temperature, χ vs. Tt , for q = 1.0, 1.2,

1.4, 1.7 and 2.0. In Figure 4a, b, c, we calculate χ by using

respectively Ut = 1, Ut = 6, and Ut = 10; furthermore,

we consider Jt = 0 and ht = 0 for all three cases. In these

curves without intersite interaction, we also find three

regions verifying only one of the following affirmations:

(1) the greater q, the greater χ and (2) the greater q, the

lesser χ . Also, it is apparent that augmenting Ut means

increasing the value of χ , a signal that the system is more

localized. On another side, when we take into account the

intersite interaction term Jt = 0.2 in Figure 4d, we detect

a slight diminution of χ ; however, the three regions from

Figure 4a still exist. Nonetheless, augmenting the values of

Jt provokes drastic drops for χ , as displayed in Figure 4e, f.

Furthermore, we noticed that the addition of the intersite

term caused the displacement of the curves towards the

right side.

Lastly, in Figure 5, the thermal mean value of the parti-

cle number operator vs. the normalized temperature, i.e.,

Nq vs. Tt , with q = 1.0, 1.2, 1.4, 1.7 and 2.0, is presented.

On the left side of Figure 5, we have Ut = 1, 6 and 10,

respectively, in Figure 5a, b, c. For all of them, Jt = 0 and

ht = 0. In Figure 5a, we noticed that when Tt is zero,

Nq saturates at 2; in increasing Tt , Nq drops but it aug-

ments again and tends towards 2 in high temperatures.

The case of Figure 5b, c is completely different: around

Tt = 0, Nq saturates at 1, and it never decreases. On

the right side of Figure 5, we consider the intersite inter-

action. In Figure 5d, we see that this term causes Nq to

lower slightly its value as Tt approaches 0.5. However, in

Figure 5e, f, it was detected that the intersite interaction

originates a drop that does not exist neither in Figure 5b

nor in Figure 5c.

Conclusions
In this article, we have introduced a research to calcu-

late thermodynamical properties from a grand canoni-

cal ensemble of the extended two-site Hubbard model.

The Tsallis statistics was utilized instead of the standard

one because it would be more appropriate to study low-

dimensional systems for it exists several investigations

in that regard. As concluding remarks, we can affirm

that we have verified early results for the simple two-site

Hubbard model. Also, we have found out that the addition

of the intersite interaction term to the simple Hubbard

model provoked a displacement of the curves of entropy,

internal energy, specific heat, susceptibility, and mean

value of the particle number operator, respectively; addi-

tionally, we have perceived that, near absolute zero, the

consideration of a chemical potential varying with tem-

perature causes a remnant of entropy, but it happens only

at some values of the on-site Coulombian potential. A way

of understanding the displacement of the curves is real-

izing the critical temperature changes because the Tsallis

cutoff is satisfied with new conditions, i.e., the inter-

site interaction term determines new values for critical

temperatures.
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