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Abstract

Except some empirical methods, which have been developed in the past, no analytical method exists to describe
the evolutionary behavior of a shock wave without limiting its strength. In this paper, we have derived a system of
transport equations for the shock strength and the induced continuity. We generate a completely intrinsic
description of plane, cylindrical, and spherical shock waves of weak strength, propagating into a non-ideal gas. It is
shown that for a weak shock, the disturbance evolves like an acceleration wave at the leading order. For a weak
shock, we may assume that p½ � ¼ O ϵð Þ; 0 < ϵ≪1:. We have considered a case when the effect of the first order-
induced discontinuity or the disturbances that overtook the shock from behind are strong, i.e., [px] = O(1). The
evolutionary behavior of the weak shocks in a non-ideal gas is described using the truncation approximation.
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Introduction
The study of the evolutionary behavior of non-linear
waves in diverse branches of continuum mechanics has
long been a subject of great interest from both mathem-
atical and physical points of view. A rigorous mathemat-
ical approach to describe the kinematics of a shock has
been proposed by Maslov [1] using the theory of gener-
alized functions. Evolutionary behavior of shocks in
fluids, using singular surface theory, has been discussed
by Grinfeld [2], Anile [3], Straughan [4,5], Jordan [6,7],
Radha et al. [8], and Pandey and Sharma [9]. Using a
procedure based on the kinematics of one-dimensional
motion, Sharma and Radha [10], Batt and Ravindran [11],
and Sharma and Venkatraman [12] have studied the evo-
lutionary behavior of shocks. In the present paper, we are
concerned with planar, axially, and radially symmetric
flows of a polytropic non-ideal gas behind a shock front
which is propagating into a uniform region at rest; here,
we employ the singular surface theory to derive asymp-
totic decay laws for shocks and the accompanying first-
order discontinuity. Modulated simple wave theories have
been developed by several authors; papers by Parker
* Correspondence: kjunaidsiddiqui@gmail.com
Department of Applied Science and Engineering, Indian Institute of
Technology Roorkee, Saharanpur Campus, Saharanpur, Uttar Pradesh,
247001, India

© 2013 Arora and Siddiqui; licensee BioMed Ce
Commons Attribution License (http://creativeco
reproduction in any medium, provided the orig
[13,14] and an extensive review by Seymour and Mortell
[15] are particularly illuminating.
The present paper is organized as follows: After setting

up the basic equations and jump conditions across a
shock of arbitrary strength, we devote ‘Transport equa-
tion for shock strength using singular surface theory’
and ‘Transport equation for the unknown term [px]’ sec-
tions to the derivation of transport equations for the
variation of jumps in pressure and their space deriva-
tives; the equations are coupled with those involving
jumps in higher order space derivatives of pressure. In
section ‘Evolution laws for weak shocks’, we analyze the
pair of coupled transport equations for the shock
strength and accompanying first- and second-order dis-
continuities; the shock strength is assumed to be small,
but the associated first-order jump discontinuity may be
finite or small. Under these assumptions, the transport
equations are solved exactly to the leading order once
the strength of the accompanying second order discon-
tinuity is neglected, and the evolutionary behavior of
both the shock and the associated first-order discontinu-
ity is completely analyzed.
Basic equations and jump conditions across shocks
The basic equations governing the one-dimensional un-
steady flow in a non-ideal gas are as follows:
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ρt þ ρux þ uρx þ
jρu
x

¼ 0;

ut þ uux þ 1
ρ
px ¼ 0;

pt þ upx þ γp
1� bρð Þ ux þ ju

x

� �
¼ 0;

ð2:1Þ

where ρ is the density, u the gas velocity, p the pressure,

and a ¼ γp
1�bρð Þρ

� �1=2
the sound speed with γ as the spe-

cific heats ratio of the gas; here t stands for time and x
the distance being either axial in flows with planar (j = 0)
geometry, or radial in cylindrically symmetric (j = 1) and
spherically symmetric (j = 2) flow configurations. As sys-
tem (2.1) is quasilinear with each of these equations being
a direct consequence of the corresponding conservation
law, one expects shocks to appear in the flow after a finite
running length or time. We consider the gas motion
containing a shock wave propagating into a homogeneous
quiescent equilibrium gas with intrinsic velocity U given
by U-1 = s0(x) = dt/dx where t = s(x) denotes the location of
the shock at position x.
The specific internal energy per unit mass of the non-

ideal gas which may be given by [16] is

e ¼ 1
γ � 1

p 1� bρð Þ
ρ

: ð2:2Þ

The equation of state is taken to be of the form
p(1 − bρ) = ρRT, where b is the internal volume of the gas
molecules which is known in terms of the molecular
interaction potential, R is the gas constant and T is the
temperature. In addition, following the singular surface
theory, we have the following compatibility condition

d f½ �
dt

¼ ft½ � þ U fx½ �; ð2:3Þ

where d
dt denotes the time dervative following the shock

front, [f] = f− − f+ denotes the jump in a variable f with f+
and f- being the values of f immediately ahead of and im-
mediately behind the shock, respectively. The medium
ahead of the shock front is assumed to be uniform and at
rest, i.e., ρ+, ρ+, and a+ are constants, and u+ = 0. The vel-
ocities u, a, and U appearing in (2.1) and (2.2) are non-
dimensionalized by a+, and the remaining variables ρ, p,
x, and t are rendered dimensionless by ρþ; ρþa

2
þ; x0

and x0
aþ
; respectively; here, x0 characterizes the reference

length of the medium. Thus, the variables appearing in
(2.1) and (2.2) will henceforth be regarded as dimension-
less; indeed, in the medium ahead of the shock, we have
a = a+ = 1 and ρ = ρ+ = 1. The following expressions fol-
low readily from conditions (2.2), i.e.,:
u½ � ¼ 2
γ þ 1

U2 � 1
U

;

ρ½ � ¼ u½ �
U � u½ � ;

p½ � ¼ 1� bð Þ u½ �U :

ð2:4Þ

In view of (2.4), it follows that,

d p½ �
dt

¼ 2U3 1� bð Þ
U2 þ 1

d u½ �
dt

¼ μ

γ þ 1

� �2

1� bð Þ d ρ½ �
dt

; ð2:5Þ

where μ = 2 + (γ − 1)U2.

Transport equation for shock strength using
singular surface theory
In order to derive the equation for the shock strength,
we take jumps in the Euler equations (2.1) and use the
conditions (2.3) to (2.5) to obtain

d V½ �
dt

þ A Vx½ � þΩ u½ �B ¼ 0; ð3:1Þ

where,

V½ � ¼ ρ½ � u½ � p½ �ð Þtr; Vx½ � ¼ ρx
� �

ux½ � px½ �� 	tr
;0

A ¼

u½ � � U 1þ ρ½ � 0

0 u½ � � U
1

1þ ρ½ �
0

1� bþ γ p½ �
1� b� b ρ½ � u½ � � U

0BBBBB@

1CCCCCA;

B ¼
1þ ρ½ �

0
1� bþ γ p½ �
1� b� b ρ½ �

0BB@
1CCA; 0 ð3:2Þ

and Ω ¼ j
x tð Þ. It may be noticed that the form (3.1) is not

only convenient for algebraic manipulation but also is
helpful in understanding the pattern of transport equa-
tions for higher order discontinuities.
We notice that (3.1) contains the unknown quantities

[ux], [px], and [ρx]; eliminating the unknown discontinu-
ities [ρx] and [ux] between these equations by taking a
suitable linear combination, we arrive at the first trans-
port equation governing the shock strength:

d p½ �
dx

¼ k11 px½ � þ k12; ð3:3Þ



T21 ¼ γ þ 1ð Þ2U2 U2 þ 3ð Þ
μ U2 þ 1ð Þ

1þ U2 3� 2bð Þð Þ μ� b γ þ 1ð ÞU2ð Þ
k13

� 2 γ þ 1ð Þ2U2

μ2 U2 þ 1ð Þ ;

T22 ¼ 2Ω γ þ 1ð ÞU2 U2 � 1
� 	 k13 � μ v U2 þ 3ð Þ

μ2k13

� �
;
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where the coefficients k11 and k12 are given by

k11 ¼ 2μ 1� bð Þ μ� νð Þ � 2b U2 � 1ð Þð Þ
γ þ 1ð Þ 2μ 1� bð Þ þ ν� 4b U2 � 1ð Þð ÞU2 þ νð Þ ;

k12 ¼ � 4 1� bð Þνμ U2 � 1ð ÞΩ
γ þ 1ð Þ2 2μ 1� bð Þ þ ν� 4b U2 � 1ð Þð ÞU2 þ νð Þ ;

with ν = 2γU2 + 1 − γ. We note that an immediate conse-
quence of (3.3) cannot reveal the complete history of the
evolutionary behavior of the shocks under consideration
because of the appearance of an unknown entity. It is clear
from (3.3) that the evolutionary behavior of the shocks at
any time t depends not only on the strength of the shock,
its curvature, and the specific heat ratio γ, but also on the
pressure gradient [px] immediately behind the wave. In the
following section, we determine a transport equation for
the unknown [px], which represents the effect of distur-
bances that overtake the shock from behind.

Transport equation for the unknown term [px]
As the coupling term [px] in (3.3) is unknown, we need to
obtain a transport equation for it. Eliminating [ux] and
[px] from equations (3.1) along with (3.3), we get a relation
between [ρx] and [px]. Similarly, eliminating the [ρx] and
[px] from equations (3.1) along with (3.3), we obtain a rela-
tion between [ux] and [px].
In this section, we determine the transport equation for

the unknown pressure gradient jump as described in the
preceding section. We first note that from equations (3.1),

ux½ �
ρx
� �� �

¼ T
px½ �
1

� �
; ð4:1Þ

where

T ¼ T11 T12

T21 T22

� �
ð4:2Þ

with

T11 ¼ μ

U
1þ U2 3� 2bð Þð Þ μ� b γ þ 1ð ÞU2ð Þ

k13
;

T12 ¼ � 2Ω 1� bð Þμν U4 � 1ð Þ
γ þ 1ð ÞUk13 ;
and

k13 ¼ 2μþ νð ÞU2 þ ν� 2b γ þ 1ð ÞU4:

Under this setting, we now differentiate equations (2.1),
take jumps across the shock, and use the shock conditions
(2.3) and (2.4) to obtain the following system of equations:

d Vx½ �
dt

þ A Vxx½ � þΩD Vx½ � þΩ
0
u½ �Bþ C ¼ 0; ð4:3Þ

where [V], [Vx], A, and B have the same meaning as before
and

Vxx½ � ¼ ρxx
� �

uxx½ � pxx½ �� 	tr
;

D ¼
u½ � 1þ ρ½ � 0
0 0 0

b 1� bþ γ p½ �ð Þ u½ �
1� b 1þ ρ½ �ð Þ2

1� bþ γ p½ �
1� b 1þ ρ½ �ð Þ

γ u½ �
1� b 1þ ρ½ �ð Þ

0BB@
1CCA

C ¼

2 ux½ � ρx
� �

� px½ � ρx
� �

1þ ρ½ �ð Þ2 � ux½ �2
 !

γ þ 1� b 1þ ρ½ �ð Þ
1� b 1þ ρ½ �ð Þ ux½ � px½ � þ b

1� bþ γ p½ �ð Þ
1� b 1þ ρ½ �ð Þð Þ2 ρx

� �
ux½ �

0BBBBB@

1CCCCCA:

Eliminating the unknown discontinuity terms [ρxx] and
[uxx] between equations (4.3) and using (2.2) and (4.1),
we arrive at the second transport equation that governs
the discontinuity [px], i.e.,

d px½ �
dx

þ k21 pxx½ � þ k22 px½ �2 þ k23 px½ � þ k24 ¼ 0; ð4:4Þ

where



k21 ¼ μη

γ þ 1ð Þ U2

U2 � 1ð Þ 1þ γ þ b 1� γð Þð Þ
μ� b γ þ 1ð ÞU2

;

k22 ¼ η

U

νU 1� bð Þ
μ� b γ þ 1ð ÞU2

T 2
11 �

T21μ2

γ þ 1ð Þ2U4

 !
þ γ þ 1ð Þ μ� bU2ð Þ

μ� b γ þ 1ð ÞU2
T11þ

b 1� bð Þνμ2
μ� b γ þ 1ð ÞU2

1
γ þ 1

T21T11 � 1� bð ÞνU
μ� b γ þ 1ð ÞU2

dT11

du
γ þ 1ð Þk11
4U 1� bð Þ

0BBBB@
1CCCCA;

k23 ¼ η

U μ� b γ þ 1ð ÞU2ð Þ

νU 1� bð Þ 2T11T12 � μ2

γ þ 1ð Þ2U4
T22

 !
þ γ þ 1ð Þ μ� bU2ð ÞT12þ

Ω 1� bð ÞνμT11

γ þ 1
þ 2Ωγμ U2 � 1ð Þ

γ þ 1ð ÞU þ b 1� bð Þνμ2 T21T12 þ T11T22ð Þ
γ þ 1ð Þ μ� b γ þ 1ð ÞU2ð Þ � γ þ 1ð Þνk12

4
dT11

dU
þ

2Ωb 1� bð Þνμ2 U2 � 1ð ÞT21

U γ þ 1ð Þ2 μ� b γ þ 1ð ÞU2ð Þ �
γ þ 1ð Þνk11

4
dT12

dU

0BBBBBBBBB@

1CCCCCCCCCA
;

k24 ¼ η

U μ� b γ þ 1ð ÞU2ð Þ

2μν 1� bð Þ U2 � 1ð ÞΩ0

U γ þ 1ð Þ2 þΩ 1� bð Þνμ2T12

γ þ 1
� γ þ 1ð Þk12ν

4
dT12

dU
þ

b 1� bð Þνμ2T22T12

γ þ 1ð Þ μ� b γ þ 1ð ÞU2ð Þ þ
2Ωb 1� bð Þνμ2 U2 � 1ð ÞT22

U γ þ 1ð Þ2 μ� b γ þ 1ð ÞU2ð Þ

0BBB@
1CCCA: ð4:5Þ
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It may be noticed from (4.4) that an analytical descrip-
tion of [px] is again obscured by the presence of higher
order jump discontinuity [pxx] which is an unknown, the
determination of which requires a repetition of the
above procedure; proceeding in this manner, we arrive at
an open system consisting an infinite set of transport
equations for the coupling terms - the jumps in higher
order derivatives of p. In order to provide a natural clos-
ure on the hierarchy of these equations, we consider the
coupled system (3.3) and (4.4) and render it tractable by
making assumptions on the higher order discontinuity
[pxx] (see Sharma and Radha [10]).

Evolution laws for weak shocks
For a weak shock, we may assume that p½ � ¼ O ϵð Þ; 0 <
ϵ≪1: and consider the case, [px] =O(1). In this case, di-
rect perturbation ansatz yields a uniformly valid solution
to the first-order approximation. We now present these
details below:
For a weak shock, it follows from (2.4) that

u½ � ¼ p½ �
1� b

þ O ϵ2
� 	

; ρ½ � ¼ p½ �
1� b

þ O ϵ2
� 	

;

U ¼ 1þ γ þ 1
4 1� bð Þ p½ � þ O ϵ2

� 	
; ð5:1Þ
p½ � ¼ h 1þ γ þ 1þ b 1� γð Þ
1� bð Þ

k
jþ 2

x
2� j
2 � 1

� �� �� 1
2�b

½px� ¼ k 1þ γ þ 1þ b 1� γð Þ
1� bð Þ

k
jþ 2

x 2�jð Þ=2 � 1
� �� ��1

x

and thus the equations (3.3) and (4.4) can be approxi-
mated to yield

d p½ �
dx

þ γ þ 1þ b 1� γð Þ
2 2� bð Þ 1� bð Þ p½ � px½ � þ j

2� bð Þx p½ � ¼ 0;

d px½ �
dx

þ γ þ 1þ b 1� γð Þ
2 2� bð Þ 1� bð Þ p½ � pxx½ �

þ γ þ 1þ b 1� γð Þ
2 1� bð Þ px½ �2 þ j

2x
px½ � ¼ 0: ð5:2Þ

We need to solve these equations assuming that the ini-
tial conditions are [p]x = 1 = h and [px]x = 1 = k, where |h| is
of the first-order of ϵ.
The second equation in (5.2) is the equation that governs

the amplitude [px] of an acceleration wave; a complete ana-
lysis of such an equation modifying and generalizing se-
veral known results in the literature has been reported in
[17] and [18]. We thus conclude that the precursor dis-
turbance that overtakes the shock from behind evolves like
an acceleration wave at the first order. When the effect of
the first-order-induced discontinuity or the disturbances
that overtake the shock from behind are strong, i.e., [px] =
O(1) and pxx½ � ¼ O ϵqð Þ, q > 0, system (5.2) can be directly
integrated to yield
x
� j

2�b ;

�j=2: ð5:3Þ
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It may be noticed that if k > 0, equations (5.3) imply
the following asymptotic decay laws for the shock and
the associated first order discontinuity

p½ �e h 2 1� bð Þð Þ1= 2�bð Þ

γ þ 1þ b 1� γð Þð Þkð Þ1= 2�bð Þ

�
x�1= 2�bð Þ; plane;

1

21= 2�bð Þ x
�3=2 2�bð Þ; cylindrical;

x�2= 2�bð Þ logxð Þ�1= 2�bð Þ; spherical;

ð5:4Þ

8>>><>>>:
and

px½ �e 2 1� bð Þ
γ þ 1þ b 1� γð Þ

x�1; plane;
1
2
x�1; cylindrical;

xlog xð Þ�1; spherical;

8><>:
ð5:5Þ

as x→∞; the asymptotic law for the shock is in full
agreement with earlier results obtained using the simple
wave theory (see, Whitham [19], page 330) in an ideal
gas, i.e., for b = 0. The value of [px] ~ (xlog x)− 1 which is
in confirmation with Equation (9.62) at page 330 in
Whitham [19] for the spherical symmetric case. It may
be noticed that the decay of the induced discontinuity
[px] is much slower than that of the decay of the shock.

Conclusion
Using kinematics of one-dimensional motion, we have de-
rived a system of transport equations for the variation of
shock strength and induced discontinuities behind shocks
of weak strength traveling into quiescent non-ideal gas. It is
evident from the transport equation for the shock strength
that the evolutionary behavior of the shock strength is de-
scribed by the shock curvature, the internal volume (b) of
the gas, and the first order-induced discontinuity behind
the shock.
It is noticed that the transport equations for the shock

strength [p] and the first-order jump discontinuity [px]
are non-linear in [p] and [px], respectively; however, the
transport equations for [pxx] are linear in [pxx], and this
is true for all other higher-order jump discontinuities.
The transport equation for the shock strength shows that
the evolutionary behavior of the shock at any instant is
influenced by the shock curvature and the first-order jump
discontinuity, representing the effect of precursor distur-
bances that overtake the shock from behind. This transport
equation, in some sense, generalizes the Chester-Chisnell-
Whitham (CCW) approximation [19], although does not
account for the effects of the disturbances that overtake
the shock from behind, yet its success is unexpectedly re-
markable for a particular class of problems. We show in
the preceding section that the transport equation for the
shock strength, in the limit of a weak shock and vanishing
[px], reduces exactly to the one obtained by the CCW ap-
proximation for the ideal gas.
Indeed, a pair of transport equations for [p] and [px],

subjected to a truncation approximation by neglecting the
second-order jump discontinuity [pxx], yields a closed sys-
tem consisting of only a pair of coupled ODEs, which can
be regarded as a good approximation for the hierarchy of
the system governing shock evolution. These equations
are then solved for uniformly valid solutions using a singu-
lar perturbation technique [19-21] that eliminates secular
terms in the perturbed solution; the shock strength is as-
sumed small, but the accompanying first-order jump dis-
continuity may be finite (i.e., O(1)) or small. It is shown
that the disturbances evolve to the leading order like an
acceleration wave.

Competing interest
The authors declare that they have no competing interests.

Authors’ contributions
RA and MJS worked together from formulating the problem to finding its
solution. All authors read and approved the final manuscript.

Authors’ information
RA is an assistant professor of the Applied Mathematics Department at the
Indian Institute of Technology Roorkee. He received his Ph.D. in Applied
Mathematics from the Indian Institute of Technology Bombay in 2005. His
research interests include the propagation of shock waves in gas dynamics.
MJS is a senior research fellow of the Applied Mathematics in the
Department of Applied Science and Engineering at the Indian Institute of
Technology Roorkee. His research interests include the hyperbolic
conservation laws.

Acknowledgment
Research funding from the Department of Science and Technology (DST),
India vide Project grant number SR/FTP/MS-12/2008 is gratefully
acknowledged.

Received: 1 September 2012 Accepted: 26 November 2012
Published: 24 March 2013

References
1. Maslov, VP: Propagation of shock waves in an isentropic nonviscous gas.

J. Sov. Math 13, 119–163 (1980)
2. Grinfeld, MA: Ray method of calculating the wavefront intensity in

nonlinearly elastic materials. PMM 42, 958–977 (1978)
3. Anile, AM: Propagation of weak shock waves. Wave Motion 6, 571–578 (1984)
4. Straughan, B: Applied Mathematics and Science Series, vol. 165: Stability and

Wave Motion in Porous Media. Springer, New York (2008)
5. Straughan, B: Acoustic waves in Cattaneo-Christov gas. Physics Letters A

374, 2667–2669 (2010)
6. Jordan, PM: Growth and decay of acoustic acceleration waves in a Darcy-

type porous media. Proc. R. Soc. Lond. A 461, 2749–2766 (2005)
7. Jordan, PM: Growth, decay and bifurcation of shock amplitudes under type

II flux law. Proc. R. Soc. Lond. A 463, 2783–2798 (2007)
8. Radha, C, Sharma, VD, Jeffrey, A: An approximate analytical method for

describing the kinematics of a bore over a sloping beach. Appl. Anal.
81, 867–892 (2002)

9. Pandey, M, Sharma, VD: Kinematics of a shock wave of arbitrary strength in
a non-ideal gas. Q. Appl. Math. 67, 401–419 (2009)

10. Sharma, VD, Radha, C: On one dimensional planar and non-planar shock
waves in a relaxing gas. Phys. Fluids 6, 2177–2190 (1994)

11. Batt, J, Ravindran, R: Calculation of shock using solutions of systems of
ordinary differential equations. Q. Appl. Math. 63, 721–746 (2005)



Arora and Siddiqui Journal of Theoretical and Applied Physics 2013, 7:14 Page 6 of 6
http://www.jtaphys.com/content/7/1/14
12. Sharma, VD, Venkatraman, R: Evolution of weak shocks in one dimensional
planar and non-planar gas dynamic flows. Int. J. of Non-Linear Mech
47, 918–926 (2012)

13. Parker, DF: Nonlinearity, relaxation and diffusion in acoustics and ultrasonics.
J. Fluid Mech. 39, 793–815 (1969)

14. Parker, DF: An asymptotic theory for oscillatory nonlinear signals. IMA J.
Appl. Math. 7, 92–110 (1971)

15. Seymour, BR, Mortell, MP: Nonlinear geometrical acoustics. In: Nemat-Nasser,
S (ed.) Mechanics Today, vol 2, pp. 251–312. Pergamon Press, Oxford (1975)

16. Vishwakarma, JP, Nath, G: Similarity solutions for the flow behind an
exponential shock in a non-ideal gas. Meccanica 42, 331–339 (2007)

17. Sharma, VD, Menon, VV: Further comments on the behavior of acceleration
waves of arbitrary shape. J. Math. Phys. 22, 683–684 (1981)

18. Menon, VV, Sharma, VD, Jeffrey, A: On the general behavior of acceleration
waves. Appl. Anal. 16, 101–120 (1983)

19. Whitham, GB: Linear and Nonlinear Waves. Wiley, New York (1974)
20. Nayfeh, AH: Perturbation Methods. Wiley, New York (1973)
21. Sharma, VD: Quasilinear Hyperbolic Systems and Conservation Laws.

CRC Press, New York (2010)

doi:10.1186/2251-7235-7-14
Cite this article as: Arora and Siddiqui: Evolutionary behavior of weak
shocks in a non-ideal gas. Journal of Theoretical and Applied Physics 2013
7:14.
Submit your manuscript to a 
journal and benefi t from:

7 Convenient online submission

7 Rigorous peer review

7 Immediate publication on acceptance

7 Open access: articles freely available online

7 High visibility within the fi eld

7 Retaining the copyright to your article

    Submit your next manuscript at 7 springeropen.com


	Abstract
	Introduction
	Basic equations and jump conditions across shocks
	mk22
	Transport equation for shock strength using singular surface theory
	Transport equation for the unknown term [px]
	Evolution laws for weak shocks
	Conclusion
	Competing interest
	Authors’ contributions
	Authors’ information
	Acknowledgment
	References

