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Influence of periodically propagating impurity
and accompanying time variation of impurity
spread on excitation profile of doped quantum
dots
Suvajit Pal1 and Manas Ghosh2*

Abstract

We investigate the excitation behavior of a repulsive impurity-doped quantum dot induced by the simultaneous
oscillations of the impurity coordinate and spatial stretch of the impurity domain. We have considered repulsive
Gaussian impurity centers. The ratio of two oscillations (η) has been exploited to understand the nature of the
excitation rate. Indeed, it has been found that the said ratio could orchestrate the excitation in a most elegant way. In
conjunction with the ratio, the dopant location also plays some important role towards modulating the excitation
rate. The present study also indicates attainment of stabilization in the excitation rate as soon as η exceeds a threshold
value irrespective of the dopant location. Moreover, prior to the onset of stabilization, we also envisage
maximization/minimization in the excitation rate at some typical η values depending on the dopant location. The
critical dissection of the characteristics of various impurity parameters provides important insight into the physics
underlying the excitation process.
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Background
Nowadays, we envisage an upsurge in theoretical and
experimental researches on impurity states of low-
dimensional heterostructures [1]. The quantized prop-
erties of these doped systems have made them perfect
objects for scientific study and technological applications.
In view of this, researches on optoelectronic properties of
a wide range of semiconductor devices containing impu-
rity now turn out to be a highly pursued area [2-4].
Miniaturization of semiconductor devices reaches its

limit with the advent of quantum dots (QDs). With QDs,
the subtle interplay between new confinement sources
and impurity-related potentials has opened up new win-
dows of research in this field [5]. Such confinement,
coupled with the dopant location, can dramatically alter
the electronic and optical properties of the system [6].
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For this reason, there are a seemingly large number of
theoretical studies on impurity states [7-11]. Specifically,
there are some important studies that emphasize the
role of dopant location in influencing the dot properties
[12,13]. Investigations on fabricating the impurity states
have received further impetus with the development of
sophisticated experimental techniques such as molecular
beam epitaxy, liquid phase epitaxy, and chemical vapor
deposition. Inspired by these, a series of elegant experi-
ments on impurity-doped quantum dot systems resulted
in some promising outcomes. These involve primarily the
mechanism and control of dopant incorporation [14,15].
The application of new experimental and theoretical

techniques together with the improvement of traditional
ones has resulted in a great surge in the knowledge of car-
rier dynamics in nanodevices [16]. The time-dependent
aspects in nanodevices naturally become a hot topic which
largely comprises of researches on internal transitions
between impurity-induced states in a QD. These transi-
tions depend on the spatial restriction imposed by the
impurity. As a natural consequence of the said research,
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the excitation of electrons strongly confined by QDs
emanates as an interesting phenomenon that is intimately
related to the above dynamical features. Detailed anal-
ysis on this aspect is undoubtedly of prime importance
because such excitation provides us with ideal systems
for use in optoelectronic devices and as lasers. Engi-
neering applications of such excitations further involve
optical encoding, multiplexing, photovoltaic, and light-
emitting devices. Another aspect that makes excitation
phenomenon so much important in QD is the eventual
population transfer among the exciton states [17].
Studies on impurity propagation in doped quantum dots

are going in full swing nowadays. The impurities can be
incorporated by diffusion [18], and they experience some
kind of force offered by the dot confinement potential
[19]. Sundqvist et al., in their work [20], considered dif-
fusion of ionized impurities interacting with electrons
experimentally. In their work, the impurity profiles in
low-dimensional structures were regulated by an external
parabolic potential defined by a variety of gate arrange-
ments, and they maintained impurity profiles of a typical
Gaussian shape. The importance of studying such time-
dependent propagation of dopant site lies in the fact that it
could be correlated to the impurity drift in semiconductor
nanodevices which has attracted a great deal of inter-
est as most low-dimensional structures contain doped
regions. The aspects discussed so far have motivated us
to investigate thoroughly the excitation in doped quantum
dots which is induced by a time-dependent propagation
of the dopant coordinate. As a result, recently, we have
made such an investigation where the propagation of the
dopant has been considered to be linear as well as ran-
dom [21,22]. In this paper, we have tried to extend our
work a bit further by considering a periodic motion of
the dopant. Such periodic motion could have its origin
in the crystal lattice where the dopant is subject to some
periodic force. To make the work more meaningful, we
have also considered the periodic oscillation in the spatial
stretch of the dopant (denoted by symbol γ in this paper)
which is intimately related to the confinement strength.
This deeper physical insight is a must as a periodically
propagating dopant is obviously subject to a periodically
strengthening and weakening confinement which forces
the spatial spread of the dopant to respond accordingly
and not to remain indifferent. Thus, notwithstanding the
tedious hike in the mathematical rigor, consideration of a
consequent periodic stretching and quenching of spatial
spread of impurity appears highly logical. In view of this,
the impurity coordinate (x0, y0) is allowed to oscillate with
frequency (ν1), enjoying the company of oscillatory γ with
frequency (ν2 = ν1

η
, η = integers and fractions). To be

precise, in this paper, we have monitored the ratio of the
above two oscillation frequencies (termed as relative oscil-
lation frequency, ROF) in connection with determining

the time-average excitation rate for different dopant loca-
tions. Following earlier works on the effects of a repulsive
scatterer in multicarrier dots in the presence of a mag-
netic field [23,24], here, we have considered that the QD
is doped with a repulsive Gaussian impurity. The present
formalism tackles the time dependencies by introducing a
potentialV (t) to the dot Hamiltonian. The problem there-
fore rides on following the dynamics of the doped dot in
the time-dependent potential.

Method
We consider the energy eigenstates of an electron subject
to a harmonic confinement potential V (x, y) and a per-
pendicular magnetic field B where V (x, y) = 1

2m
∗ω2

0(x2 +
y2), ωc = eB

m∗c , and Landau gauge
[
A = (By, 0, 0)

]
has

been used. ω0, ωc, and A stand for harmonic confinement
potential, cyclotron frequency (a measure of magnetic
confinement offered by B), and vector potential, respec-
tively. The Hamiltonian in our problem reads

H ′
0 = − �

2

2m∗

(
∂2

∂x2
+ ∂2

∂y2

)
+ 1
2
m∗ω2

0x
2 + 1

2
m∗(ω2

0 + ω2
c )y

2

− i�ωcy
∂

∂x
.

(1)

Define �2 = ω2
0 + ω2

c as the effective frequency in
the y-direction. In real QDs, the electrons are confined in
three dimensions, i.e., the carriers are dynamically con-
fined to zero dimensions. The confinement length scales
R1, R2, and R3 can be different in three spatial directions,
but typically R3 � R1 � R2. In models of such dots,
R3 is often taken to be strictly zero, and the confinement
in the other two directions is described by a potential V
with V (x) → ∞ for |x| → ∞, x = (x1, x2) ∈ R2.
A parabolic potential, V = 1

2ω|x|2 is often used as a
realistic and, at the same time, computationally conve-
nient approximation. Assuming that the z-extension could
be effectively considered zero, the electronic properties
in these nanostructures have been successfully described
within the model of the single-electron motion in the
two-dimensional (2-d) harmonic oscillator potential in
the presence of a magnetic field [25,26]. Now, intrusion of
impurity perturbation transforms the Hamiltonian to

H0(x, y,ωc,ω0) = H ′
0(x, y,ωc,ω0) + Vimp(x0, y0), (2)

where Vimp(x0, y0) = Vimp(0) = V0 e−γ [(x−x0)2+(y−y0)2]
with γ > 0 and V0 > 0 for repulsive impurity, and
(x0, y0) denotes the position of the impurity center. V0
is a measure of the strength of the impurity potential,
whereas γ determines the extent of influence of the impu-
rity potential. A large value of γ indicates that the spatial
extension of the impurity potential is highly restricted,
whereas a small γ accounts for a spatially diffused one.
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Thus, a change in γ in turn causes a change in the extent of
the dot-impurity overlap that affects the excitation pattern
noticeably [21]. The presence of repulsive scatterer sim-
ulates the dopant with excess electrons. The choice of a
Gaussian impurity potential is not arbitrary as it has been
exploited by several investigators [27-29]. In this context,
the work of Gharaati et al. [30] merits mention. They pro-
posed a new confinement potential for the spherical QDs
called modified Gaussian potential, MGP, and showed
that the new potential is suitable for predicting the spec-
tral energy and wave functions of a spherical quantum
dot.
We write the trial wave function ψ(x, y) as a superposi-

tion of the product of harmonic oscillator eigenfunctions
φn(αx) and φm(βy), respectively, as follows:

ψ(x, y) =
∑
n,m

Cn,mφn(αx)φm(βy), (3)

where Cn,m are the variational parameters, and α =√
m∗ω0
�

and β =
√

m∗�
�

. The general expression for the
matrix elements of H ′

0 in the chosen basis is as follows:

(H ′
0)n,m;n′ ,m′ = �

{(
n′+ 1

2

)
ω0+

(
m′+ 1

2

) √
ω2
0+ω2

c

}
δn,n′δm,m′

− i�ωc
α

β

[{√
n′
2

δn′−1,n−
√
n′ + 1

2
δn′+1,n

}
.

{√
m′ + 1

2
δm′+1,m +

√
m′
2

δm′−1,m

}]
.

(4)

The matrix elements of Vimp are given by

(Vimp)n,m;n′,m′ = V0〈φn(αx)φm(βy)|e−γ [(x−x0)2+(y−y0)2]

× |φn′(αx)φm′(βy)〉
= V0I1I2, (5)

where

I1 = 〈φn(αx)|e−γ (x−x0)2 |φ′
n(αx)〉

= A
∫ +∞

−∞
Hn(αx)Hn′(αx)e−α2x2e−γ (x−x0)2dx, (6)

and

I2 = 〈φm(βy)|e−γ (y−y0)2 |φ′
m(βy)〉

= B
∫ +∞

−∞
Hm(βy)Hm′(βy)e−β2y2e−γ (y−y0)2dy, (7)

with A = α

(2n+n′n!n′!π)1/2
and B = β

(2m+m′m!m′!π)1/2
. With

the transformations δ21 = α2 + γ , δ22 = β2 + γ ,
λ1 = exp[− γ x20(δ

2
1−γ )

δ21
], and λ2 = exp[− γ y20(δ

2
2−γ )

δ22
], one

can write

I1 = Aλ1

∫ +∞

−∞
Hn(α

∗u)Hn′(α∗u)e−(u−ρ1)2du, (8)

and

I2 = Bλ2

∫ +∞

−∞
Hm(β∗v)Hm′(β∗v)e−(v−ρ2)2dv, (9)

where, ρ1 = γ x0
δ1

, ρ2 = γ y0
δ2

, α∗ = α
δ1
, β∗ = β

δ2
, u = δ1x,

and v = δ2y. With the help of the standard integral [31], it
is now easy to write

I1 = D1

min(n,n′)∑
k=0

f (k, n, n′), (10)

and

I2 = D2

min(m,m′)∑
l=0

g(l,m,m′), (11)

where

f (k, n, n′)=2k .k! .nCk .n
′
Ck .(1−α∗2)

n+n′
2 −k .Hn+n′−2k(α1ρ1),

(12)

and

g(l,m,m′)=2l.l! .mCl.m
′
Cl.(1−β∗2)

m+m′
2 −l.Hm+m′−2l(β1ρ2),

(13)

with D1 = Aλ1π1/2

δ1
and D2 = Bλ2π1/2

δ2
. Thus, finally we

obtain

(Vimp)n,m;n′,m′ = V0.D1.D2.
min(n,n′)∑

k=0

min(m,m′)∑
l=0

f (k, n, n′).

× g(l,m,m′).
(14)

Hn(x) stands for the Hermite polynomials of the nth order.
The pth eigenstate of the system in this representation can
be written as

ψp(x, y) =
∑
ij

Cij,p{φi(αx)φj(βy)}, (15)

where i, j are the appropriate quantum numbers, respec-
tively, and (ij) are composite indices specifying the direct
product basis.
We can now introduce the time dependence into the

dopant coordinate so that x0 → x0(t) and y0 → y0(t).
Now, the time-dependent Hamiltonian reads

H(t) = [
H0 − Vimp(0)

] + V1(t), (16)

where

V1(t) = Vimp[ x0(t), y0(t)]= V0 e−γ [{x−x0(t)}2+{y−y0(t)}2].
(17)
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The matrix element involving any two arbitrary eigen-
states p and q of H0 due to V1(t) reads

V imp
p,q (t) = 〈ψp(x, y)|V1(t)|ψq(x, y)〉

=
∑
nm

∑
n′m′

C∗
nm,pCn′m′,q〈φn(αx)φm(βy)|V1(t)|φn′

× (αx)φm′(βy)〉. (18)

Denoting Vn,m,n′,m′
1 (t) to represent 〈φn(αx)φm(βy)|V1

(t)|φn′(αx)φm′(βy)〉, its explicit form could be written as
(with the help of Equations 5 to 14)

Vn,m,n′,m′
1 (t) = V0.�1.�2.λ1(t).λ2(t)

min(n,n′)∑
k=0

min(m,m′)∑
l=0

× fk,n,n′(t).gl,m,m′(t),
(19)

where

fk,n,n′(t)=2k .k! .nCk .n
′
Ck .(1−α∗2)

n+n′
2 −kHn+n′−2k[α1ρ1(t)],

and

gl,m,m′(t) = 2l.l! .mCl.m
′
Cl.(1 − β∗2)

m+m′
2 −l Hm+m′−2l

×[β1ρ2(t)] .

The terms that are not defined previously read as fol-
lows: �1 = Aπ1/2, �2 = Bπ1/2, λ1(t) = exp[− γ x20(t)α

2

δ21
],

λ2(t) = exp[− γ y20(t)β
2

δ22
], ρ1(t) = γ x0(t)

δ1
, and ρ2(t) = γ y0(t)

δ2
.

Thus, Equation 18 becomes

V imp
p,q (t) = V0λ1(t)λ2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

fk,n,n′(t).gl,m,m′(t).

(20)

Considering ρ1(t) and ρ2(t) to be extremely slowly vary-
ing functions of time, we could expand them in Taylor
series around t = 0 and neglect the nonlinear terms to
obtain
Hn+n′−2k[α1ρ1(t)] Hm+m′−2l[β1ρ2(t)]
= Hn+n′−2k[α1ρ1(0)]Hm+m′−2l[β1ρ2(0)]

+ 2tα1ρ
′
1(0)(n + n′ − 2k)Hn+n′−2k−1[α1ρ1(0)]

× Hm+m′−2l[β1ρ2(0)]
+ 2tβ1ρ

′
2(0)(m + m′ − 2l)Hm+m′−2l−1[β1ρ2(0)]

× Hn+n′−2k[α1ρ1(0)]
+ 4t2α1β1ρ

′
1(0)ρ′

2(0)(n + n′ − 2k)(m + m′ − 2l)
× Hn+n′−2k−1[α1ρ1(0)]Hm+m′−2l−1[β1ρ2(0)] ,

(21)

where we have utilized the well-known property of the
derivatives of the Hermite polynomial viz. H ′

n(x) =

2nHn−1(x). Using Equation 21 in Equation 20, we get
Equation 22 viz.

V imp
p,q (t) = V0

[
V 1
p,q(t) + V 2

p,q(t) + V 3
p,q(t) + V 4

p,q(t)
]
,

(22)

where the various terms are as follows:

V 1
p,q(t) = λ1(t)λ2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

.
min(n,n′)∑

k=0

min(m,m′)∑
l=0

fk,n,n′(0).gl,m,m′(0), (23)

V 2
p,q(t) = 2tα1ρ

′
1(0)λ1(t)λ2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

.
min(n,n′)∑

k=0

min(m,m′)∑
l=0

uk,n,n′(0).gl,m,m′(0), (24)

with uk,n,n′(0) = 2k .k! .nCk .n
′Ck .(n+n′−2k)(1−α∗2) n+n′

2 −k

Hn+n′−2k−1[α1ρ1(0)].

V 3
p,q(t) = 2tβ1ρ

′
2(0)λ1(t)λ2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

.
min(n,n′)∑

k=0

min(m,m′)∑
l=0

fk,n,n′(0).vl,m,m′(0), (25)

with vl,m,m′(0) = 2l.l! .mCl.m
′Cl.(m + m′ − 2l)(1 −

β∗2)m+m′
2 −l Hm+m′−2l−1[β1ρ2(0)].

V 4
p,q(t) = 4t2α1β1ρ

′
1(0)ρ′

2(0)λ1(t)λ2(t)
∑
nm

∑
n′m′

C∗
nm,p

× Cn′m′,q�1�2.
min(n,n′)∑

k=0

min(m,m′)∑
l=0

× uk,n,n′(0).vl,m,m′(0). (26)

The time-dependent periodic propagation of the dopant
is represented as x0(t) = x0 cos(ν1t), and y0(t) =
y0 cos(ν1t). Now, we introduce the accompanying periodic
time dependence in γ as a result of oscillatory dopant
propagation given by γ (t) = γ0 cos(ν2t), γ0 is the initial
value of γ . Thus, it is nothing but a sluggish alternating
enhancement and suppression of the region over which
the influence of the dopant is disseminated owing to
its drift. The introduction of the time dependence into
the impurity domain (γ0 → γ (t)) modifies V1(t) of
Equation 16 so that it becomes

V1(t) = V0 e
−γ (t)

[
{x−x0(t)}2+{y−y0(t)}2

]
. (27)
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Vn,m,n′,m′
1 (t) of Equation 19 now reads

Vn,m,n′,m′
1 (t) = V0.�1.�2.U1(t).U2(t)

min(n,n′)∑
k=0

min(m,m′)∑
l=0

× ζk,n,n′(t).χl,m,m′(t),
(28)

where

ζk,n,n′(t) = 2k .k! .nCk .n
′
Ck . {w1(t)}g1 Hg3 [ v1(t)] ,

and

χl,m,m′(t) = 2l.l! .mCl.m
′
Cl. {w2(t)}g2 Hg4 [ v2(t)] .

The relevant quantities now assume some modified
expressions and read as follows: δ21(t) = α2 + γ (t),
δ22(t) = β2 + γ (t), with λ1(t) = exp[− γ (t)x20(t)α

2

δ21(t)
], λ2(t) =

exp[− γ (t)y20(t)β
2

δ22(t)
], w1(t) = γ (t)

δ21(t)
, w2(t) = γ (t)

δ22(t)
, U1(t) =

λ1(t)
δ1(t) ,U2(t) = λ2(t)

δ2(t) , v1(t) = αx0(t)
√

γ (t)
δ1(t) , v2(t) = βy0(t)

√
γ (t)

δ2(t) ,
g1 = n+n′

2 − k, g2 = m+m′
2 − l, g3 = n + n′ − 2k, and

g4 = m + m′ − 2l. Thus, Equation 20 now becomes

V imp
p,q (t) = V0U1(t)U2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ζk,n,n′(t).χl,m,m′(t).
(29)

As before, we allow the time-dependent functions viz.
w1(t), w2(t), v1(t), and v2(t) to vary extremely slowly with
time so that we can expand them in Taylor series around
t = 0 and neglect the nonlinear terms to obtain

[w1(t)]g1 [w2(t)]g2 Hg3 [ v1(t)]Hg4 [ v2(t)]
=[w1(0)]g1 [w2(0)]g2

[{
ϕ1(0) + 2tg3ϕ2(0)

+ 2tg4ϕ3(0) + 4t2g3g4ϕ4(0)
} + {

tg1θ1(0)ϕ1(0)
+2t2g1g3θ1(0)ϕ2(0) + 2t2g1g4θ1(0)ϕ3(0)
+ 4t3g1g3g4θ1(0)ϕ4(0)

} + {
tg2θ2(0)ϕ1(0)

+ 2t2g2g3θ2(0)ϕ2(0) + 2t2g2g4θ2(0)ϕ3(0)
+ 4t3g2g3g4θ2(0)ϕ4(0)

} + {
t2g1g2θ3(0)ϕ1(0)

+ 2t3g1g2g3θ3(0)ϕ2(0) + 2t3g1g2g4θ3(0)ϕ3(0)
+ 4t4g1g2g3g4θ3(0)ϕ4(0)

}]
, (30)

where θ1(0) = w′
1(0)

w1(0) , θ2(0) = w′
2(0)

w2(0) , θ3(0) = θ1(0)θ2(0),
ϕ1(0) =Hg3 [ v1(0)] .Hg4 [ v2(0)], ϕ2(0)= v′

1(0)Hg3−1[ v1(0)]
.Hg4 [ v2(0)], ϕ3(0) = v′

2(0)Hg3 [ v1(0)] .Hg4−1[ v2(0)], and
ϕ4(0) = v′

1(0)v′
2(0)Hg3−1[ v1(0)] .Hg4−1[ v2(0)] (using the

property H ′
n(x) = 2nHn−1(x)). Using Equation 30 in

Equation 29, we get

V imp
p,q (t) = V0

16∑
j=1

Vj
p,q(t), (31)

where the various Vj
p,q(t) terms are as follows:

V 1
p,q(t) = U1(t)U2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ1(0),
(32)

V 2
p,q(t) = 2tU1(t)U2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ2(0),
(33)

V 3
p,q(t) = 2tU1(t)U2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ3(0),
(34)

V 4
p,q(t) = 4t2U1(t)U2(t)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ4(0),
(35)

V 5
p,q(t) = tU1(t)U2(t)θ1(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ5(0),

(36)

V 6
p,q(t) = 2t2U1(t)U2(t)θ1(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ6(0),

(37)

V 7
p,q(t) = 2t2U1(t)U2(t)θ1(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ7(0),

(38)
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V 8
p,q(t) = 4t3U1(t)U2(t)θ1(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ8(0),

(39)

V 9
p,q(t) = tU1(t)U2(t)θ2(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ9(0),

(40)

V 10
p,q(t) = 2t2U1(t)U2(t)θ2(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ10(0),

(41)

V 11
p,q(t) = 2t2U1(t)U2(t)θ2(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ11(0),

(42)

V 12
p,q(t) = 4t3U1(t)U2(t)θ2(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ12(0),

(43)

V 13
p,q(t) = t2U1(t)U2(t)θ3(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ13(0),

(44)

V 14
p,q(t) = 2t3U1(t)U2(t)θ3(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ14(0),

(45)

V 15
p,q(t) = 2t3U1(t)U2(t)θ3(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ15(0),

(46)

and

V 16
p,q(t) = 4t4U1(t)U2(t)θ3(0)

∑
nm

∑
n′m′

C∗
nm,pCn′m′,q�1�2

×
min(n,n′)∑

k=0

min(m,m′)∑
l=0

ξ16(0).

(47)

The various ξ functions are as follows: ξ1(0) = [w1(0)]
g1 [w2(0)]g2 ϕ1(0), ξ2(0) = [w1(0)]g1 [w2(0)]g2 g3ϕ2(0), ξ3
(0) = [w1(0)]g1 [w2(0)]g2 g4ϕ3(0), ξ4(0) = [w1(0)]g1 [w2
(0)]g2 g3g4ϕ4(0), ξ5(0) = [w1(0)]g1 [w2(0)]g2 g1ϕ1(0), ξ6(0)
= [w1(0)]g1 [w2(0)]g2 g1g3ϕ2(0), ξ7(0)= [w1(0)]g1 [w2(0)]
g2g1g4ϕ3(0), ξ8(0) = [w1(0)]g1 [w2(0)]g2 g1g3g4ϕ4(0), ξ9(0)
= [w1(0)]g1 [w2(0)]g2 g2ϕ1(0), ξ10(0)= [w1(0)]g1 [w2(0)]g2
g2g3ϕ2(0), ξ11(0)= [w1(0)]g1 [w2(0)]g2 g2g4ϕ3(0), ξ12(0)=
[w1(0)]g1 [w2(0)]g2 g2g3g4ϕ4(0), ξ13(0) = [w1(0)]g1 [w2
(0)]g2 g1g2ϕ1(0), ξ14(0) = [w1(0)]g1 [w2(0)]g2 g1g2g3ϕ2(0),
ξ15(0) = [ w1(0) ]g1 [w2(0)]g2 g1g2g4ϕ3(0), and ξ16(0)
= [w1(0)]g1 [w2(0)]g2 g1g2g3g4ϕ4(0). The w(t) and v(t)
functions grossly look like w1(t) = γ (t)

α2+γ (t) ,

w2(t) = γ (t)
β2+γ (t) , v1(t) = αx0(t)

√
γ (t)

α2+γ (t) , and v2(t) =
βy0(t)

√
γ (t)

β2+γ (t) . The pertinent derivative functions read

w′
1(t) = −α2ν2γ0 sin(ν2t)

[α2+γ (t)]2 , w′
2(t) = −β2ν2γ0 sin(ν2t)

[β2+γ (t)]2 , v′
1(t) =

1
2 αx0(t)ν2γ0 sin(ν2t)

[√
γ (t)

α2+γ (t)
−

√
α2+γ (t)

γ (t)

]
−αx0ν1 sin(ν1t)

√
γ (t){α2+γ (t)}

α2+γ (t) ,
and

v′
2(t) =

1
2 βy0(t)ν2γ0 sin(ν2t)

[√
γ (t)

β2+γ (t)
−

√
β2+γ (t)

γ (t)

]
−βx0ν1 sin(ν1t)

√
γ (t){β2+γ (t)}

β2+γ (t) .
From these relations, explicit expressions of various θ

and ϕ functions can be easily found out, thereby giving
concrete expressions of V imp

p,q (t) in Equation 31.
Since H0 is diagonal in the {ψ} basis, the evolving wave

function can now be described by a superposition of the
eigenstates of H0.

ψ(x, y, t) =
∑
q

aq(t)ψq, (48)

and we have to solve the TDSE.

i�
∂ψ

∂t
= Hψ or equivalently

i�ȧq(t) = Haq(t), (49)

for the time-dependent superposition coefficients with
the initial conditions that ap(0) = 1, aq(0) = 0, for all
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q �= p, where p may be the ground or any other excited
states of H0. The quantity Pk(t) = |ak(t)|2 could act as
a measure of the population of the kth state of H0 at
time t. During the time evolution, the ground state pop-
ulation [P0(t)] fluctuates. We could define the quantity
Q(t) = 1 − P0(t) as a measure of excitation. The quantity
Rex(t) = dQ

dt serves as the rate of excitation as a function
of time. We have calculated the average rate of excitation
[ 〈Rex〉 = 1

T
∫ T
0 Rex(t)dt] over the total time of dynamic

evolution (T) as a function of ROF (η) for different values
of dopant locations (r0).

Results and discussion
System parameters
The model Hamiltonian (cf. Equation 1) can be made to
represent a 2-d quantum dot with a single carrier elec-
tron [32]. The form of the confinement potential indicates
lateral electrostatic confinement of the electrons in the
x-y plane. m∗ is the effective electronic mass appropri-
ate for describing the motion of the electrons within the
lattice of the material to be used. We have used m∗ =
0.5m0 and set � = e = m0 = a0 = 1. In the linear
variational calculation, we have used basis functions (cf.
Equation 3) with n,m = 0 − 20 for each of the direc-
tions (x, y). The direct product basis spans a space of
(21×21) dimension.We have checked that the basis func-
tions span the 2-d space effectively completely, at least
with respect to representing the observables under inves-
tigation. We have made the convergence test with a still
greater number of basis functions. The time-dependent
Schrödinger equation in the direct product basis (cf.
Equation 49) has been integrated by the sixth-order
Runge-Kutta-Fehlberg method with a time step size t =
0.01 a.u., and the numerical stability of the integrator has
been checked.
We have made some attempt to reasonably connect our

theoretical parameters to the real-life doped QD. The
dynamic evolution has been monitored through a time
of the order of 100 ps. The parameter γ in the impurity
potential can be correlated to 1

d2 , where d is proportional
to the width of the impurity potential [23,24] to have feel-
ings of the actual extension of the impurity domain. The
m∗ value that we have used (m∗ = 0.5 a.u.) closely resem-
bles Ge quantum dots (m∗ = 0.55 a.u.). The maximum
value of the dopant strength (V0) was limited to approx-
imately 10−4 a.u. or 2.72 meV, and the applied magnetic
field is of the order of miliTesla (mT). We believe that
these values might give some realization of real systems
containing actual impurity.

The dynamical aspects
At the very outset of the discussion, it needs to be realized
that the excitation rate is modulated by the interplay

between several factors of different characteristics. As
the dopant is introduced at a greater distance from the
dot confinement center (0, 0), the confines of electric
(ω0) and magnetic (ωc) origins naturally become weak
and favor excitation. On the other hand, the said shift
decreases the extent of repulsive interaction between the
dot and the impurity, and excitation is unfavored. For
a better visualization, we have plotted the matrix ele-
ments 〈ψ0|V̂imp|ψ0〉 as a function of the radial position
of impurity (r0) (Figure 1) to characterize the overlap of
the impurity potential with the ground state wave func-
tion |ψ0〉. The plot reveals that as the dopant is introduced
away from the dot, their overlap decreases. However, at
a large r0, the overlap settles to a somewhat steady value.
The spatial stretch of impurity (γ ) has also a role to play in
this context. An increase in γ reduces the spatial stretch of
the impurity potential which in turn reduces the extent of
overlap between the dot and the impurity. Such a decrease
in the said overlap has a two-pronged role; primarily, it
reduces the dot-impurity interaction and consequently
the strength of dot confinement, thereby hindering and
promoting the excitation at the same time [33]. Thus, the
excitation process is often found to be guided by factors
of opposite natures arising out of the variation of several
impurity parameters.
Let us now have a close look at the plot that delin-

eates the time-average excitation rate (〈Rex〉) as a function
of ROF (η) for three different dopant locations, namely,
on-center (r0 = 0.0 a.u.), near off-center (r0 = 28.28
a.u.), and far off-center (r0 = 70.71 a.u.) (Figure 2). It is
evident from the figure that at all dopant locations, the
excitation rate culminates in a saturation at high η val-
ues, indicating a compromise between several factors that
modulate the excitation. The diversities in the nature of
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Figure 1 Plot of 〈ψ0|V̂imp|ψ0〉 against r0.



Pal and Ghosh Journal of Theoretical and Applied Physics 2012, 6:42 Page 8 of 10
http://www.jtaphys.com/content/6/1/42

0 1 2 3 4 5

4

5

6

7

8

9

10

11

(iii)

(ii)

(i)<
R

ex
>

 x
 1

07

η

 (i) 
 (ii) 
 (iii) 

Figure 2 Plot of 〈Rex〉 vs η for different dopant locations (r0).
With γ0 = 4.0× 10−6 a.u. and V0 = 1.0× 10−6 a.u. for (i) r0 = 0.0 a.u.,
(ii) r0 = 28.28 a.u., and (iii) r0 = 70.71 a.u.

excitation profiles are most prominent in low andmedium
η values.
For an on-center dopant, it is evident that the excitation

rate starts from a rather high value when η is extremely
small. However, the rate falls noticeably to a minimum at
around η ∼ 0.8. With further increase in ROF, 〈Rex〉 set-
tles to a steady value. A low to low-medium η regime is
endowed with a strong γ oscillation which, in the present
case, seems to undergo a kind of skirmish with the oscil-
latory dopant coordinate. Thus, instead of promoting the
excitation rate - which would have been possible if the
two oscillations reinforce each other - we observe a deple-
tion in the said quantity. Within the domain 0.91 ≤ η ≤
1.78, we observe a small rise in 〈Rex〉, indicating a small
reinforcement between the two oscillations. As η is grad-
ually increased further (i.e., η ≥ 1.78), the γ oscillation
also becomes progressively less vocal (but yet it would be
unwise to ignore it because of the on-center location of the
dopant) and invites some semblance of balance between
itself and the oscillation of r0, leading to a saturation.
At a near off-center dopant location, the dot-impurity

overlap gets somewhat reduced. Interestingly, at this
dopant location, we envisage successive maximization (at
η ∼ 0.34) and minimization (at η ∼ 1.0) of the excita-
tion rate. Beyond η ∼ 0.5, as usual, the excitation rate
culminates in saturation. It appears that the two domains
marked by maximization and minimization of the excita-
tion rate are categorically distinguished from each other
by simply a twist of relative behavior of r0 and γ oscilla-
tions. However, looking at the placement of the dopant,
one must acknowledge that, over the entire range of η, the
influence of γ is not so much pronounced as it is in case of
an on-center dopant. In the small η regime, the steep rise

in 〈Rex〉 indicates that the two oscillations reinforce each
other. Beyond η ∼ 0.34, there occurs a change in their rel-
ative attitude; they now begin to oppose each other and
the rate decreases. Interestingly, the γ oscillation being
not as strong as before (i.e., for on-center location), the fall
in 〈Rex〉 is not so severe as it is in the previous case. After
minimization of the excitation rate, we again observe an
increase in 〈Rex〉 which is quite sluggish. This again indi-
cates a kind of reinforcement among the two oscillations
albeit not so strong as in the low η domain. The reduc-
tion in the extent of reinforcement can be explained by
considering that in this domain (1.05 ≤ η ≤ 3.10), the γ

oscillation becomes less vigorous in comparison with the
low η domain so that it makes a weak combination with
the r0 oscillation.
For a far off-center dopant, we again find a maximiza-

tion (at about η ≈ 0.51) in the excitation rate just like
the near off-center location. However, the extent of exci-
tation is much less than before. At a far off-center dopant
location, the dot-impurity overlap gets highly quenched so
that the γ oscillation has little impact in comparison to the
near off-center location. Even in the low η regime, where
one usually expects the γ oscillation to be significant, we
confront a nominal influence of the same, owing to such
a depleted dot-impurity overlap. Thus, although we envis-
age the maximization because of the same reason as given
earlier, its intensity is significantly reduced.
The important message hitherto received by us is that

beyond η ≥ 4.5, there occurs some kind of stabiliza-
tion in 〈Rex〉 irrespective of dopant location. Thus, it
goes without saying to conduct a more detailed inspec-
tion of this η domain. Driven by this, we have now
monitored the 〈Rex〉 vs r0 profile, keeping η fixed at 5.0
(Figure 3). Such a study also permits us to explore the
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Figure 3 Plot of 〈Rex〉 vs r0 at η = 5.0with γ0 = 4.0 × 10−6 a.u.
and V0 = 1.0 × 10−6 a.u.
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exclusive dependence of the excitation rate on dopant
location when the said rate attains considerable stabi-
lization. The plot reveals that after some initial steady
value (r0 ≈ 22.0 a.u.), the excitation rate decreases
monotonically as the dopant is progressively shifted to
more and more off-center locations. As we have pointed
out earlier (in the context of Figure 1), the decrease in
dot-impurity overlap associated with the above dopant
shift makes it convenient for the factors that resist exci-
tation to supersede the factors that have the reverse
impact. The decrease in the excitation rate becomes the
obvious outcome.

Conclusions
The excitation profile of repulsive impurity-doped quan-
tum dots triggered by simultaneous oscillations of the
impurity coordinate and impurity spread reveals note-
worthy features. The ratio of two oscillations (η) has
been found to play a governing role in influencing the
excitation rate. We have found a kind of stabilization in
the excitation rate when η exceeds some threshold value
at all dopant locations. However, before that threshold
value, the excitation rates exhibit different trends depend-
ing on the dopant coordinate. A critical analysis of the
η domain when the excitation rate attains the steady
behavior reveals the exclusive role played by the dopant
coordinate towards excitation. The analysis evinced max-
imization and minimization in the excitation rate at some
particular dopant coordinate. Whereas the maximiza-
tion/minimization occurs due to a change in the rela-
tive preponderance of various factors that assist or resist
excitation, the observed stabilization can be explained
by arguing a kind of compromise between the afore-
said factors. The said change in the relative dominance
of the responsible factors in turn stems from the inter-
play between two oscillations. The two oscillations may
sometimes reinforce each other, while in other occasions,
they can rescind. To be precise, the present investigation
reveals that it is the coupled effect of dopant’s coordinate
and the dopant’s spatial spread which ultimately shapes
the excitation rate. The results are thus quite interesting
and expected to convey important insights in technologi-
cal applications of quantum dot nanomaterials.
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