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Abstract

Different forms of the well-known Grad-Shafranov (G-S) equations that define the equilibrium behavior of tokomak
plasma have been already obtained. None of these equations contain explicitly the triangularity δ and the
elongation ratio ks. The aim of this work is to obtain a new form of G-S equation which includes both the
triangularity and the elongation ratio. For verifying the correctness of the obtained equation, the triangularity is set
to 0, which leads to a G-S equation for circular cross section. Also, the magnetic field and current density obtained
from this new G-S equation is reduced to the quantities already derived for circular cross section.
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Introduction
Tokomaks are axisymmetric devices with toroidal and
equilibrium (also called poloidal) fields. There are four basic
magnet systems in the tokomak: (1) the toroidal field coils,
which produce the large toroidal field; (2) the ohmic trans-
former, which induces the toroidal plasma current required
for equilibrium and ohmic heating; (3) the vertical field
system, which is required for toroidal force balance; and (4)
the shaping coils, which produce a noncircular cross
section to improve the magnetohydrodynamic (MHD)
stability limits and alleviate plasma-wall impurity problems.
In this device, the plasma current itself also produces

the required poloidal field for equilibrium. Toroidal field
is used besides the ohmic heating of plasma for suppres-
sing MHD instabilities and will be strong enough to
confine the hot plasma.
This toroidal field is produced by external electric cur-

rents flowing in coils wound around the tours. Superim-
posed on the toroidal field is a much weaker poloidal field
generated by an electric current flowing in the plasma
around the tours, so the plasma forms the secondary
circuit of a transformer. Today, most tokomaks have an
elongated cross section. The reason for using an elongated
cross section comes out essentially from problems that are
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related to MHD instabilities like kink and ballooning in-
stabilities [1-4]. In this paper, the main advantage of using
an elongated D-shaped cross section is discussed.
In the section ‘Derivation of G-S equation in the new

approach’, G-S equation including the effect of elong-
ation ratio and triangularity is derived, and in the section
‘Reduction of new G-S equation to the simple case of
circular cross section’, the reduction of the obtained
equations to the case of circular cross section is shown
as a justification. Finally, in the ‘Conclusions’ section, a
brief conclusion will be given. A schematic view of a
tokomak is shown in Figure 1.

Derivation of G-S equation in the new approach
First of all, using relations between geometrical parameters
on an elongated tokomak, the partial differential equation
between these parameters is obtained. Using these rela-
tions, the new G-S equation, magnetic field, and the
current density are obtained. The basis of the paper relies
on the local and cylindrical coordinates as follows [5,6]:

R ¼ R0 þ rcos θ þ δsinθð Þ ð1Þ
and

Z ¼ rkssinθ ð2Þ
where R0 and r are respectively the major and minor radii,
and θ is the angle between r and the direction of the major
radius.
er. This is an Open Access article distributed under the terms of the Creative
mmons.org/licenses/by/2.0), which permits unrestricted use, distribution, and
inal work is properly cited.

mailto:graduatescience_90@yahoo.com
http://creativecommons.org/licenses/by/2.0


Figure 1 A schematic view of a tokomak.
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Substituting θ ¼ sin�1 z
rks

� �
from Equation 2 in Equa-

tion 1, one can get

R ¼ R0 þ r cos sin�1 z
rks

� �
þ δz
rks

� �
ð3Þ

Differentiating both sides of Equation 3, we have

dR ¼ cos sin�1 z
rks

� �
þ δz
rks

� �

� r
d
dr

sin�1 z
rks

� �
� δz
r2ks

� �
sin sin�1 z

rks

� �
þ δz
rks

� �
dr

�

ð4Þ

We use a new variable tr ¼ sin�1 z
rks

� �
, for which we

will have

t0r ¼ d
dr

sin�1 z
rks

� �� �
¼ � sinθ

r cosθ
ð5Þ

Substituting Equations 5 and 2 in Equation 4, we get

∂r
∂R

¼ 1
cos θ þ δsinθð Þ þ tanθ þ δsinθ½ �sin θ þ δsinθð Þ

¼ M1 θð Þ
ð6Þ

Equation 3 can be rearranged in the form of

F r; zð Þ ¼ cos sin�1 z
rks

� �
þ δz
rks

� �
� R� R0

r
¼ 0 ð7Þ
If we derivate Equation 7 with respect to r and use
Equations 1, 2, 5, and 6, we find

F 0
r ¼

1
rM1 θð Þ ð8Þ

Similarly, by taking the derivative of Equation 7 with
respect to Z, the following result will be achieved:

F 0
z ¼ �sin sin�1 Z

rks

� �
þ δ Z

rks

� �
d
dz

sin�1 Z
rks

� �
þ δ

rks

� ��

ð9Þ

Again, using tz ¼ sin�1 z
rks

� �
and t0z ¼ d

dz sin�1 Z
rks

� �� �
we arrived at:

F 0
z ¼ �M2 θð Þ

rks
where M2 θð Þ

¼ sin θ þ δsinθð Þ 1
cosθ

þ δ

� �� �
ð10Þ

From Equations 8 and 10, one can get

∂r
∂z

¼ M1 θð ÞM2 θð Þ
ks

ð11Þ

The following relation has been used in the past step:
dy
dx ¼ � F 0

x
F 0
y
. For obtaining partial differentiations of θ with

respect to R and Z, both sides of Equation 1 should be
divided by Equation 2 so that we find

cos θ þ sinθð Þ
sinθ

¼ ks
R� R0

Z

� �
ð12Þ
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Differentiation of Equation 12 with respect to R
results in

∂θ
∂R

¼ N1 θð Þ
r

;where N1 θð Þ

¼ � sinθ

cos δsinθð Þ þ δ
2 sin2θsin θ þ δsinθð Þ� 	 ð13Þ

In the same manner, differentiation of Equation 12
with respect to Z will give

∂θ
∂Z

¼ N2 θð Þ
rks

;where N2 θð Þ

¼ cos θ þ δsinθð Þ
cos δsinθð Þ þ δ

2 sin2θsin θ þ δsinθð Þ� 	 ð14Þ

Using Equations 6, 11, 13, and 14, the partial differen-
tial equations for an elongated cross section can be writ-
ten as follows:

∂
∂R

¼ M1 θð Þ ∂
∂r

þ N1 θð Þ
r

∂
∂θ

¼ K1 r; θð Þ; ∂
∂z

¼ M1 θð ÞM2 θð Þ
ks

∂
∂r

þ N2 θð Þ
rks

∂
∂θ

¼ K2 r; θð Þ ð15Þ

where K1(r,θ) and K2(r,θ) are operators in terms of r
and θ.
In the cylindrical coordinates, G-S equation, magnetic

fields, and current densities are given (1,2) as

R
∂
∂r

1
R
∂ψ
∂R

� �
þ ∂2ψ
∂Z2

¼ �μ0R
2 dP
dψ

� F
dF
dψ

ð16Þ

BR ¼ � 1
R
∂ψ
∂Z

;Bz ¼ 1
R
∂ψ
∂R

;Bϕ ¼ ∂BR

∂Z
� ∂BZ

∂R

� �
ð17Þ

JR ¼ � 1
μ0R

∂F
∂Z

; JZ ¼ 1
μ0R

∂F
∂R

; Jϕ

¼ 1
μ0

∂BR

∂Z
� ∂BZ

∂R

� �
ð18Þ

Substituting Equation 15 in Equation 16, the G-S
equation for an elongated cross section is obtained
where L(r, θ) = R = R0 + r cos(θ + δ sin θ):

L r; θð ÞK1 r; θð Þ K1 r; θð Þ
L r; θð Þ

� �
ψð Þ þ K2 r; θð Þð Þ2 ψð Þ

¼ �μ0L
2 r; θð Þ dP

dψ
� 1
2
dF2

dψ
ð19Þ

The relations between local and cylindrical coordinates
for magnetic fields are given by

Br ¼ BRcos θ þ δsinθð Þ þ BZsin θ þ δsinθð Þ ð20Þ

Bθ ¼ �BRsin θ þ δsinθð Þ þ BZcos θ þ δsinθð Þ ð21Þ
Also in the cylindrical coordinates, the magnetic field
components are defined as [5,6]

BR ¼ � 1
R
∂ψ
∂Z

;BZ ¼ 1
R
∂ψ
∂R

ð22Þ

Using Equations 15, 17, 20, 21, and 22, it will be easy
to find magnetic fields for an elongated cross section:

Br ¼ � cos θ þ δsinθð Þ
L r; θð Þ K2 r; θð Þ ψð Þ

þ sin θ þ δsinθð Þ
L r; θð Þ K1 r; θð Þ ψð Þ ð23Þ

Bθ ¼ sin θ þ δsinθð Þ
L r; θð Þ K2 r; θð Þ ψð Þ

þ cos θ þ δsinθð Þ
L r; θð Þ K1 r; θð Þ ψð Þ ð24Þ

The relations between local and cylindrical coordinates
for current densities are

Jr ¼ JRcos θ þ δsinθð Þ þ JZsin θ þ δsinθð Þ ð25Þ

Jθ ¼ �JRsin θ þ δsinθð Þ þ JZcos θ þ δsinθð Þ ð26Þ
Also in the cylindrical coordinates, the current density

components are defined as [5,6]:

JR ¼ � 1
μ0

∂Bϕ

∂Z
; JZ ¼ 1

μ0R
∂RBϕ

∂R
ð27Þ

Using Equations 15, 25, 26, and 27, one can find the
current density components for an elongated cross sec-
tion as follows:

Jr ¼ 1
μ0L r; θð Þ sinθK1 r; θð Þ � cosθK2 r; θð Þð Þ L r; θð ÞBϕ

� 	

ð28Þ
Jθ ¼ 1

μ0L r; θð Þ cosθK1 r; θð Þ þ sinθK2 r; θð Þð Þ L r; θð ÞBϕ

� 	

ð29Þ
The following step is taken to obtain the toroidal

component of the current density:

BR ¼ Brcos θ þ δsinθð Þ � Bθsin θ þ δsinθð Þ ð30Þ

BZ ¼ Brsin θ þ δsinθð Þ þ Bθcos θ þ δsinθð Þ ð31Þ

Jϕ ¼ 1
μ0

∂BR

∂Z
� ∂BZ

∂R

� �
ð32Þ



Marjan and Sobhanian Journal of Theoretical and Applied Physics 2012, 6:34 Page 4 of 5
http://www.jtaphys.com/content/6/1/34
Thus, using Equations 15, 30, 31, and 32 leads to the
toroidal component of the current density for an elon-
gated cross section:

Jϕ ¼ 1
μ0

½K1 r; θð Þ Brsin θ þ δsinθð Þ þ Bθcos θ þ δsinθð Þð Þ

� K2 r; θð Þ Brcos θ þ δsinθð Þ � Bθsin θ þ δsinθð Þð Þ�
ð33Þ

Here, we summarize all equations governing tokomaks
with an elongated cross section:

L r; θð ÞK1 r; θð Þ K1 r; θð Þ
L r; θð Þ

� �
ψð Þ þ K2 r; θð Þð Þ2 ψð Þ

¼ �μ0L
2 r; θð Þ dP

dψ
� 1
2
dF2

dψ
ð34Þ

Br ¼ � cos θ þ δsinθð Þ
L r; θð Þ K2 r; θð Þ ψð Þ

þ sin θ þ δsinθð Þ
L r; θð Þ K1 r; θð Þ ψð Þ ð35Þ

Bθ ¼ sin θ þ δsinθð Þ
L r; θð Þ K2 r; θð Þ ψð Þ

þ cos θ þ δsinθð Þ
L r; θð Þ K1 r; θð Þ ψð Þ ð36Þ

Jr ¼ 1
μ0L r; θð Þ sinθK1 r; θð Þ � cosθK2 r; θð Þð Þ L r; θð ÞBϕ

� 	

ð37Þ

Jθ ¼ 1
μ0L r; θð Þ cosθK1 r; θð Þ þ sinθK2 r; θð Þð Þ L r; θð ÞBϕ

� 	

ð38Þ

Jϕ ¼ 1
μ0

�
K1 r; θð Þ Brsin θ þ δsinθð Þ þ Bθcos θ þ δsinθð Þð Þ

� K2 r; θð Þ Brcos θ þ δsinθð Þ � Bθsin θ þ δsinθð Þð Þ
�

ð39Þ

∂
∂R

¼ M1 θð Þ ∂
∂r

þ N1 θð Þ
r

∂
∂θ

¼ K1 r; θð Þ ð40Þ

∂
∂Z

¼ M1 θð ÞM2 θð Þ
ks

∂
∂r

þ N2 θð Þ
rks

∂
∂θ

¼ K2 r; θð Þ ð41Þ

M1 θð Þ ¼ 1
cos θ þ δsinθð Þ þ tanθ þ δsinθ½ �sin θ þ δsinθð Þ

ð42Þ
M2 θð Þ ¼ sin θ þ δsinθð Þ 1
cos

þ δ

� �� �
ð43Þ

N1 θð Þ ¼ � sinθ

cos δsinθð Þ þ δ
2 sin2θsin θ þ δsinθð Þ� 	

ð44Þ

N2 θð Þ ¼ cos θ þ δsinθð Þ
cos δsinθð Þ þ δ

2 sin2θsin θ þ δsinθð Þ� 	 ð45Þ

Reduction of new G-S equation to the simple case of
circular cross section
Now, we are in a stage where we can prove the correct-
ness of Equations 34 to 39. For this, the triangularity is
set to 0 (knowing that in this case the elongation ratio is
unity) in Equations 34 to 39, which reduces the results
to equations for circular cross section:

1
r
∂
∂r

r
∂
∂r

� �
þ 1
r2

∂2

∂θ2

� �
ψð Þ

� 1
R0 þ r cosθð Þ cosθ

∂
∂r

� sinθ
r

∂
∂θ

� �
ψð Þ

¼ �μ0 R0 þ r cosθð Þ2 dP
dψ

� F
dF
dψ

ð46Þ

Br ¼ � 1
Rr

∂ψ
∂θ

;Bθ ¼ 1
R
∂ψ
∂r

ð47Þ

Jr ¼ � 1
μ0Rr

∂RBϕ

∂θ
; Jθ ¼ 1

μ0R
∂RBϕ

∂r
; μ0Jϕ

¼ 1
r
∂ rBθð Þ
∂r

� 1
r
∂Br

∂θ
ð48Þ

∂
∂R

¼ cosθ
∂
∂r

� sinθ
r

∂
∂θ

ð49Þ

∂
∂Z

¼ sinθ
∂
∂r

þ cosθ
r

∂
∂θ

ð50Þ

Setting δ = 0 and kS = 1 in Equations 42 to 45 leads to
the following equations:

M1 θð Þ ¼ cosθ

M2 θð Þ ¼ tanθ

N1 θð Þ ¼ �sinθ

N2 θð Þ ¼ cosθ
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Substituting the obtained results in the partial differ-
entiations of Equations 40 and 41 leads to

∂
∂R

¼ cosθ
∂
∂r

� sinθ
r

∂
∂θ

¼ K1 r; θð Þ ð51Þ

∂
∂Z

¼ sinθ
∂
∂r

þ cosθ
r

∂
∂θ

¼ K2 r; θð Þ ð52Þ

Also, substituting Equations 51 and 52 in Equations 34
to 39 leads to

1
r
∂
∂r

r
∂
∂r

� �
þ 1
r2

∂2

∂θ2

� �
ψð Þ

� 1
R0 þ r cosθð Þ cosθ

∂
∂r

� sinθ
r

∂
∂θ

� �
ψð Þ

¼ �μ0 R0 þ r cosθð Þ2 dP
dψ

� F
dF
dψ

ð53Þ

Br ¼ � 1
Rr

∂ψ
∂θ

;Bθ ¼ 1
R
∂ψ
∂r

ð54Þ

Jr ¼ � 1
μ0Rr

∂RBϕ

∂θ
; Jθ ¼ 1

μ0R
∂RBϕ

∂r
; μ0Jϕ

¼ 1
r
∂ rBθð Þ
∂r

� 1
r
∂Br

∂θ
ð55Þ

The comparison of Equations 46 to 50 with Equations 51
to 55 respectively shows the reduction of partial differen-
tial and G-S equations, magnetic fields, and current dens-
ities from an elongated cross section to a circular one.

Conclusions
In this paper, new formulae are obtained for partial
differential and G-S equations, magnetic fields, and
current densities that are special on elongated cross
section. Thus, with these new formulations, one can
easily understand the effect of the elongation ratio on
tokomak parameters like magnetic fields and current
densities. Furthermore, solving the G-S equation with
this new formulation, the exact solution for the mag-
netic surfaces of the tokomak plasma with elongated
cross section is obtained. Obviously, with this infor-
mation one can easily plot the real magnetic surfaces
of the elongated tokomak.
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