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Abstract

In this paper, the integrated nuclear model is introduced, and a binding energy formula based on this model is
presented. The binding energies of all nuclides in this model are compared with available experimental values and
also with values from liquid drop model.
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Background
One of the purposes of the nuclear physics is to intro-
duce the proper mathematical models from which the
properties and the behavior of nuclides can be
explained. One of the outstanding features of the
nuclides is the fact that their nuclear density is approxi-
mately constant. Therefore, the volume of nuclide is
proportional to the mass number A. The same propor-
tionality holds for liquids, and one of the early funda-
mental nuclear models presented by Carl Friedrich Von
Weizsäcker [1] and developed by Niels Bohr and John
Archibald Wheeler [2] was based upon liquid drops.
Nuclides are considered as incompressible liquid drops
with enormous density. Based upon the fact that the
average binding energy per nucleon and the nuclear
density are constant, Weizsäcker was able to present his
liquid drop model with the following basic assumptions:

(1) The nuclides are made of incompressible matter so
that R / A1/3 (R is the mean nuclear radius).

(2) The nuclear force is the same for each nucleon.
(3) The nuclear force saturates.

The liquid drop model led to the famous semi-empirical
mass formula from which the dependency of nuclear mass
upon A and Z is given [3]. First, the nucleus is considered
as a collection of interacting particles like a liquid drop.
Then, the Coulomb force, the Pauli exclusion principle ef-
fect, and other details are added to the model as
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corrections, and finally, the following formula is derived
for nuclear binding energy:

B A;Zð Þ ¼ avA−aSA2=3−acZ Z−1ð ÞA−1=3−aa N−Zð Þ2A−1

� δ þ η

ð1Þ

In the liquid drop model, nucleons are not described
individually; they are considered as averaged values.
Therefore, this model has been successful in describing
some properties of nuclei such as average binding energy
per nucleon, whereas for other nuclear properties such
as nuclear excited states, magic numbers and nuclear
magnetic moments have not so much to present.
The nuclear properties can be described simply in

terms of free particle behavior instead of strongly inter-
acting particles as viewed in the liquid drop model. If nu-
clide is considered as a degenerate Fermi gas of nucleons
(Fermi gas model), then a nuclear free particle model is
obtained. In this model, it is assumed that nucleons are
freely (except under the Pauli exclusion constraint) mov-
ing within a nuclide with radius R ¼ R0A1=3 . Using the
quantum tunneling theory and Pauli exclusion principle,
one can find the average kinetic energy of the nucleons
within the nuclide as follows:
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In contrast to the liquid drop model and Fermi gas

model in which the macroscopic properties of nuclei are
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presented, the nuclear shell model [4-6] deals with the
microscope properties of nuclei. The nucleons as free
particles moving in a spherical potential and also the
Pauli exclusion principle intensively limit the interaction
between the nucleons. Such consideration in the shell
model provides orbits with approximate stability and
defined energy levels. The fundamental assumption in a
nuclear shell model is the independence of nucleon
motions (free particles) regardless of the existence of
strong attractive force between the nucleons. With these
assumptions, it is predictable that such model is able to
describe nuclear microscopic properties such as excited
state energy, magic number, and nuclear magnetic
moments, but it is important to provide a nuclear bind-
ing energy formula.
In this paper, it is attempted to present an integrated

new clear model and a new formula for binding energy
of all nuclides based upon intuitive assumptions that will
be presented in the next section.
Nuclear binding energy in integrated nuclear model
In general, the total mass of nuclei (Z,N) is less than the
sum of the masses of its constituent particles namely
protons and neutrons. This mass difference is defined as
nuclear binding energy. In 1966, Garvey and Kelson pre-
sented a formula for the nuclear binding energy [7,8].
Since the nuclear energy possesses saturation property,
therefore, it is possible for the mass difference between
two neighboring nuclides of (Z0,N0) and (Z,N), namely
M(Z,N) −M(Z0,N0), to be expanded as power series in
terms of ΔZ = Z − Z0 and ΔN =N −N0. Consequently, it
is possible to write the following formula for the nuclear
binding energy [9,10]:

B Z;Nð Þ ¼ B Z0;N0ð Þ þ B10ΔZ þ B01ΔN þ B20 ΔZð Þ2
þB02 ΔNð Þ2 þ B11 ΔZð Þ ΔNð Þ þ⋯;

ð3Þ

where the coefficients B10, B01, … are the partial deriva-
tives of B(Z,N) with respect to (Z,N) = (Z0,N0). A good
approximation is to neglect the second and higher order
derivatives in series (Equation 3). Then, considering a
linear relation for the binding energy, we will have the
following two formulas [11,12]:

B Z;Nð Þ ¼ g1 Zð Þ þ g2 Nð Þ þ g3 N þ Zð Þ; ð4Þ

B Z;Nð Þ ¼ f1 Zð Þ þ f2 Nð Þ þ f3 N−Zð Þ: ð5Þ

Now, we may use the mentioned models, namely liquid
drop, Fermi gas, and shell models in addition to relations 1,
2, 4, and 5 to express our fundamental assumptions in order
to present a new formula for the nuclear binding energy:

(1) The nuclear binding energy is of the order of 1% of
the energy of the total rest mass of the constituent
nucleons [11].

(2) The nuclear binding energy is proportional to the
volume of the nuclide (B / A).

(3) The nuclear binding energy depends upon the
asymmetry between the number of protons and
neutrons (specially in heavy nuclides) and also
depends upon the coulomb repulsion force between
protons.

From the conditions of relations 4 and 5, it is noticed
that the binding energy is proportional to both (N+ Z)

and (N − Z). Therefore, a term N2−Z2

Z appears for the nu-
cleon asymmetry and coulomb correction in the third
assumption.
Based upon the above assumptions, the following formula

is presented for the nuclear binding energy of all elements:

B Z;Nð Þ ¼
32

32 þ 1

� �
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where δ stands for nuclear beta-stability line condition and
is defined as follows:

δ N−Zð Þ ¼ 0
1

for N≠Z
for N ¼ Z

� �
: ð7Þ

The factor 0.9 in front of Equation 6 will be explained
in next the section.
In Table 1, the nuclear binding energy for all nuclides

is given using Equation 6 and has been compared with
the results of liquid drop models (LDMs) and with ex-
perimental results. The nuclear binding energies per nu-
cleon obtained using Equation 6 are in good agreement
with the existing experimental data and also with LDM
for all mass numbers as shown in Figures 1, 2, 3.

Discussion and conclusion

The constant factor 32

32þ1

� 	
in binding energy (Equation 6)

may be explained in two different contexts. One has to do
with the defined nuclear region [12] in which the density
remains constant. In other words, it is assumed that in
about 10% of outer nuclear region, the density is no longer
constant and falls rapidly and is ignored in the integrated
model. The other context has to do with the 3n law for n
= 2 as stated in the quark plasma nuclear model [13,14]
due to the fact that each nucleon is made of 3 quarks and
due to the existence of a new threefold symmetry in this



Table 1 Nuclear binding energy per nucleon

Nucleus Z A B/A
(our model, MeV)

B/A
(LDM, MeV)

B/A
(EXP, MeV)

H 1 3 3.29123 0.6105 2.827

He 2 4 7.40526 5.4863 7.074

Li 3 6 4.93684 4.60667 5.33233

Li 3 7 4.54503 5.48336 5.60629

Be 4 9 5.75965 6.2924 6.46278

B 5 10 6.91158 6.30939 6.4751

B 5 11 6.52262 6.82388 6.92773

C 6 12 7.40526 7.31242 7.68017

C 6 13 7.0466 7.20223 7.46985

N 7 14 7.75789 7.11861 7.47564

N 7 15 7.42877 7.48535 7.69947

O 8 16 8.02237 7.73211 7.97619

O 8 17 7.71987 7.70438 7.75076

F 9 19 7.94899 7.87776 7.779

Ne 10 21 8.13404 8.01728 7.97171

Na 11 23 8.28661 8.17431 8.11148

Mg 12 25 8.41457 8.22397 8.22352

Mg 12 26 8.18587 8.35642 8.33388

Al 13 27 8.52344 8.30071 8.33156

Si 14 29 8.61718 8.36406 8.44866

Si 14 30 8.41614 8.48917 8.52067

P 15 31 8.69875 8.4163 8.48119

S 16 34 8.59107 8.57741 8.5835

Cl 17 37 8.49231 8.58581 8.5703

Ar 18 38 8.72849 8.6344 8.61429

K 19 41 8.63155 8.64551 8.57607

Ca 20 43 8.69114 8.66599 8.60067

Sc 21 45 8.74526 8.68134 8.61884

Ti 22 47 8.79465 8.69223 8.66113

Ti 22 48 8.65817 8.74848 8.72292

Va 23 50 8.70888 8.69335 8.69588

Cr 24 52 8.75551 8.76065 8.77594

Mn 25 55 8.67687 8.74901 8.765

Fe 26 56 8.83839 8.75985 8.79032

Fe 26 57 8.72109 8.75142 8.77026

Co 27 59 8.76215 8.75084 8.76802

Ni 28 61 8.80037 8.7476 8.76502

Cu 29 63 8.83606 8.74199 8.75214

Cu 29 65 8.62354 8.76012 8.75711

Zn 30 66 8.76663 8.77127 8.75964

Ga 31 69 8.70121 8.75196 8.72458

Ge 32 70 8.83342 8.75222 8.72173

As 33 75 8.58113 8.73985 8.70085

Se 34 76 8.70953 8.74887 8.71149

Br 35 79 8.65242 8.72461 8.68761

Kr 36 80 8.77204 8.72447 8.69293

Table 1 Nuclear binding energy per nucleon (Continued)

Rb 37 85 8.54673 8.70027 8.69745

Sr 38 84 8.82816 8.69437 8.67745

Sr 38 86 8.66314 8.70634 8.70847

Sr 38 88 8.49775 8.69804 8.7326

Y 39 89 8.61257 8.67965 8.71391

Zr 40 90 8.72175 8.67799 8.70992

Nb 41 93 8.67217 8.65307 8.66414

Mo 42 94 8.77494 8.64476 8.6623

Mo 42 95 8.6999 8.63786 8.64868

Ru 44 100 8.67987 8.61943 8.61928

Ru 44 101 8.608 8.60868 8.60129

Rh 45 103 8.6353 8.59314 8.58411

Pd 46 105 8.66145 8.57653 8.57061

Pd 46 106 8.59256 8.58669 8.57994

Ag 47 107 8.68651 8.55892 8.55386

Cd 48 110 8.64446 8.55271 8.55133

Cd 48 111 8.57832 8.53359 8.53714

In 49 113 8.60403 8.52577 8.52296

Sn 50 115 8.62874 8.50802 8.5141

Sn 50 116 8.56514 8.51632 8.52314

Sb 51 121 8.40274 8.4768 8.48202

Te 52 122 8.49162 8.47611 8.47814

I 53 127 8.33638 8.4321 8.44549

Xe 54 126 8.54152 8.44149 8.44372

Cs 55 133 8.27464 8.38604 8.40998

Ba 56 132 8.47384 8.39985 8.40938

Ba 56 134 8.35965 8.38827 8.40818

Laa 57 138 8.27326 8.3425 8.37517

La 57 139 8.21706 8.33888 8.37806

Ce 58 138 8.41064 8.35613 8.37707

Pr 59 141 8.38058 8.32701 8.35404

Nd 60 143 8.40491 8.31014 8.33053

Nda 60 144 8.35149 8.31093 8.32697

Sm 62 149 8.34778 8.26527 8.26351

Sm 62 150 8.29602 8.2647 8.26167

Eu 63 153 8.26956 8.2354 8.22875

Gd 64 155 8.29409 8.21945 8.2133

Gd 64 156 8.24389 8.21778 8.21537

Tb 65 159 8.21899 8.18856 8.18885

Dy 66 160 8.29227 8.18534 8.18409

Dy 66 161 8.24356 8.17299 8.17335

Ho 67 165 8.17136 8.14135 8.14701

Er 68 167 8.1959 8.12611 8.13178

Tm 69 169 8.21974 8.11017 8.11451

Yb 70 173 8.15089 8.079 8.08746

Lua 71 176 8.1293 8.05062 8.05906

Hf 72 179 8.1083 8.0318 8.0386

Hf 72 180 8.06351 8.02743 8.03498
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Table 1 Nuclear binding energy per nucleon (Continued)

Ta 73 181 8.13205 8.01643 8.02343

W 74 186 8.02434 7.97987 7.98861

Rea 75 187 8.09161 7.96947 7.97795

Os 76 192 7.98718 7.93248 7.94852

Ir 77 193 8.05322 7.92257 7.93812

Pt 78 198 7.95188 7.88531 7.91418

Au 79 197 8.09854 7.89091 7.91566

Hg 80 204 7.91831 7.83841 7.88555

Tl 81 205 7.982 7.82921 7.8784

Pb 82 208 7.96525 7.80973 7.86746

Bia 83 209 8.02686 7.79827 7.84799

Tha 90 232 7.84441 7.62579 7.61503

Ua 92 234 7.95839 7.60908 7.60071

Ua 92 235 7.92315 7.59957 7.59091

Ua 92 238 7.81742 7.58055 7.57013

Nuclear binding energy for most of the known nuclei in our model, LDM, and
experimental values. LDM, liquid drop models; EXP, experimental values.

Figure 2 LDM data. Data of nuclear binding energy per nucleon in
terms of mass number for most of the known stable nuclei.
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model. Attention should be paid to the fact that for A< 5

such as
4
2
He and

3
2
H , the factor 3 in the second term of

binding energy of Equation 6 changes to 1, and for other
light nuclei, our given formula needs minor correction due
to the facts that for these light nuclides at least two
nucleons should participate, and the spherical distribution
of the nucleons inside the nuclide changes, the problem
that exists in other models too.
The semi-empirical Equation 1, based upon only liquid

drop model, contains at least five terms to be calculated,
whereas in our Equation 6, only two terms are calcu-
lated. Careful consideration of Table 1 and Figures 2 and
3 reveals the meaningful accuracy of our integrated
Figure 1 Experimental data. Data of nuclear binding energy per
nucleon in terms of mass number for most of the known stable nuclei.
model compared to liquid drop model with respect to
experimental data (Figure 1). Special features of the ex-
perimental diagram such as having maximum value for
Fe and its local extrema coincide with the calculated
values from Equation 6. The binding energy in Equation 6
is extracted from various existing models and that is why
it is called integrated model. In this model, the constitu-
ent nuclear particles are considered ‘free’ in a dense
plasma-type media. It is interesting that in such plasma
model of nuclei, based on a statistical view, all the magic
numbers and the new magic number, namely 184, are
also obtained with no spherical potential and spin-orbit
coupling assumptions [13,14]. Here, attempts are made
to conceptualize an integrated nuclear model capable of
Figure 3 Our integrated model data. Data of nuclear binding
energy per nucleon in terms of mass number for most of the known
stable nuclei.
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providing all nuclear characteristics such as binding en-
ergy per nucleon, magic number, excited states, and
magnetic moments. Such concepts may lead us to under-
stand a realistic picture of nuclei.
We believe the results obtained from the integrated

model is not only simple to understand but also more
physical and relatively closer to the experimental data
than other models. Other characteristics of nuclei are
being studied in the framework of the integrated model
in our group.
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