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Abstract

A phase space distribution function of quantum mechanics, so-called the Wigner distribution function (WDF), for
superposed states of the general time-dependent oscillator-like Hamiltonian system is investigated. Superposition of
not only two different coherent states but also two different squeezed states are considered respectively. Analytical
representation of WDF for the superposition states is derived rigorously on the basis of fundamental relations. We
confirmed the existence of nonclassical properties in the system from the appearance of interference term in the WDF.
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Background
The research of time-dependent oscillator-like Hamilto-
nian systems (TDOHSs) have received great concern
from both quantum and classical points of view for sev-
eral decades, thanks to their usefulness in describing the
dynamics of various physical phenomena. When studying
classical dynamics of a TDOHS, one usually consider
the system which has time-dependent parameters in
the Hamiltonian and assume that its time variation is
sufficiently slow. The analytical solution of Schrödinger
equation for a TDOHS can be obtained using Lewis-
Riesenfeld invariants. According to invariant operator
theory of Lewis-Riesenfeld [1], the quantum solutions
of TDOHSs are described in terms of their classical
solutions. Hence, it is possible to derive analytical solu-
tions of Schrödinger equation for TDOHS so far as
their classical solution is known. Among numerous
reports relevant to exact or approximate analyses of
classical motion of individual TDOHSs, see in particular
references [2-5].
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When investigating the properties of quantum states, a
number of probability distributions associated with quan-
tum mechanics are necessary. In 1932, Wigner discovered
a useful distribution function, now known as the Wigner
distribution function (WDF), in the context of quantum
statistical mechanics [6]. The WDF is a powerful tool
when describing quantum behaviors of wide range of
dynamical systems with various states such as coherent
and squeezed states, and a rather complex state super-
posed them [7-24]. In particular, the WDF has come to
play an ever-increasing role in the description of coher-
ent laser beams and of electromagnetic wave propagation
in time-varying magnetoplasma. Although WDF takes
negative values in some regions in phase space, it yields
exact marginal distributions that cannot be attained in
terms of the Husimi distribution function [25]. Once the
WDF is known for a quantum system, most of the quan-
tum mechanical properties of the system can be deduced
from a straightforward evaluation with its use. Zurek used
WDF in order to describe the decoherence problem and
the transition from quantum to classical regime [9]. There
are other broad range of applications of WDF and these
include tomography of a trapped ion [10], electrodynam-
ics in normal/complex media [11-14], atomic physics [15],
signal processing in optics [16], and quantum information
science [17].
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The WDF for superposed state is investigated in
this work, basing on the quantum solutions derived
from invariant operator theory. The general type of
Hamiltonian for TDOHS is established, and its ana-
lytic quantum solution is addressed in section ‘Quantum
description of time-dependent oscillator-like Hamiltonian
system’. In section ‘Wigner distribution function: superpo-
sition of coherent states’, we investigate the characteristics
of superposition of two coherent states for the general
TDOHS, via the corresponding WDF. Among several
types of coherent states, we consider the Glauber coher-
ent state which is basic and the prototype for most classes
of coherent states [26]. The WDF for the superposition of
two squeezed states is investigated in section ‘Wigner dis-
tribution function: superposition of squeezed states’. Our
developments for WDF are applied in a particular system
in section ‘Application to a particular system’. The sum-
mary and conclusion of this research are given in the last
section.

Quantum description of time-dependent
oscillator-like Hamiltonian system
Let us consider a general time-dependent Hamiltonian of
the form

Ĥ(q̂, p̂, t) = p̂2

2f (t)
+ g(t)(q̂p̂ + p̂q̂) + 1

2
f (t)ω2(t)q̂2

+ h1(t)q̂ + h2(t)p̂ + k(t),
(1)

where f (t), g(t), h1(t), h2(t), and k(t) are arbitrary time
functions, and ω(t) is a time-variable frequency. Notice
that f (t) �= 0. From appropriate choice of time functions,
we can obtain a particular type of TDOHS. For exam-
ple, if we take f (t) = meγ t , ω(t) = ω0, and all other
time functions are zero, where m, γ , and ω0 are real pos-
itive constants, the system becomes a harmonic oscillator
with exponentially increasing mass (HOEIM). The classi-
cal equation ofmotion of theHOEIM is the same as that of
the damped harmonic oscillator characterized by a damp-
ing constant γ . This implies that the Hamiltonians that
give their classical equation of motion are identical to each
other. Therefore, they have the same quantum structure
yielding common Schrödinger solutions (wave functions)
for the two systems. However, the mathematical represen-
tations of their energy operator are different from each
other [27], leading to different time evolutions of quantum
energy for each. This outcome stems from the fact that
a Hamiltonian of nonconservative TDOHS such as the
damped harmonic oscillator is different from the energy
operator of the system [28]. Any type of mass-accreting
oscillators is basically understood by a pail-rain model
presented in refs. [29,30]. Although the preparation of
mechanical oscillator with exponentially increasing mass

is rather difficult than that with linearly increasing mass, it
is often used as a model to explain some physical phenom-
ena. For example, Kim used it to describe massive scalar
fields in quantum cosmology [31]. Another choice, which
is f (t) = m, ω(t) = ω0, h1 �= 0, and all other time func-
tions are zero, gives simple harmonic oscillator of natural
frequency ω0 driven by arbitrary time-dependent forces.
Besides, the outcome of superposition states for such

oscillator-like systems and their relevant WDFs are very
interesting in physics due to their novel appearance indi-
cating nonclassical features of the system. These states,
in fact, gained much importance in quantum information
theory as resources of quantum cryptography [32] and
teleportation [33]. The nonclassicality of superposition
states can also be used in several ways to refine reso-
lutions of quantum measurements beyond the standard
limits [34].
Classical coordinate satisfies the differential equation of

the form

q̈ + ḟ
f
q̇+

(
−2

ḟ g
f

− 4g2 + ω2 − 2ġ
)
q

= ḟ h2
f

+ 2gh2 − h1/f + ḣ2,

(2)

and the conjugate canonical momentum is obtained
from p = f [ q̇ − 2gq − h2]. The classical solution
of coordinate and momentum is composed of comple-
mentary functions, [qc(t) and pc(t)], and particular ones
[qp(t) and pp(t)]:

qcl(t) = qc(t) + qp(t), (3)
pcl(t) = pc(t) + pp(t). (4)

Since Equation (2) is a second order differential
equation, there are two linearly independent complemen-
tary functions for coordinate. If we denote them qc,1(t)
and qc,2(t), the general complementary function is given
by

qc(t) = c1qc,1(t) + c2qc,2(t), (5)

where c1 and c2 are arbitrary real constants. Once qc(t)
is explicitly known, we can easily find the complementary
function for momentum from

pc(t) = f (t)[ q̇c(t) − 2g(t)qc(t)] . (6)

Meanwhile, in terms of particular solutions, we can con-
struct the annihilation and the creation operators on the
basis of Lewis-Riesenfeld invariant operator theory [35]:

â = X̂ + iŶ , â† = X̂ − iŶ . (7)
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Here, operators X̂ and Ŷ are given by

X̂ = 1
2ρ

√
�

�
[ q̂ − qp(t)] , (8)

Ŷ =
√

1
��

{
f (2gρ − ρ̇)[ q̂ − qp(t)]

+ ρ[ p̂ − pp(t)]
}
, (9)

where � is an arbitrary real constant, and ρ(t) is a time
function that obeys the following differential equation

ρ̈(t)+ ḟ
f
ρ̇(t)+

(
ω2−2

ḟ g
f

−4g2−2ġ
)

ρ(t)− �2

4f 2ρ3(t)
= 0.

(10)

The invariant operator of the system is given by

Î = ��

(
â†â + 1

2

)
. (11)

This satisfies the basic relation, dÎ/dt = 0 [1], and plays
an important role when developing quantum theory of the
system.
One can easily check that the boson commutation rela-

tion between â and â† holds: [ â, â†]= 1. This grantees
that we can manage the system in the usual way asso-
ciated with quantum mechanics, and the corresponding
quantum solutions can be derived from the conventional
method. Hence, it is possible to derive the wave function
of the system in Fock state from Schrödinger equation
and, as a result, it is written in the form [35]

ψn(q, t) = φn(q, t) exp [ iεn(t)], (12)
where φn(q, t) is the eigenstate of Equation (11), which is
given by

φn(q, t) = 4

√
�

2ρ2�π

1√
2nn!

Hn

[√
�

2ρ2�
(q̂ − qp)

]

× exp
{
i
�
ppq̂− 1

2ρ�

[
�

2
1
ρ

+ if (2gρ − ρ̇)

]
(q̂−qp)2

}
,

(13)

and εn(t) is a time-dependent phase of the form

εn(t) = −
(
n + 1

2

) ∫ t

0

�

2f (t′)ρ2(t′)
dt′

− 1
�

∫ t

0

[
Lp(t′) − h22(t′)f (t′)

2
+ k(t′)

]
dt′,

(14)

with

Lp(t) = f (t)
2

q̇2p(t) − 2g(t)f (t)qp(t)q̇p(t)

−
(
1
2
f (t)ω2(t) − 2g2(t)f (t)

)
q2p(t).

(15)

The wave function Equation (12) is necessary when
deriving the WDF of a particular superposition state.

Wigner distribution function: superposition of
coherent states
In this section, we study the WDF for a superposition of
two coherent states. Among diverse distribution functions
in phase spaces, the WDF is the most significant mathe-
matical tool in the realm of not only (quantum) optics but
also other dynamical systems. For this reason, the WDF
has been a major topic in quantum statistical physics as
well as in the context of quantum optics. It is well known
that the WDF can be negative in phase space. This is
the reason why the WDF can not be regarded as a real
probability density but a ‘quasiprobability density’. If the
quantum wave packet is a Gaussian type, the associated
WDF is positive in every region [18].
Let us first start from the definition of coherent state |α〉,

which is the eigenstate of the annihilation operator:

â|α〉 = α|α〉. (16)

By solving this equation, we have the eigenvalue such
that

α = α0eiϕ , (17)

where, α0 and ϕ are given by

α0 =[X2(t)+Y 2(t)]1/2 , ϕ = tan−1 Y (t)
X(t)

, (18)

with

X(t) = 1
2ρ(t)

√
�

�
qc(t), (19)

Y (t) =
√

1
��

{
f (t)[ 2g(t)ρ(t) − ρ̇(t)] qc(t) + ρ(t)pc(t)

}
.

(20)

On the other hand, the eigenstate is represented in
terms of Fock state wave function such that

|α〉 = exp
(

−1
2
α2
0

) ∑
n

αn
√
n!

|φn(t)〉. (21)

In position space, we insert Equation (13) into the above
equation and, after some algebra, we have

〈q|α〉 = 4

√
�

2ρ2�π

× exp
{

α

√
�

ρ2�
(q − qp) + η(q) − 1

2
α2
0 − 1

2
α2

}
,

(22)
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where

η(q) = − 1
4ρ�

[
�

ρ
+ 2if (2gρ − ρ̇)

]
(q− qp)2 + i

�
ppq.

(23)

This is known as the(?) Glauber coherent state which
exhibits no conspicuous nonclassical effects.
However, quantum superposition of coherent states

exhibit diverse nonclassical properties such as normal
and higher-order squeezing, sub-Poissonian statistics and
quantum interference [36]. Various schemes have been
proposed to generate and observe such states extensively
[37]. As a familiar example of such state, let us consider a
superposition of two coherent states which are π/2 out of
phase with respect to each other [19]:

|ψ(t)〉 = 1√
N

(|α〉 + eiφ |iα〉), (24)

where φ is a relative phase, and N is the normalization
factor of the form

N = 2[ 1 + e−α2
0 cos(α2

0 + φ)] . (25)

The researches for other types of superposition states
are also found in other reports [20,21]. On experimen-
tal side, the ability to create and maintain superposition
states is a key element in attempts for observing non-
classical behaviors of larger and more complex quantum
systems.
In particular, for φ = 0, φ = π , and φ = π/2, Equation

(24) becomes

|ψ+(t)〉 = 1√
N+

(|α〉 + |iα〉), (26)

|ψ−(t)〉 = 1√
N−

(|α〉 − |iα〉), (27)

|ψ0(t)〉 = 1√
N0

(|α〉 + eiπ/2|iα〉), (28)

respectively, where

N+ = 2(1 + e−α2
0 cosα2

0), (29)

N− = 2(1 − e−α2
0 cosα2

0), (30)

N0 = 2(1 − e−α2
0 sinα2

0). (31)

If we use Equation (22), the superposition state in con-
figuration space is obtained to be

〈q|ψ(t)〉 = 4

√
�

2ρ2�π

2√
N

× exp
{

η(q)+(1 + i)
α

2

√
�

ρ2�
(q−qp)− 1

2
α2
0 + iφ

2

}

× cosh
[
(1 − i)

α

2

√
�

ρ2�
(q − qp) − 1

2
α2 − iφ

2

]
.

(32)

As is well known, the fundamental mode of Gaussian
wave packet such as coherent states and their superposi-
tion can be studied by utilizing the WDF. The definition
of WDF for our superposed coherent state is

W (q, p, t) = 1
π�

∫ ∞

−∞
〈ψ(t)|q+y〉〈q−y|ψ(t)〉e2ipy/�dy.

(33)
The substitution of Equation (32) into the above

equation leads to

W (q, p, t) = 1
π�N

e−α2
0 exp

(
− 2
��

I(q, p, t)
)

×
[
e−α2

0 (e1 + e−2)

+2e1/2−2/2 cos
(
1
2
1 − 1

2
2 − α2

0 + φ

)]
,

(34)
where

I(q, p, t) = �2

4ρ2(t)
(q − qp(t))2

+ [
ρ(p−pp(t)) + f (2gρ(t)−ρ̇(t))(q−qp(t))

]2 ,
(35)

1 = 2

√
�

�ρ2 (q − qp)α0 cosϕ

+ 4ρα0 sinϕ√
��

[
(p − pp) + f

2gρ − ρ̇

ρ
(q − qp)

]
,

(36)

2 = 2

√
�

�ρ2 (q − qp)α0 sinϕ

− 4ρα0 cosϕ√
��

[
(p − pp) + f

2gρ − ρ̇

ρ
(q − qp)

]
.

(37)

Thus, the full expression of WDF is obtained. The
cosine function in the last term of Equation (34) reflects
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the quantum interference between the two bells associ-
ated with 〈q|α〉 and 〈q|iα〉, respectively. This is a strong
evidence for the appearance of nonclassical features of
superposition state, which cannot be explained using the
knowledge of classical mechanics.
For φ = 0, φ = π , and φ = π/2, we respectively have

W+(q, p, t) = 1
π�N+

e−α2
0 exp

(
− 2
��

I(q, p, t)
)

×
[
e−α2

0 (e1 + e−2)

+2e1/2−2/2 cos
(
1
2
1− 1

2
2−α2

0

)]
,

(38)

W−(q, p, t) = 1
π�N−

e−α2
0 exp

(
− 2
��

I(q, p, t)
)

×
[
e−α2

0 (e1 + e−2)

−2e1/2−2/2 cos
(
1
2
1− 1

2
2−α2

0

)]
,

(39)

W 0(q, p, t) = 1
π�N0

e−α2
0 exp

(
− 2
��

I(q, p, t)
)

×
[
e−α2

0 (e1 + e−2)

−2e1/2−2/2 sin
(
1
2
1 − 1

2
2 − α2

0

)]
.

(40)

The phase of interference term for these three cases are
different from each other. Thus, the shape of interference
pattern varies depending on the value of φ.

Wigner distribution function: superposition of
squeezed states
As well as coherent state, the squeezed state also plays
an important role, since it enables us to reduce quantum
noise in one quadrature at the expense of increasing the
noise in its counterpart quadrature. Squeezed states are
described via an operator of the form

b̂ = μâ + νâ†, (41)

where μ and ν satisfy

|μ|2 − |ν|2 = 1. (42)

As that of â and â† in the previous section, the usual
boson commutation relation for b̂ and b̂† also holds:
[ b̂, b̂†]= 1. If we represent the corresponding eigenvalue
equation in the form

b̂|β〉 = β|β〉, (43)

|β〉 is the squeezed state. By solving Equation (43) in con-
figuration space, we have the squeezed state such that

〈q|β〉 =Nq exp
{
− 1

ρ�

[
�

μ − ν

(
1
2
q2 − qpq

)
− iρppq

]

+μα + να∗

ρ(μ − ν)

√
�

�
q
}
,

(44)

whereNq is the normalization factor of the form

Nq =
(

�

2ρ2�π

1
(μ − ν)(μ∗ − ν∗)

)1/4

× exp
[
− �

4ρ2�

1
(μ − ν)(μ∗ − ν∗)

×
(
qp+2ρ

√
�

�
α0 cosϕ

)2

+iδs,q(α,α∗)

⎤
⎦ , (45)

with some phase δs,q(α,α∗), and

� = �

2ρ
(μ + ν) + if (2gρ − ρ̇) (μ − ν) . (46)

If we choose the phase δs,q(α,α∗) in the form

δs,q(α,α∗) = − q2p
4�ρ

(
2(2gρ − ρ̇)f + i�(μν∗ − μ∗ν)

ρ(μ − ν)(μ∗ − ν∗)

)

−α2
0 sinϕ cosϕ

+iqp

√
�

�ρ2

× [ (|μ|2−μν∗−1/2)α−(|μ|2−μ∗ν−1/2)α∗]
(μ−ν)(μ∗−ν∗)

,

(47)

Equation (44) reduces to

〈q|β〉 =
(

�

2π�ρ2(μ − ν)(μ∗ − ν∗)

)1/4

× exp
{
− 1
2ρ�

�

(μ − ν)
(q − qp)2 + i

�
ppq

+μα + να∗

ρ(μ − ν)

√
�

�
(q − qp)

−1
4
(α2 − α∗2) − α2

0[ 1 + cos(2ϕ)]
2(μ − ν)(μ∗ − ν∗)

}
, (48)
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and hence, another type of squeezed state 〈q|iβ〉 can be
represented as

〈q|iβ〉 =
(

�

2π�ρ2(μ − ν)(μ∗ − ν∗)

)1/4

× exp
{
− 1
2ρ�

�

(μ − ν)
(q − qp)2 + i

�
ppq

+ i(μα + να∗)
ρ(μ − ν)

√
�

�
(q − qp) + 1

4
(α2 − α∗2)

− α2
0[ 1 − cos(2ϕ)]

2(μ − ν)(μ∗ − ν∗)

}
. (49)

We can easily confirm from a little relevant evaluation
that 〈q|β〉 is properly normalized, leading to

∫ ∞

−∞
〈β|q〉〈q|β〉dq = 1. (50)

However, the same evaluation for 〈q|iβ〉 gives

∫ ∞

−∞
〈iβ|q〉〈q|iβ〉dq = exp

[
− α2

0[ 1 − cos(2ϕ)]
(μ − ν)(μ∗ − ν∗)

− [αA − α∗A∗]2

2(μ − ν)(μ∗ − ν∗)

]
,

(51)

where

A = |μ|2 − 2μν∗ + |ν|2. (52)

We thus see that 〈q|iβ〉 cannot be properly normalized
with the factor Nq. To fix this defect, we need to redefine
the normalization constant of 〈q|iβ〉, such that

Nq,(new) =Nq exp
[

α2
0[ 1 − cos(2ϕ)]

2(μ − ν)(μ∗ − ν∗)

+ [αA − α∗A∗]2

4(μ − ν)(μ∗ − ν∗)

]
.

(53)

This yields exact normalization for 〈q|iβ〉 and further
evaluation of 〈q|iβ〉 using this can be fulfilled, resulting in

〈q|iβ〉 =
(

�

2π�ρ2(μ − ν)(μ∗ − ν∗)

)1/4

× exp
{
− 1
2ρ�

�

(μ − ν)
(q − qp)2 + i

�
ppq

+ i(μα + να∗)
ρ(μ − ν)

√
�

�
(q − qp) + 1

4
(α2 − α∗2)

+ [αA − α∗A∗]2

4(μ − ν)(μ∗ − ν∗)

}
. (54)

Now, let us express the superposition state in the form

〈q|�(t)〉 = 1√
N

(〈q|β〉 + eiφ〈q|iβ〉), (55)

where Equation (54) is used for 〈q|iβ〉. The normalization
factor of Equation (55) is given by

N = 2 + exp
[
− 1
4(μ − ν)(μ∗ − ν∗)

(2α2
0B1 + α2B2

+α∗2B3 + 4α2
0 cos

2 ϕ) − iφ
]

+ exp
[
− 1
4(μ − ν)(μ∗ − ν∗)

(2α2
0B

∗
1 + α∗2B∗

2

+ α2B∗
3 + 4α2

0 cos
2 ϕ) + iφ

]
, (56)

with

B1 = (1 + 2i)(|μ|4 + |ν|4) − 2[ i(μν∗ + μ∗ν) + 2μ∗ν] |μ|2
−2[ i(μν∗ + μ∗ν) + 2μν∗] |ν|2 + 2(3 + 2i)|μ|2|ν|2,

(57)
B2 = −3|μ|4+|ν|4−2(1+2i)|μ|2|ν|2+2[ 1 + 2(2 + i)μν∗] |μ|2

+2(1 + 2iμν∗)|ν|2 − 4(1 + i)μ2ν∗2 − 2(μν∗ + μ∗ν),
(58)

B3 = −3|ν|4+|μ|4−2(1+2i)|μ|2|ν|2−2[ 1−2(2+i)μ∗ν] |ν|2
−2(1 − 2iμ∗ν)|μ|2 − 4(1 + i)μ∗2ν2 + 2(μν∗ + μ∗ν).

(59)

We can express the WDF of superposition of the two
squeezed states in the form

W(q, p, t) = 1
π�

∫ ∞

−∞
〈�(t)|q+y〉〈q−y|�(t)〉e2ipy/�dy.

(60)
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The integration, after inserting Equation (55) with
Equations (56) to (59) into the above equation, yields

W(q, p, t) = 1
π�

1
N exp

(
− 2
��

Is(q, p, t)
) {

exp
{

1
2(μ − ν)(μ∗ − ν∗)

×
[
(αA − α∗A∗)

(
αA − α∗A∗ + 2i

√
�

�ρ2 (q − qp)
)

−(α + α∗)2
] + 2√

��
(α + α∗)C

}

+ exp
{

1
2(μ − ν)(μ∗ − ν∗)

[
(α + α∗)

(−(α + α∗)

+2

√
�

�ρ2 (q − qp)
)

+ (αA − α∗A∗)2
] − 2i√

��
(αA − α∗A∗)C

}

+ exp
{
1
2
(μ − ν)(μ∗ − ν∗)D2+ − 2i√

��
(μ − ν)(μ∗ − ν∗)D+C

−1
2
(α2 − α∗2) + [αA − α∗A∗]2

4(μ − ν)(μ∗ − ν∗)
− iφ + D−

√
�

�ρ2 (q − qp)

− α2
0 cos2 ϕ

(μ − ν)(μ∗ − ν∗)

}

+ exp
{
−1
2
(μ − ν)(μ∗ − ν∗)D2+ + 2√

��
(μ − ν)(μ∗ − ν∗)D+C

+1
2
(α2 − α∗2) + [αA − α∗A∗]2

4(μ − ν)(μ∗ − ν∗)
+ iφ + iD−

√
�

�ρ2 (q − qp)

− α2
0 cos2 ϕ

(μ − ν)(μ∗ − ν∗)

}}
, (61)

where

Is(q, p, t) = �2

4ρ2
(q−qp(t))2

(μ−ν)(μ∗−ν∗)
+(μ−ν)(μ∗−ν∗)C2,

(62)

C = ρ(p − pp(t))

+
(

(2gρ − ρ̇)f − i�
2ρ

μ∗ν − μν∗

(μ − ν)(μ∗ − ν∗)

)
×(q − qp(t)), (63)

D+ = αμ + α∗ν
μ − ν

+ i(α∗μ∗ + αν∗)
μ∗ − ν∗ , (64)

D− = αμ + α∗ν
μ − ν

− i(α∗μ∗ + αν∗)
μ∗ − ν∗ . (65)

This is the complete expression of WDF for the super-
position of the two squeezed states. TheWDF represented

here is useful when investigating quantum corrections of
a classical distribution function of TDOHS in squeezed
state. For μ = 1 and ν = 0, Equation (61) reduces
to that of the superposition of coherent states given in
Equation (34). The integration of the WDF over either of
the coordinate or momentum variables yields the proba-
bility distribution for the other, such that

∫ ∞

−∞
W(q, p, t)dq = |〈p|�(t)〉|2, (66)∫ ∞

−∞
W(q, p, t)dp = |〈q|�(t)〉|2. (67)

These relations hold in general on every situation for
a quantum state and guarantee the WDF to be a quan-
tal distribution function in spite of its peculiar proper-
ties such as its allowed appearance of negativity. It is
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Figure 1 Time evolution of WDF of superposed coherent state for the system. This was presented in ‘Application to a particular system’
section. The value of t is 0.0 for (a), 0.5 for (b), 1.0 for (c), 1.5 for (d), 2.0 for (e), 2.5 for (f), 3.0 for (g), 3.5 for (h), 4.0 for (i), and 4.5 for (j). We have taken
c1 = c2 = 6, � = 1, ω0 = 1,m0 = 1, γ1 = γ2 = 1, c = 1, � = 1, and φ = π/2 (these values will also be used in all of the subsequent figures).

well known that nonclassical states of a quantum sys-
tem can be described in a best way via the WDF. The
tomographic reconstruction of WDF in quantum optics is

possible from the experimentally obtained data for a set
of probability distributions of the light quadrature-phase
amplitudes [38].
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Application to a particular system
Since any type of time-functions is allowed in Equation
(1), our development for WDF can be applied to diverse
classes of TDOHS. Let us consider a particular case
described in terms of time functions of the form

f (t) = m0eγ1t+c sin(γ2t), (68)

ω2(t) = ω2
0 + 1√

f (t)
d2

√
f (t)

dt2
, (69)

wherem0, c, γ1, γ2, and ω0 are real constants, and all other
time functions in Equation (1) are zero. Here, m0 and ω0
should be always positive for a physically acceptable sys-
tem. This system is also treated by Lo [39] for somewhat
different purpose. Notice that the quantum mechanical
problem developed in this paper is described in terms
of classical solutions. By solving Equation (10) for this
system, we have

ρ(t) =
√

�

2ω0f (t)
. (70)

Further, from Equation (2), we see that qc(t) is given by
Equation (5) with

qc,1(t) = ρ(t) cos(ω0t), (71)
qc,2(t) = ρ(t) sin(ω0t), (72)

and the corresponding pc(t) is easily identified from
Equation (6). However, there are no particular solutions
for both coordinate and momentum [qp(t) = pp(t) = 0]
since h1 = h2 = 0 in Equation (1). Thus, we have obtained
the complete classical solutions of the system.
The WDF of the coherent state is illustrated in Figure 1,

and that of the squeezed state is in Figures 2 and 3. Figure 2
represents q-squeezing, while Figure 3 p-squeezing. The
two bells in all figures correspond to macroscopically dis-
tinguishable quantum states |α〉 and |iα〉 (or |β〉 and |iβ〉)
which are separated in phase by π/2. These two bells
rotate clockwise with time as a whole. The ripple appeared
in the middle region between the two bells represents
interference between |α〉 and |iα〉, and this interesting fea-
ture indicates the nonclassicality of the superposed quan-
tum system. As you can see, negative values are allowed

Figure 2 Time evolution of WDF of superposed squeezed state for the system. This was presented in ‘Application to a particular system’
section. We used (μ, ν) = (

√
2, 1). The value of t is 0.0 for (a), 1.0 for (b), 2.0 for (c), 3.0 for (d), and 4.0 for (e).
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Figure 3 The same as Figure 2 but with different set of squeezing parameter which is (μ, ν) = (
√
2,−1).

in the region of ripple, which is impossible in any classi-
cal system. A detailed phenomenological interpretation of
such interference appeared in ref. [22].

Summary and conclusion
If we consider that we are free to choose any type of
time functions given in Equation (1), the Hamiltonian we
employed here is in a very general form. From particu-
lar choices of them, we can investigate quantum states
and the corresponding WDF for various kinds of time-
dependent harmonic oscillators. Coherent and squeezed
states are constructed using the annihilation and the cre-
ation operators which are associated with the invariant
operator theory. A distinguished feature of invariant oper-
ator theory is that its development concerning the estab-
lishment of quantum states can be attained through the
introduction of classical solutions. Hence, we considered
complementary functions, qc(t) and pc(t), and particu-
lar solutions, qp(t) and pp(t), when developing our theory
for WDF.
The special type of superposition for the two different

coherent states and for the two different squeezed states
is regarded, respectively, and their corresponding WDFs

are evaluated. Two elements of a superposition state is
π/2 out of phase with respect to each other and have
relative phase of φ as shown in Equations (24) and (55).
The global approach described here in order to derive a
general analytic form of WDF enables one to study the
dynamics of the quantized TDOHS and their quantum
properties in configuration space. TheWDF has long been
used as a very popular tool to study the quantum behav-
iors of, in principal, stationary systems. In recent years,
it has also become a convenient implement when inves-
tigating rather complicated dynamical systems that are
described by time-dependent Hamiltonian. Notably, there
has been a very extensive research for the dynamics of
photon statistics in quantum optics [21,40,41].
It is interesting that the value ofWDF can be negative in

some parts of the phase space for a certain quantum state.
One can regard this as a reflection of the nonclassical
effects, which is classically impossible [23]. A sophisti-
cated approach for nonclassical characteristics of super-
position state is in principle achieved by taking advantage
of WDF [21,24]. We also confirmed the existence of non-
classical features in our system from the cosine term of the
WDF, which represents the interference between the two
elements of the superposed state. The pattern of stripes
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appeared in the interfered region of phase space for WDF
varies depending on the value of φ. Indeed, the value of
WDF in the large part of that region can be negative as a
signature of nonclassicality.
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