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Gradient effects on dust lattice waves in
paramagnetic dusty plasma crystals
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Abstract

Dust lattice modes are studied in a hexagonal two-dimensional lattice in plasma crystal, including paramagnetic dust
particles. The gradients of magnetic fields, electric fields, and dust charge and also the interaction of dipole-dipole take
into account. These gradients modify the levitation condition and affect the frequencies of dust lattice waves. The
coupling between in-plane and out-of-plane modes gives rise to the hybrid mode, which is always an unstable mode.
However, intersection of the in-plane mode with other modes does not result in mode-coupling instability.
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Background
Dust lattice waves are produced by oscillations of regularly
spaced charged microparticles suspended in a plasma crys-
tal, which form as a result of strong mutual coulomb inter-
action [1,2]. Crystalline complex plasma structures have
been observed in recent rf discharge experiments [3], in
which the plasma sheath was embedded in an external
magnetic field. Theoretical studies then followed for the
investigation of conditions for magnetic-field-assisted crys-
tal equilibria involving paramagnetic charged dust grains.
The role of various forces acting on paramagnetic grains
has been discussed by Yaroshenko et al. [4], where mag-
netic forces have been shown to prevail over the (weaker)
electric polarization forces. Also, the effect of magnetic
field in dusty plasma lattice has been studied by the group
of Farokhi [5,6] recently.
Dust lattices support a variety of linear modes of which

we single out: longitudinal [7] (~x, acoustic) and a trans-
verse [8,9] (~y, shear) in-plane as well as a transverse
(out-of-plane, inverse-optic) dust-lattice wave mode(s).
Recently, Yaroshenko et al. studied the vertical vibra-

tions of a one-dimensional string of magnetized particles,
taking into account the magnetic force associated with
gradients of an external magnetic field, and they founded
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a new low-frequency oscillatory mode [10]. The influ-
ence of an inhomogeneous magnetic field, ion focusing
effect, and equilibrium charge gradient on the propaga-
tion of dust lattice modes in a one-dimensional string by
paramagnetic particles is considered in the study of Yar-
oshenko et al. [11], and they founded the modified dust
lattice waves. Dust lattice waves in hexagonal dusty
plasma crystal were studied before [12-14]. Linear bend-
ing mode in hexagonal dusty plasma crystal has been
studied by Vladimirov [15].
A theoretical treatment of the nonlinear aspects of

dust lattice modes in one-dimensional Yukawa crystals
has been carried out in the study of Kourakis et al. [16],
where the above aspects are incorporated in an exact
nonlinear lattice model. Recently, Farokhi et al. have
studied the nonlinear dust lattice modes in hexagonal
dusty plasma crystals [17]. Mode coupling instability in
hexagonal dusty plasma crystals has been studied re-
cently [18-20].
In this paper, we consider a two-dimensional mono-

layer of microparticles forming the hexagonal-type two-
dimensional crystal in the presence of an external elec-
tric field and investigate the propagation of dust lattice
waves in this system theoretically, including effects rele-
vant for the sheath region, namely, anisotropy of interac-
tions caused by dipole-dipole interactions and the
height-dependent charge variations.
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Vibrational modes in a hexagonal lattice of
paramagnetic grains
In this section to describe the modes in dusty plasma
with magnetized grains, we consider a hexagonal crystal,
where the spherical dust grains have magnetic moment
m⇀ , parallel to the external magnetic field, according to
Figure 1. The magnetic moment of a particle with radius
a and magnetic permeability μ, in an external magnetic
field B is shown in the following equation:

m ¼ 4π
μ∘

μ� 1
μþ 2

a3B ¼ αB ð1Þ

The influence of a inhomogeneous magnetic field on a
magnetized grains is as follows:

Fm ¼ � @ �m⇀ � B⇀� �
@z

¼ 2αB @B=@zð Þ
� 2αB0B

′
0 þ 2α B0B

00
0 þ B′2

0

� �
z þ⋯; ð2Þ

where a series expansion used for B. The electric force,
by using from the same series expansion for Q and E is
expressed as follows:
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The electrostatic and magnetic energy due to inter-
action between the origin (o’th) grain and its neighbors
(i’th grains) of crystal can be written as follows:

Uo;i ¼ QoQi
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The particle interaction force acting on the o particle
can be presented as follows:

F
⇀

o;i ¼ �@Uo;i=@ r⇀o; ð5Þ
The dipole interactions are also short ranged, so that

we need only to consider the nearest neighbor particle
interactions. The equation of motion for the origin par-
ticle in crystal is as follows:

F
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Using from Equations (2), (3), (4), (5), and (6), and
considering only small oscillations (u, v and z <<d)
around the equilibrium position, it gives the component
of linear equation of motion for origin particle:
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where μ, v and z, are displacement components of the
origin particle; mo stands for the equilibrium magnetic
moment of the grains. Subscript “0” denotes the equilib-
rium position z= 0. There is always a position where gravi-
tation can be compensated by the electric and magnetic
fields:

Mg ¼ QoEo þ 2αBoB
′
o � 6

QoQ′
o

4πEod
þ 6

μomom′
o

4πd3
ð10Þ

Assuming now that um;n; vm;n; zm;n vary as / exp
i kmd þ knd þ kld � ωtð Þ½ � , then it yields from the equa-
tion of motion:

ω2 þ 2iνω� D11

 �

u� D12v� iD13z ¼ 0 ð11Þ
�D21uþ ω2 þ 2iνω� D22


 �
v� iD23z ¼ 0 ð12Þ

�iD31u� iD32vþ ω2 þ 2iνω� D33 �Ω2
conf

h i
z ¼ 0 ð13Þ

where Dij are defined in Appendix.
M€uþ 2νM _u ¼ Q2
o

4πEod3 e
�κ 2þ 2κ þ κ2
� �� 3μom

2
o

πd5

� �
umþ
�

þ Q2
o

16πEod3 e
�κ �1� κ þ κ2
� �� 9μom

2
o

8πd5

� �
umþ1=2;nþ ffiffi

3
p

h
þ

ffiffiffi
3

p

4
Q2

o

4πEod3 e
�κ 1þ κ þ κ2
� �� 15

ffiffiffi
3

p
μom

2
o

8πd5

� �
vmþ1=2;

h

If we set Q′= 0 and B′= 0 in Equations (11), (12), (13),
the vertical oscillatory mode will be an independent
mode, while two other modes are coupled yet. In this
case the vertical component of equation of motion is
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which is in accordance with Equation (1) of Vladimirov
et al. [15], else second term in vertical frequency is due
to dipole interactions.
Two another components of the equation of motion is

same as Equations (14) and (15) of Farokhi et al. [14],
approximately. These equations are include the effect of
dipole-dipole interactions, and it leads to modified
coefficients:
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However, if gradients of fields and charge to be ac-
count, Equations (11), (12), and (13) shows a coupling
between three modes. Dispersion relation can obtain
from simultaneous solution of these equations, so one
can obtain the dispersion relation

det
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0
@

1
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¼ 0 ð17Þ
Three dust lattice modes are mixed, via Equation (17),

which for study of coupling of modes it should be plotted
and be compared with modes in absent of coupling. By
using the new notations for characteristics frequencies, we
write the dispersion relation of the DL modes in the form:
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Figure 1 Hexagonal structure of dusty plasma crystal.
The coupling frequency, ω4
coup ¼ D23D32 þ D13D31 ,

characterized magnitude of coupling between the
modes. Also the mixing frequency, Do, indicates on coup-
ling between in-plane-modes, where Do ¼ ðD11D23D32�
D12D23D31�D31D21D32 þ D13D22D31Þ= D23D32 þ D13D31ð Þ.
Also D+,- indicates on acoustic-type modes and Dz is the
optical-type mode. At larger wave numbers, the optical
mode may cross with the acoustic modes. In this case, the
magnitudes of the in-plane modes and of the mixing fre-
quency are similar for any wave vector. Far from the cross
point the coupling frequency is very small in comparison
with dust lattice modes, so the all modes in accordance with
Figure 2, are well separated. In vicinity of cross point, coup-
ling of the in-plane and out-of-plane modes in a narrow
proximity of the intersection line(s) ω0 (k) becomes crucial.
In this region the coupling gives rise to the hybrid mode

with Re ωhyb
� � ¼ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

Dz þ Dþð Þ=2p
. The analysis of Equation

(18) shows that the hybrid mode is always unstable. One
can show that the coupling coefficient is positive only for
the intersection of the modes Dz and D+, which causes the
hybridization and triggers the instability. Figure 3 indicates
on this mode. The intersection of the out-of-plane mode
with the in-plane mode D− (as well as the crossing of the
in-plane modes) does not result in the mode-coupling



Figure 2 The dispersion relation of dust lattice modes for
propagation along x-axis and Ωconf ¼

ffiffiffiffiffiffi
40

p
.

Figure 3 The Dispersion relations of the dust lattice modes for
propagation along x-axis, Ωconf ¼

ffiffiffiffiffiffi
28

p
and B = 0.2 T. The real

part of frequency normalized to ωo ¼ Q2 exp �κð Þ=4πE∘Md3. The
imaginary part (dashed line) has magnified with a 10 factor. Symbols
L, T-h and T-v are used for the longitudinal mode, in-plane
(horizontal) transverse mode and for the out-of-plane (vertical)
transverse mode, respectively. Also “hyb” indicates the hybrid mode.
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instability. Mathematically, this is because the behavior of
the modes in the vicinity of the intersection line is deter-
mined by the sign of the corresponding coupling term
(last term in Equation (18)), (which for that numerical
value of various parameters is in accordance with Ref
[11]). The real part of frequency normalized to ωo ¼
Q2 exp �κð Þ=4πE∘Md3 . The imaginary part (dashed line)
has magnified with a 10 factor. Symbols L, T-h and T-v are
used for the longitudinal mode, in-plane (horizontal) trans-
verse mode and for the out-of-plane (vertical) transverse
mode, respectively. Also “hyb” indicates the hybrid mode.

Conclusion
In summary the propagation of dust lattice modes in
a hexagonal paramagnetic dust crystal has studied, in-
cluding gradients of magnetic and electric fields and
dust charge. Paramagnetic property of dusts, leads to
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Appendix
modification of frequencies of dust lattice waves. When
these gradient taken into account, the main conclusion is
coupling of three modes. Also these gradients modify the
levitation condition and affect the frequencies of dust
lattice waves. This implies that the characteristics of dust
lattice modes coupling can be effectively controlled exter-
nally, due to gradients by experimental conditions.
The coupling between in-plane, D+, and out-of-plane,

Dz, modes gives rise to the hybrid mode, which the ana-
lysis of Equation (18) shows that this hybrid mode is
always unstable. But the intersection of the in-plane
mode D− with other modes does not result in the mode-
coupling instability. Also we calculated the critical
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frequency of the vertical confinement corresponding to
the instability onset and determined its universal depend-
ence on plasma parameters.
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