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On the correspondence principle for the
Klein-Gordon and Dirac Equations
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Abstract
We investigate the asymptotic behavior of the solutions to the Klein-Gordon and Dirac equations using the local
spatial averaging approach to Bohr’s correspondence principle in the large principal quantum number regime.
The procedure is applied in two basic problems in 1+1-dimensions, the relativistic quantum oscillator and the
relativistic particle in a box. In the harmonic oscillator cases, we find that the corresponding probability densities
reduce to their respective classical single-particle distributions plus a series of terms suppressed by powers of
the h̄ constant, while particle in a box cases show a different structure for the quantum corrections.
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1. Introduction

The recovery of classical physics from quantum observables
has been one of the topics at the front of quantum foundations
since its early formulation. In light of recent developments
in [1–4] for addressing this old problem from the local spatial,
and temporal averaging (LSA and LTA respectively) proce-
dure, our work is devoted towards calculating quantum and
relativistic corrections of classical probability distributions
for single particle states in terms of expansion parameters,
including the Planck constant h̄ and the speed of light c.
Perhaps the most elementary incantation of quantum to classi-
cal transition is the Planck limit, taken when h̄ is negligible
respect to a relevant action, which can be an useful approach
to recover effective actions at leading order. A second well-
established relation with the classical limit appears in the
Ehrenfest theorem, which states that the quantum mechanical
expectation values of the position and momentum operators
satisfy the classical equations of motion [5, 6]. However, the
Ehrenfest theorem is neither necessary nor sufficient for a
quantum system to have a classical behavior, since the clas-
sical limit of a quantum system is an ensemble of classical
orbits where its mean position does not necessarily follow
from the corresponding classical orbit [7]. These ideas have
been explored in the perspective of damped driven oscilla-
tory systems in [8]. Another example is Wigner’s distribution
function, which is an analogue of a classical probability den-
sity (PD) function over phase space that allows to study the
quantum corrections of classical statistical mechanics [9, 10],
although it requires certain restrictions to be interpreted as

a probability distribution. Lastly, a proposal with a similar
vision to ours [11, 12] compares classical and quantum single
particle probability densities, although they do not establish a
correspondence between such distributions.
Niels Bohr established a correspondence principle where a
classical behavior is recovered when the principal quantum
number, n, is large. Bohr applied this correspondence for
frequencies and orbits of quantum systems [1, 13], which has
been applied successfully in atomic physics [14–16]. How-
ever, there are examples where classical frequencies can be
recovered from small principal quantum numbers [17]. An ex-
ample of ”breakdown” of the Bohr’s correspondence principle
in the semi-classical regime was discussed in [18], which was
later disputed [19]. Some recent studies about the emergence
of the classical macroscopic realm from condensates with a
large number of constituents in quantum systems can be found
in [20–22].
Remarkably, one can state the correspondence principle from
the LSA procedure on the quantum mechanical probabilities
densities, which leads to a classical distribution for the same
non-relativistic quantum systems in periodic motion [23–25].
This idea has been examined for analytic examples, including
the quantum harmonic oscillator, the particle in an infinite
box, and the quantum Kepler problem by [1–3]; and more
recently, it has been extended to a LTA by [4] for particles
bouncing on the presence of a homogeneous gravitational
field. However, to the best of our knowledge, the LSA and
LTA procedures have only been performed in non-relativistic
quantum mechanical systems.
For the first time, we adapt the LSA procedure to single par-
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ticle states described by the Klein-Gordon (KG) and Dirac
equations, and we apply our arguments on particular rela-
tivistic quantum systems in 1+1-dimensions, namely for the
infinite square well and the harmonic oscillator. We exam-
ine the classical energy regime of our results and we find
several consistency checks, the LSA PD is expressed as to
leading order as the classical single-particle distribution, and
it is followed by quantum correction terms, and we provide a
discussion on the structure of such corrections for each case.
However, there are clear limitations in the LSA, which is for-
mulated in first quantization, which means that it is limited to
particles whose kinetic energy is low compared to their rest
energy. For instance, it does not apply to massless particles.
Thus, we do not handle non-fixed particle number effects,
such as pair creation or decay, which we leave as an avenue
for future research. Moreover, despite that the proposal could
be extended for higher spin massive particles in the regime
where first quantization is still valid, for practical reasons and
for possible applications, the text is limited to the Dirac and
KG equations.
Our manuscript is organized as follows. In Section 2 we pro-
pose how to apply the LSA approach program in relativistic
quantum mechanics, namely for the solutions to the KG and
Dirac equations. In Section 3 we illustrate the proposal with
some simple cases where we have analytic control over the
distributions in 1+1-dimensional systems, including the KG
and Dirac particles in presence of a simple harmonic oscilla-
tor and the infinite box potentials, where we recover classical
probability distributions with corrections. We conclude with
remarks and an outlook in Section 4.

2. General procedure

2.1 Review of local averaging procedure
To keep our article self-contained, we begin with an outline
of the previous ideas involving the LSA correspondence that
will carry over to the KG and Dirac equations.
The formulation of the correspondence principle in a LSA
sense of the quantum PD was first realized in [23] (see also
[24, 25]). For clarity, we illustrate the procedure in 1+1-
dimensional systems, but it can be performed in a similar way
in higher dimensional non-relativistic quantum systems [2].
Moreover, it can be extended to local time domain average
instead of the spatial one in situations where there is time
diffraction in matter waves [4]. The classical (Cl) and quan-
tum mechanical (QM) probability distributions, denoted by
ρCl(x, t) and ρ

QM
n (x, t) respectively, for a given system can

be related in the limit of large principal quantum number n by,

ρ
Cl(x, t) = lim

n→N

1
2εn

∫ x+εn

x−εn

dx′ ρQM
n (x′, t) (1)

where N ≫ 1 is a large but finite principal quantum number
defined when the energy of the QM system approaches the

classical limiting value

lim
n→N

EQM
n = ECl , (2)

and the parameter εn is related with the standard deviation of
the particle’s position, which approaches limn→N εn → 0.
To simplify the evaluation of the original integral (1), [1–3]
mapped the problem to the Fourier transformed space, where
instead of directly evaluating the LSA in (1) one can evaluate
the limit n → N directly in the Fourier transformed space,
and then transformed back to the original space to find the
LSA PD, which leads to the classical probability distribution
of the system in the limit when we fix n such that (2) is
obeyed. This procedure proves to be convenient for periodic
systems, as it has been successfully demonstrated with several
examples [1–4]. In these particular examples, one is able to
easily interpret the asymptotic PD in terms of the classical
case with a series of quantum corrections.

2.2 Proposal for the KG and Dirac equations
We seek to transfer the previous ideas in the context of rel-
ativistic quantum mechanics (RQM); however, it becomes
more subtle to construct probability densities in this case. The
antiparticle solutions of the KG equation can have negative
energies and lead to negative probabilities; although there is a
stochastic interpretation of quantum theory [26] where both
particles and antiparticles have positive energies and move
forward in time, with antiparticles moving with momenta in
the opposite direction to the corresponding particle, resulting
in well-defined probabilities. The reader can find an useful
discussion in [27] for how to construct probability densities
in RQM for more general settings that what we study bellow.
In the case of 1+1-dimensional single particle states, there is
a space-like surface which is isomorphic to R or a compact
interval, with a time-like conserved current jµ given by

jµ =

{
i(φ ∗ ∂µ φ −φ ∂µ φ ∗), (KG)

ψ γµ ψ, (Dirac).
(3)

and φ(x, t) is the time-dependent wave function, and j0 is
identified as the relativistic PD in position space for positive
energy states. Like in the non-relativistic case, we may eval-
uate the LSA integral from (1) with ρ

QM
n (x, t)→ ρ

RQM
n (x, t)

for n ≫ 1 , and apply the asymptotic analysis in Fourier space
if it were convenient, then fix the energy ERQM

n to its classical
value (including the particle’s rest energy) in (2) to recover
the classical distribution ρCl

n (x, t) at leading order.
We will proceed by applying this procedure for eigenstate so-
lutions. The KG solutions would be given by terms of the form
φ(x, t) = φn(x)e−

iEnt
h̄ , where φn(x) denotes the wave function

of the n-th eigenstate with energy En, and similarly for the
Dirac equation solutions. The resulting time-independent
probability densities in RQM are given by

ρ
RQM
n (x) =

{
φ ∗

n (x)φn(x), (KG).

ψ†
n (x)ψn(x), (Dirac)

(4)
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where only the En > 0 solutions are physical. The Dirac so-
lutions automatically have a positive definite PD for single
particle states, but not in the multiparticle case [28]. We illus-
trate this proposal in particular single particle state systems
where we have analytic control.

3. Applications

3.1 Klein-Gordon oscillator
The wave function of the 1+1-dimensional KG oscillator is
exactly the same as that of the Schrödinger oscillator, and the
PD is given by

ρ
RQM
n (x) =

√
α

π

1
2nn!

[Hn(
√

αx)]2e−αx2
, (5)

where Hn(x) are the Hermite polynomials, n is a non-negative
integer, and α ≡ mω

h̄ , where m is the mass of the particle or
antiparticle, ω the frequency of the oscillator. The energy
spectrum is given by [29],

E2
n = m2c4 +2(n+

1
2
)mc2h̄ω, (6)

where we only consider En > 0 solutions. To calculate the
LSA (1), as we stated in Section ??, we transform (5) to
Fourier space and evaluate the asymptotic limit n ≫ 1 of the
Laguerre polynomials found in the literature [30], after which
we transform back to position space, to recover

ρ
RQM
n (x)∼ 1

π

1√
κ2

n − x2
(7)

+2πκn

∞

∑
j=1

(− π h̄2

32S2
n
) ji j(x,κn),

where

κn ≡

√
2h̄(n+ 1

2 )

mω
=

√
E2

n −m2c4

m2ω2c2 ,

Sn = πmωκ
2
n ,

(8)

and i j(x,κn) is the j-th dimensionless integral, previously
found in [1] in the non-relativistic version of this problem.
We provide a close expression for it,

ik(x, y) =
∫

∞

−∞

dα eiα x
y

∫
α

0
dβ1 F(α, β1) . . .

×
∫

α

0
dβk F(βk−1, βk)J0(βk) (9)

where

F(α, β )≡ β
3[J0(α)Y0(β )− J0(β )Y0(α)]. (10)

Notice that the exact quantum mechanical and the asymptotic
probability densities, in (5) and (7) respectively, are related
through (1) before taking the classical energy regime in (2).

Following the procedure outlined in Section 2.1, we take the
classical energy limit (2) to fix n and deduce the classical
behavior of the system; which in the present case amounts to
En → mc2 + 1

2 mω2x2
0, where x0 is the amplitude of the oscil-

lator. In this limit with ωx0 ≪ c, which means κn → x0 in (7).
The resulting limit coincides with the non-relativistic version
of the system found by [1].
Eq. (7) shows that the leading order result of the probability
distribution is h̄-independent, and it corresponds to the clas-
sical distribution of a single particle in a harmonic oscillator
potential, while the higher order terms can be interpreted as
quantum corrections.

3.2 Klein-Gordon particle in a box
Consider a KG stationary state in an infinite square well of
length 0 ≤ x ≤ L. The PD is almost the same as the one that
would be found from the Schrödinger equation [31]

ρ
RQM
n (x) =

2
L

sin2(
nπx

L
). (11)

The difference from the non-relativistic case is the energy
spectrum, which is given by

E2
n = m2c4 + c2h̄2 n2π2

L2 . (12)

We computed the LSA of (11) as in the previous example,
resulting in

ρ
RQM
n (x)∼ 1

L
[H(L− x)−H(−x)], (13)

where H(x) is the Heaviside step function. We observe that
the KG PD is the same as the one in the non-relativistic version
of this system [1]. There are no quantum correction terms
appearing on the distribution, and the energies do not need to
be fixed to a classical value. This result will be contrasted with
the corresponding Dirac particle problem, where quantum
corrections are manifest.

3.3 Dirac oscillator
The Dirac oscillator was originally proposed by Moshinsky
and Szczepaniak [32], which is an exactly solvable model of
Dirac fermions subject to a Hamiltonian whose square is the
same as the Hamiltonian for KG particles with a harmonic
oscillator interaction, plus a spin-orbit interaction that does
not appear in the 1+1-dimensional case. The eigenfunctions
in the 1-dimensional case can be found in [33]. For either
particles or antiparticles, the PD for single eigenstates (either
spin up or down) has the form

ρ
RQM
n (x) = e−αx2 |an|2H2

n (
√

αx)

+e−αx2 |a′n|2H2
n−1(

√
αx),

(14)
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where α ≡ mω

h̄ , E2
n = m2c4 +2nh̄ωmc2 and

|an|2 =
√

α(En +mc2)

2n+1n!En
√

π
, (15)

|a′n|2 =
√

α(En −mc2)

2n(n−1)!En
√

π
. (16)

One can evaluate the LSA of Eq. (14),

ρ
RQM
n (x)∼ (17)

1
π
| a′n
An−1

|2 1√
κ2

n−1 − x2
+

1
π
| an

An
|2 1√

κ2
n − x2

+ | a′n
An−1

|2 1
2πκn−1

∞

∑
j=1

(− π h̄2

32S2
n−1

) ji j(x,κn−1)

+ | an

An
|2 1

2πκn

∞

∑
j=1

(− π h̄2

32S2
n
) ji j(x,κn) ,

where |An|2 =
√

α

π

1
2nn! , while κn and Sn are shown in (8).

There is a particular feature of the Moshinsky model for the
Dirac oscillator that we need to consider before taking the
non-relativistic limit. The Moshinsky model does not repro-
duce the non-relativistic energy values that would be found in
quantum harmonic oscillator from the Schrödinger equation,
because of how the harmonic term is added in the Hamilto-
nian [32], such that in the non-relativistic limit, the energy
spectrum contains a factor nh̄ω instead of (n+ 1

2 )h̄ω [33].
This means that the solutions in this model have n half integer.
In order to consider only integer quantum numbers, we can
work with a shifted variable N = n± 1

2 . In this way the non-
relativistic energy spectrum depends on an integer quantum
number, as in the Schrödinger case. This modification is only
a matter of convenience.
We fix the energy EN → mc2 + 1

2 mω2x2
0 to make connection

with the classical limit, where we have |an|2 → |An|2, a′n → 0
and κn → x0. In that case, (17) becomes (7) with κn → x0,
which agrees with the non-relativistic version of the problem
studied by [1]. The result is independent on whether the state
is in a state with spin up or down, or a linear combination of
both.
We conclude this part of the section with the interpretation
of our results so far. The classical limit for the probability
distribution of Dirac fermions is well-known in the case of
condensates, i.e. transition from Fermi-Dirac distribution to
Maxwell-Boltzmann in case of high temperatures and low
particle density. However, our notion of the classical limit at
the level of probability distribution is done for single particle
states at high enough energies to reach the classical regime in
(2). Therefore, fine-grained details of the system such as its
intrinsic spin are coarse-grained away in the LSA approach to
the correspondence principle, where the degree of the coarse-
graining will be reflected in the quantum correction series
remaining from (17).

3.4 Dirac particle in a box
Let us consider the Dirac particle wave function, ψ

(+)
k (x),

for a 1-dimensional infinite square Lorentz scalar potential
found explicitly in [34], where there is no Klein paradox
1. The corresponding antiparticle solution, ψ

(−)
k (x), can be

calculated as ψ
(−)
k (x) = γ5ψ

(+)
−k (−x), where γ5 = iγ0γ1γ2γ3.

The PD for either particle or antiparticle, with spin up or down,
has form

ρ
RQM
k (x) =|Bk|2 cos2(kx− δk

2
) (18)

+ |Bk|2Φ
2
k sin2(kx− δk

2
),

for the interval 0 ≤ x ≤ L, and the PD vanishes outside this
interval. We have also introduced the following definitions

|Bk|2 ≡ 4k
(Φ2

k−1)(2kL−sin(kL+δk)−sinδk)+4k L
,

k ≡ 1
h̄

√
E2

k
c2 −m2c2, Φk ≡

h̄kc
Ek +mc2 ,

δk ≡ tan−1(
2Φk

Φ2
k −1

). (19)

The energy of the particle Ek can be found from the condition
tan(kL) = − h̄k

mc2 [34]. We evaluate the asymptotic limit, i.e.
kL ≫ 1, to find the LSA of (18) as

ρ
RQM
k (x)∼

1+Φ2
k

2
|Bk|2[H(L− x)−H(−x)]. (20)

It should be noticed that the terms Φ2
k and |Bk|2 of the PD

appear as fermionic quantum parameters, given that Eq. (13)
for the Klein Gordon system does not contain similar factors.
The non-relativistic limit can be stated in the condition h̄k ≪
mc, which implies that Φk → 0, |Bk|2 → 2/L, and the PD
becomes (13). The result is similar to the corresponding KG
solution in the sense that the non-relativistic LSA PD does
not include a series of quantum corrections, because there is
no dependence on h̄.
As a remark, there is a similar type of Dirac particle in a box
model in [35] where the potential is the time component of a
vector, and the considerations of the Klein paradox have been
studied in detail. We expect that our procedure in that case
would probably lead to similar results as what we found here.

4. Conclusions
To summarize, we reformulated the LSA approach to the cor-
respondence principle for the KG and Dirac equations. To the
best of our knowledge, this approach had only been studied

1In the Klein paradox, a strong vector potential leads to a non-zero trans-
mission to a classically forbidden region, which is related to particle/anti-
particle pair production. To avoid it, [34] considered a scalar potential defined
in a one-dimensional box, and since it is invariant under Lorentz transforma-
tions, this issue doesn’t arise in such case.
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so far in non-relativistic quantum systems. In both cases, we
obtained classical PD with quantum corrections for the infinite
well and the quantum harmonic oscillator potentials.
For the solutions of the KG equation, the PD coincides with
the ones derived from the Schrödinger equation for the cor-
responding potential term [1], although the energy spectrum
is modified. In contrast, both the PD and energy spectrum of
the Dirac equation solutions differ from those studied in [1].
Moreover, we interpreted the macroscopic limit of single par-
ticle Dirac fermions from the point of view of its PD at the
high energy regime; in a similar way to what occurs for con-
densates transitioning from a Fermi-Dirac distribution to a
Maxwell-Boltzmann distribution.
For both the KG and the Dirac oscillators, we found that the
quantum corrections to the classical PD were expressed as
power series in the h̄ constant, which we verified to be negli-
gible respect to the classical contributions. The LSA PD for a
particle in a box potential showed a different structure for the
quantum corrections. In the KG case showed no corrections,
while the Dirac fermion solution had an amplitude modulation
that depends on h̄ and c constants.
Let us discuss possible future research directions. Motivated
by the recent study in [4] where the LTA procedure is ap-
plied to propose tests of the equivalence principle, it might be
interesting to study other experimentally accessible systems
involving the classical transition with (special) relativistic
corrections. A first step in this direction is to apply our pro-
posal to the relativistic hydrogen atom problem, which we are
currently exploring. On related direction, there are instances
when electrons might travel at high speeds but their mea-
sured speed is much lower due to run-and-tumble stochastic
effects [36] and they can be described with first quantization,
which might provide a testing ground of the LSA procedure
for relativistic particles; for instance, to describe the trajectory
of the electron’s trajectory in single and double slit experi-
ments as the macroscopic limit is approached.
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