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Spectra of heavy quarkonia in a magnetized-hot
medium in the framework of fractional non-relativistic
quark model
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Abstract
In the fractional nonrelativistic potential model, the decomposition of heavy quarkonium in a hot magnetized
medium is investigated. The analytical solution of the fractional radial Schrödinger equation for the hot-magnetized
interaction potential is displayed by using the conformable fractional Nikiforov-Uvarov method. Analytical
expressions for the energy eigenvalues and the radial wave function are obtained for arbitrary quantum numbers.
Next, we study the charmonium and bottmonium binding energies for different values of the magnetic field in
the thermal medium. The effect of the fractional parameter on the decomposition temperature is also analyzed
for charmonium and bottomonium in the presence of hot magnetized media. We conclude that the dissociation
of heavy quarkonium in the fractional nonrelativistic potential model is faster than the classical nonrelativistic
potential model.

Keywords
Strong magnetic field, Heavy qurakonium, Fractional Schrödinger equation.

1Department of Mathematics and Computer Sciences, Faculty of Science, Menoufia University, Menoufia, Egypt
2Department of Theoretical Physics, Baku State University, Baku, Azerbaijan
3Institute for Physical Problems, Baku State University, Baku, Azerbaijan
4Higher Institute of Engineering and Technology, Menoufia, Egypt
*Corresponding author: dr.abushady@gmail.com

1. Introduction

Quantum chromodynamics theory calculates that at suffi-
ciently high temperatures and densities, the gluons and quarks
confined inside the hadrons are freed into a medium of glu-
ons and quarks. Recent works have focused on producing
and identifying this new state of matter theoretically [1–7]
and experimentally in ultra-relativistic heavy-ion collisions
(URHIC) with the increasing center of mass energies in the
BNL AGS, CERN SPS, BNL RHIC, and CERN LHC exper-
iments. However, for the noncentral events in URHICs, the
powerful magnetic field is generated at the collisions’ initial
stages due to very high relative velocities of the spectator
quarks concerning the fireball [8, 9].
There are numerous research studies to investigate baryon
properties to descript the ground states and excitation spec-
tra in the non-relativistic models such as [10–14]. The re-
search studies are extended to study the quarkonium in the
magnetic field, in which the three-dimensional Schrödinger
equation (SE) numerically solved with the Cornell and the
QCD Coulomb potentials [15]. In Ref. [16], the properties
of quarkonium states have been studied in the presence of
strong magnetic field. Two methods were used to calculate
the critical value of the magnetic field for both charmonium
and bottomonium states. Bagchi et al. inferred that in the

presence of a magnetic field, the bound states J/ψ and Y(1S)
become more firmly bound than in a pure thermal QGP ow-
ing to the alteration of the heavy quark potential [17]. In
Ref. [18], the authors studied the effect of a strong external
magnetic field on quarkonium states cc̄ and bb̄ in the frame-
work of a non-relativistic quark model. Furthermore, the
authors included in their calculations anisotropies through
static quark-antiquark potential in agreement with recent lat-
tice studies. In Ref. [19], the dissociation of heavy quarks in
hot QCD plasma in the presence of a strong magnetic field is
studied by using Nikiforov-Uvarov (NU) method.
Fractional calculus has drawn interest in a variety of physics
fields [20–25]. The analytical-exact iteration method is ex-
tended to the conformable fractional form to obtain the ana-
lytical solutions of the N-dimensional radial SE [20] with its
applications on heavy mesons. The generalized NU method
is extended to the fractional domain of high-energy physics
by using the radial SE [21]. The fractional concept of NU
was used to solve fractional radial SE for different interac-
tion potentials such as the oscillator potential, Woods-Saxon
potential, and Hulthen potential [22]. Herrmann applied a
derivative Caputo fractional Schrödinger wave equation using
quantitative of the classical nonrelativistic Hamiltonian [23].
The conformable fractional form is extended to a finite tem-
perature medium to study the binding energy and dissociation
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Figure 1. In left panel, the potential interaction is plotted as a
function of (r) for the different parameters α .

of temperature [24].
The aim of the present work. It will show that the fractional
model plays an essential role in studying the binding en-
ergy and the dissociation temperature of quarkonia in the
hot-magnetized medium, which are not considered in the pre-
vious works.
This paper is organized as follows: In Sec. 2, we provide the
theoretical method. In Sec.3, the method is given in detail
to solve the N-dimensional SE. In Sec. 4, we discuss the
obtained results. The conclusion is given in Sec. 5.

2. Theoretical model
Fractional derivative plays an important role in the applied
science. Important mathematical tools for working with frac-
tional models and solving fractional differential equations,
such as a generalization of Stirling numbers in the framework
of fractional calculus and a set of efficient numerical methods,
and the analytic-exact methods that employed well known
definitions such as Riemann-Liouville, Riesz and Caputo, and
the comfortable fractional derivative, in which gave an elegant
formula that allows applying boundary and initial conditions

Figure 2. Interaction potential is plotted as a function of
temperature ratio and fractional parameter.

Figure 3. Interaction potential is plotted as a function of
magnetic field and fractional parameter.

as in Ref. [25].

Dα
r (r) =

∫ r

r0

Ka(r− s) f (n)(s)d(s),r > r0 (1)

with

Ka(r− s) =
(r− s)n−α−1

Γ(n−α)
(2)

where, f (n) is the n the derivative of the function f (r), and
Ka(r− s) is the kernel, which is fixed for a given real number
α . The kernel Ka(r − s) has singularity at r = s. Caputo
and Fabrizio [26] suggested a new formula of the fractional
derivative with smooth exponential kernel of the form to avoid

Figure 4. The binding energy is plotted as a function of
reduced mass at T =0 and α = 1.
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the difficulties that found in Eq. (1)

Dα
r =

M(a)
1−α

∫ r

r0

e(
α(t−s)
1−α

)ẏ(s)d(s). (3)

where M(a) is a normalization function with M(0) = M(1) =
1.
A new formula of fractional derivative called conformable
fractional derivative (CFD) is proposed by Khalil et al. [27].

Dα
t f (r)ε→0 lim

f (r− εr1−α)− f (r)
ε

(4)

f (0)ε→0 = lim f (r) (5)

where,

Dα [ fnl(r)] = r1−α f̀nl(r) (6)

Dα [Dα f (r)] = (1−α)r1−2α f̀nl(r)+ r2−2α ´́fnl(r) (7)

with 0 < α ≤ 1. This a new definition is simple and provides
a natural extension of differentiation with integer order n ∈ z
to fractional order α ∈ C. Moreover, the CFD operator is
linear and satisfies the interesting properties that traditional
fractional derivatives do not, such as the formula of the deriva-
tive of the product or quotient of two functions and the chain
rule [28].

3. Real part of the potential in a magnetic
field

In Ref. [29], the medium-modification to the vacuum potential
in the presence of magnetic field by correcting both its short
and long-distance part with a dielectric function ε(q) as

V (r,T,B) =
∫ d3q

(2π)
3
2
(eik·r −1)

V (q)
ε(q)

(8)

where the r-independent term has subtracted to renormalize
the heavy quark free energy, which is the perturbation free
energy of quarkonium at infinite separation. The Fourier trans-
form, V (q) of the perturbative part of the Cornell potential
(V (r) = −4αs/3r) is given (V (q) = −4/3(2/π)1/2(αs/q2))
and the dielectric permittivity, ε(q) embodies the effects of
confined medium in the presence of magnetic field. ε(q) is
defined by the static limit of “00”-component of resummed
gluon propagator from the linear response theory

1
ε(q)

= lim
q0→0

q2D00(q0,q) (9)

The real parts of the nonperturbative (NP) term by using the
dimension two gluon condensate are given as follows

ReD00
NP(q0 = 0,q) =−

m2
G

(q2 +M2
D)

2 (10)

where m2
G is a dimensional constant, which can be related to

the string tension through the relation σ = αm2
G/2. Thus, the

real part of the “00”-component of the resummed gluon prop-
agator that consists of both the HTL and the NP contributions
can be written as follows

ReD00
NP(q0 = 0,q) =− 1

q2M2
D
−

m2
G

(q2 +M2
D)

2 (11)

Now substituting Eq. (11) into Eq. (9) gives the real part of
the dielectric permittivity, respectively

1
Reε(q)

=
q2

q2 +M2
D
+

q2m2
G

(q2 +M2
D)

2 (12)

The real-part of the dielectric permittivity in Eq. (12) is sub-
stituted into the definition of potential in Eq. (8) to obtain the
real-part of QQ̄ potential in the presence of magnetic field.
This potential depends on the radial distance. The effect of
magnetic field will be appearing through the Debye mass. In
addition, the anisotropy in the present potential with respect
to the direction of magnetic field is not breaks the transla-
tional invariance of space, thus, we can write the potential
interactions as follows (see Ref. [16], for detail).

V (r) =−4
3

α(
e−mDr

r
+mD)+

4
3

σ

mD
(1− e−mDr) (13)

where, the string tension σ= 0.18 GeV2 and

α =
12π

11Nc ln( µ2
0+M2

B
Λ2

V
)

(14)

where, Nc is the number of colors, MB(∼1 GeV) is an infrared
mass which is interpreted as the ground state mass of the
two gluons bound to by the basic string, µ0 =1.1 (GeV),
ΛV =0.385 (GeV) as in Refs. [30–33] and the Debye mass
[33] becomes as:

m2
D = ǵ2T 2+

g2

4π2T ∑
f
|q f B|

∫
∞

0

e
β

√
p2

z+m2
f

(1+ e
β

√
p2

z+m2
f )2

d pz (15)

where, the first term is the contribution from the gluon loops
and dependent on temperature and the magnetic field doesn’t
affect it. The second term is this term strongly depends on the
eB and is not much sensitive to the T of the medium. In the
first term, where ǵ is the running strong coupling and is given
by

ǵ = 4πάs(T ) (16)

where, άs(T ) is the usual temperature-dependent running cou-
pling. It is given by

άs(T ) =
2π

(11− 2
3 N f ) ln( Λ

ΛQCD
)

(17)
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Figure 5. a) The Binding energy of charmonium as a
function of the T in the thermal medium in the presence of
the eB for the different magnetic field values at N f =2 and
α=1. b) The Binding energy of charmonium as a function of
the T in the thermal medium in the presence of the eB for the
different magnetic field values at N f =2 and α=0.5.

where, N f is the number of flavors, Λ is the renormalization
scale is taken as 2πT and ΛQCD ∼0.2 (GeV) as in Ref. [34].
The second term is g=3.3, q f is the quark charge flavor f = u
and d, B is the magnetic field, β is the inverse of temperature
and quark mass massive m f =0.307 (GeV) as in Ref. [30].
In Eq. (13), e−mDr is extend if mDr ≪ 1 is considered in
Ref. [35]. We rewrite Eq. (13) as follows

V (r) = a1r2 +a2r+
a3

r
(18)

where,

a1 =−2
3

σmD (19)

a2 =−4
3

αm2
D +

4
3

σ (20)

a3 =−4
3

α (21)

In Eq. (18), the first term is a harmonic potential that dom-
inates the confinement force and the second term is a linear

Figure 6. a) The binding energy of charmonium as a function
of the magnetic field in the thermal medium for different
values of the temperature at N f =2 and α=1. b) The binding
energy of charmonium as a function of the magnetic field in
the thermal medium for different values of the temperature at
N f =2 and α=0.5.

potential that also dominates the confinement force at long dis-
tances. A Coulombic potential that dominates the Coulombic
force at small distances as in the third term. The second and
third terms called Cornell potential [36, 37]. To find energy
eigenvalue and wave function, we used radial Schrödinger
equation as in Refs. [16, 29, 30]. As in Ref. [37], in the N-
dimensional space, the for two particles Schrödinger equation
which interact with symmetrical potentials takes form

[
d2

dr2 +
N −1

r
d
dr

− l(l +N −2)
r2 +2µ(E−V (r))]Ψ(r) = 0

(22)

where l, N and µ are the angular momentum quantum number,
the dimensional number, and the reduced mass of the system.
The following radial SE is obtained by applying the wave
function Ψ(r) = r

1−N
2 R(r)

[
d2

dr2 −2µ(E −V (r)−
(l + N−2

2 )2 − 1
4

2µr2 )R(r)] = 0 (23)

to put Eq. (23) in the fractional form. Firstly, we put it in the
dimensionless form as follows

[
d2

dz2 −2µ
1(E1 −V (z)−

(l + N−2
2 )2 − 1

4
2µz2 )R(z)] = 0 (24)
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Figure 7. a) The Binding energy of bottomonium as a
function of the temperature in the thermal medium in the
presence of magnetic field for the different magnetic field
values at N f =2 and α=1. b) The binding energy of
bottomonium (in GeV) as a function of the temperature in the
thermal medium in the presence of magnetic field for the
different magnetic field values at N f =2 and α=0.5.

where,

V (z) = a1
1z2 +a1

2z+
Aa3

z
(25)

where, a1
1 = a1/A3, a1

2 = a2/A2, µ1 = µ/A, E1 =E/A, z= rA,
since A is a dimensional unit equals 1 GeV. Therefore, we can
write Eq.. (24) in the fractional form as follows;

Dα [Dα
Ψ(zα)]+[2µ

1(E1−V (zα))−
(l + N−2

2 )2 − 1
4

2µ1z2α
]Ψ(zα)= 0

(26)

By applying NU method (For detail, see Refs. [21, 24] ). We
obtain the spectrum of energy in dimensionless form

E1 =
6a1

1
δ 12 +

3a1
2

δ 1 −

2µ1(
8a1

1
δ 3 +

3a1
2

δ 2 −a3)
2

[(2n+1)±
√

w+8µ1(
3a1

1
δ 14 +

a1
2

δ 13 +
(l+N−2

2 )2− 1
4

2µ1 )]2
(27)

Figure 8. a) The binding energy of bottomonium (in GeV) as
a function of the magnetic field in the thermal medium for
different values of the temperature at N f =2 and α=1. b) The
binding energy of bottomonium (in GeV) as a function of the
magnetic field in the thermal medium for different values of
the temperature at N f =2 and α=0.5.

then, we rewrite Eq. (27) in the dimensional form as follows

En,l =
6a1

δ 2 +
3a2

δ
−

2µ( 8a1
δ 3 + 3a2

δ 2 −a3)
2

[(2n+1)±
√

w+8µ( 3a1
δ 4 + a2

δ 3 +
(l+N−2

2 )2− 1
4

2µ
)]2

(28)

where,

w= (2nα)2−4(n(3α−α
2)+

1
2

n(n−1)α(α+1)+α−1)

(29)

The radial of wave function takes the following form:

Rnl(rα) =Cnlr
−(

B1√
2A1

−1)α
e
√

2A1rα

(−r2α D)n

r
(−2n+ B1√

2A1
)α

e−2
√

2A1r2α

(30)

CnL is the normalization constant, also,

A1 =−µ(E − 6a1

δ 2 − 3a2

δ
) (31)
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Table 1. Dissociation temperature (TD) for charmonium.

Sate eB=5m2
π eB=25m2

π eB=50m2
π

α = 1 1.575 Tc 1.52Tc 1.283Tc
α = 0.5 1.118Tc 1.11Tc 1.014Tc

B1 = µ(
8a1

δ 3 +
3a2

δ 2 −a3) (32)

C1 = µ(
3a1

δ 4 +
a2

δ 3 +
(l + N−2

2 )2 − 1
4

2µ
) (33)

4. Results and discussion
In Fig. (1), in the left panel, we have plotted the real part
of the potential as a function of r for different values of frac-
tional parameter α=0.6, α=0.8, and α=1 at fixed eB=10m2

π

and T = Tc. By increasing fractional parameter, we note the
real-part is more screened. Beside, we note that the fractional
parameter has an effect on the linear term of potential. In
addition, a further increase temperature at T = 2Tc that the
potential becomes more attractive as in the right panel. As
a result, the real part of the potential was found to be more
screened by increasing value of both T and α .
In Fig. (2), we have plotted the real part of potential as a func-
tion of the temperature ratio and the fractional parameter for
the fixed value of r=0.2 fm. By taking the temperature range
T =0.17-0.3 GeV, we notice that potential is more attractive
with increasing fractional parameter than temperature.
In Fig. (3), we see that the potential interaction is more
screened by increasing magnetic field and fractional parame-
ter. Thus, we deduce that the fractional parameter play a role
in the hot medium at fixed magnetic field and the magnetized
medium at fixed temperature.

4.1 Binding energy
By solving the radial Schrödinger equation, we obtain the en-
ergy eigen value En,l of cc̄ and bb̄ . Spectarl function method
defines binding energy of quarkonium Ebin = 2mq +V (r →
∞)–En,l with M being resonance mass. In our case, the energy

Table 2. Dissociation temperature (TD) for bottomonium.

Sate eB=5m2
π eB=25m2

π eB=50m2
π

α = 1 1.94 Tc 1.9Tc 1.66Tc
α = 0.5 1.92Tc 1.89Tc 1.65Tc

Table 3. Dissociation of charmonium in the magnetic field.

cc̄ T = 2.5Tc T = 2.495Tc T = 2.490Tc

α = 1 eB=22.5m2
π eB=23m2

π eB=24m2
π

α = 0.5 eB=20m2
π eB=21m2

π eB=22m2
π

eigenvalues are known as ionization potential or binding en-
ergy as in Refs. [38, 39]. In Fig. (4), we note that the binding
energy decreases with increasing the reduced mass and this
finding is agreement with Ref. [?].
We see the change of the binding energy under the effect of
fractional parameter in the hot-magnetized medium. Charmo-
nium binding energy is plotted as a function of T for three
cases eB=5m2

π , eB=25m2
π and eB=50m2

π in Fig. (5). In the
left panel, we note that the binding energy of charmonium
decreases with increasing temperature also the binding energy
shifts to lower values by increasing magnetic field at fixed
α=1. By decreasing fractional parameter at of α=0.5, we note
that the binding energy faster than the dissociation at α=1.
Therefore, the dissociation of temperature will be affected
with considering fractional parameter.
Similarly, In Fig. (6), we have plotted the binding energy of
charmonium at temperature T =2.5Tc, T =2.495Tc, and T =2.490Tc
as a function of the magnetic field. We find that binding en-
ergy decreases when the magnetic field increases. Also, the
binding energy shifts to slightly lower values by increasing
temperature of medium. Thus, the binding temperature tends
to zero when temperature increases. By decreasing fractional
parameter from α=1 to α=0.5, we note the binding energy is
faster to tends to zero.
In Fig. (7), Bottmonium binding energy is plotted as a func-
tion of T for three cases eB=5m2

π , eB=25m2
π and eB=50m2

π .
By increasing temperature, we notice that the binding energy
of 1S bottomonium decreases. In the left panel, we took N f =2
and α=1. Besides, the binding energy decreases by increas-
ing magnetic field. In right panel, the figure shows that the
binding energy tends to zero faster the curves in the left panel
when we took α=0.5 .
In Fig. (8), we have plotted the binding energy of bottomo-
nium at temperature T =1.98Tc, T =1.99Tc, and T =2Tc as a
function of the eB. Note that BE decreases with increasing
temperature and magnetic field. In the right panel, the binding
tends to zero faster the left panel.

4.2 Dissociation temperature with fractional param-
eter

In the present work, we obtain the dissociation temperature
at Eb ≃ 0, an approximation that provides good accuracy in
calculating the dissociation temperature. In the current analy-
sis, we also study influence of the fractional parameter on the
dissociation temperature in the presence of hot-magnetized
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medium for charmonium and bottomonium, using the calcu-
lated binding energies.
Table (1) shows the effect fractional parameter on the disso-
ciation of temperature for different values of magnetic field.
We note that the dissociation of temperature decreases by
increasing magnetic field at α = 1. By taking α = 0.5, we
note that the dissociation of temperature takes lower values
than the values at α = 1. Similarly, we note that dissociation
of bottomonum decreases by decreasing fractional parameter.
Besides, the dissociation of bottomonium is lower than the
dissociation of charmonium as in Table (2).

4.3 Dissociation of heavy quarkonia in a magnetic
field

We calculate the dissociation of charmonium and bottomo-
nium at fixed temperature and fractional parameter when
Eb ≃ 0.
In Table (3), By taking thermal medium at T = 2.5Tc, we
note that the binding energy of charmonium dissociates as
magnetic field increases eB = 22.5m2

π . By decreasing the tem-
perature of the medium up to T = 2.49Tc, we note that the
binding energy dissociated at eB = 24m2

π . By taking α = 0.5,
we note that the dissociation of temperature takes lower val-
ues than the values at α = 1. A similar situation is noted for
the dissociation of bottomonium however the dissociation of
bottomonium is larger than charmonium as in Table (4). This
conclusion is agreed with works such that [18, 19, 29, 30].

5. Conclusion
The SE is analytically solved by conformable fractional of
the NU method, where the real fractional potential includes
temperature T and eB. The eigenvalues of energy and corre-
sponding wave functions are obtained, in which they depend
on the fractional parameter 0 < α ≤ 1. The study shows
the effect of fractional parameter on the effective interaction
potential, the binding energy, dissociation of qurakonium in
which the interaction potential is screened by increasing the
fractional parameter. The binding energy and the dissociation
of temperature in the fractional quark model are lower than the
classical quark model at α=1. We have also observed that the
magnetic field is largely affected by large-distance interaction,
as a result of which the real part of potential is more attractive.
The sound representation of the fraction solution provides an
efficient and elegant way to solve the specific problems on
the physics of interest. Consequently, the studying of ana-
lytical solution of the modified fractional radial Schrödinger

Table 4. Dissociation of bottomonium in the magnetic field.

bb̄ T = 2Tc T = 1.99Tc T = 1.98Tc

α = 1 eB=41m2
π eB=42m2

π eB=43m2
π

α = 0.5 eB=35m2
π eB=37m2

π eB=38m2
π

equation for the hot-magnetized interaction potential within
the framework conformable fractional the Nikiforov-Uvarov
method could provide valuable information on the quantum
mechanical dynamics at nuclear, atomic and molecule physics
and opens new window.
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