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Magnetized electron-positron plasmas, a new mode,
stability conditions
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Abstract
In this paper, a set of two-fluids equations based on the quantum magnetic hydrodynamic model (QMHD) for
electron-positron plasma were considered and the role of spin in different spin-spin, and spin-field interactions
were briefly discussed. Furthermore, effects of density and heterogeneity in the equations were considered. For
each of the two electron and positron fluids, the complete theory of spin-1/2 electron-positron quantum plasmas
when electrons and positrons move with velocities much smaller than the speed of light was discussed. By
considering the two regimes of non-spin and spin plasma separately, new dispersion relations was extracted and
analyzed. We also examined the limits of weak and strong magnetic fields and the effect of spin polarization on
ripple waves in plasma medium. Results show that the spin-current evolution in a magnetized plasma creates a
new dispersion mode. The fast mode generates in the direction perpendicular to the direction of propagation of
the waves. The speed of this mode is equal to the speed of the mode in the parallel direction plus an additional
term that depends on the characteristics of the system. For high-density plasma, this correction is negligible, but
for very low densities and weak magnetic fields, this effect is significant.
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1. Introduction

Magneto-hydrodynamics (MHD) can be considered a suitable
formalism for studying magnetized plasma at scales larger
than the electronic length λe = c/ωe where ωe is the electronic
plasma frequency [1, 2]. Quantum works become highlighted
when the thermal de Broglie wavelength of the plasma parti-
cles λB(= h̄/

√
kBT m) is about the average particle distance

L(= n−1/3
0 ) i.e.,λB ≳ L. A method for considering the quan-

tum effect is to correct the classical equations. It is natural
to see differences between the classical and quantum models,
for example, using the quantum hydrodynamic model to see
new oscillating modes in a magnetic quantum plasma [3–5].
We discuss the complete theory of spin-1/2 electron-positron
quantum plasmas when electrons and positrons move with
velocities much smaller than the speed of light and consider
the annihilation interaction’s contribution in the quantum hy-
drodynamic equations and in the spectrum of waves in mag-
netized electron-positron plasmas.
This work organizes as follows. Section 2 uses the two-fluid
plasma equations and their oscillation modes concerning quan-
tum effects such as Fermi pressure, Bohm pressure, and spin
interactions [6, 7]. We also get a new dispersion mode here.
Section 3 investigates the instability of two quantum fluids
in magnetized plasma. Unlike the classical case, which has

instability for large wavelengths, we can show that there is
a minimum cut-off wavelength for instability. Finally, some
conclusions are drawn in Section 4.

2. QMHD equations and the effects of
electron spin

We first consider a plasma consisting of two fermionic fluids
below the Fermi temperature and consider electron-positron
as two different species and obtain our equations for the evo-
lution of the spin current. We write the QMHD quantum
equations for the two-fluid plasma of electron-positron lo-
cated in the external magnetic field B.

2.1 Two-fluid plasma equations
We use the method of many-particle quantum hydrodynamics
for the two-fluid plasma equations. The main idea of this
method is the representation of the many-particle Pauli equa-
tion in terms of collective observable variables suitable for
the description of quantum plasmas. Let us start with the
many-particle Pauli equation,

ih̄∂tψ(r1, ...,rN , t) = Hψ(r1, ...,rN , t) (1)

where ψ(r1, ...,rN , t) is the many-particle wave function, ri
is the coordinates of particle with number “i” and N is the
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total number of particles in the system. Explicit form of the
Hamiltonian allows to derive a set of quantum hydrodynamic
(QHD) equations. Hamiltonian for electron-positron plasmas
of particles moving with velocities v is [8, 9],

H =
N

∑
i=1

[
1

2m
(h̄∇i ±

e
c

Ai,ext)
2 ∓ eΦ

ext
i ± eh̄

2m
σ ·Bext

i ]−

1
2

N

∑
i, j ̸=i

[
πe2h̄2

m2c2 σ
e
i ·σ

p
j ]+

N

∑
i=1

e2h̄
4m2c2 σ · (E×Ai,ext)−

Ne

∑
i=1

N

∑
j=Ne+1

3πe2h̄2

2m2c2 σ
e
i ·σ

p
j δ (ri − r j) (2)

where Ne, Np are numbers of electrons and positrons corre-
spondingly, N = Ne +Np, m = me = mp, Φe

i xt is the scalar
potential of an external electromagnetic, A(i,ext) is the vector
potential of an external electromagnetic, and σi is the Pauli
matrixes. In Eq. (2), the first term describes the kinetic en-
ergy; the second term is the potential energy of charges in the
external electric field. The third term is the potential energy of
magnetic moments in the external magnetic field. Other terms
describe interparticle interactions: the spin-spin, spin-external
electromagnetic fields, and annihilation interactions, corre-
spondingly [10–12]. We can write the continuity equation for
electrons,

∂tne(r, t)+∇ · (neue) = 0 (3)

and for positron,

∂tnp(r, t)+∇ · (npup) = 0 (4)

Consider a neutral degenerate plasma and assume we have a
two-fluid electron-positron system with number densities nep
and fluid velocities uep. The scalar pressure of each fluid Pep
is

Pep ≈
2
5

nepEF = (3π
2)

2
3

h̄2

5m
n

5
3
ep (5)

where EF is the Fermi energy. The basic set of equations that
we use for the quantum hydrodynamic electron model is

mne(∂t +ue ·∇)ue +∇pe −
neh̄2

2m
∇(

∇2√ne√
ne

) =

−ene(E+ue ×B)+
πe2h̄2

m2c2 ne∇ne +
πe2h̄2

m2c2 np∇ne−

eh̄ne

2mc
(Se ·∇)Be+

h̄2ne

2m
∇(∂µ Se

v∂µ Se
v)+2πneµ

β
e ∇(npµ

β
p )

(6)

dtSe =− e
mc

S×Be (7)

and for positrons is,

mnp(∂t +up ·∇)up +∇pp −
nph̄2

2m
∇(

∇
2√np
√np

) =

enp(E+up ×B)+
πe2h̄2

m2c2 np∇np +
πe2h̄2

m2c2 ne∇np+

h̄2np

2m
∇(∂µ Sp

v ∂µ Sp
v )+2πnpµ

β
p ∇(neµ

β
e ) (8)

and similar to the relation of the evolution in the angular
momentum in the magnetic field B, dtL ∝ L×B, one can
write,

dtSp =+
e

mc
S×Bp (9)

where pep is the partial scalar pressure, and the Bep is the
generalized magnetic field for each species,

Be ≡ B− h̄c
2ene

∇(ne∇,S) (10)

Bp ≡ B+
h̄c

2enp
∇(np∇,S) (11)

In Eq. (6), the second and third terms on the left show the
contribution of pressure to the motion of the particles and
the spinless part of the quantum Bohm potential (When the
Schrodinger equation is separated in the polar system, a po-
tential term of V =−h̄2/2m(∇2r/r) is created known as the
Boehm potential). The first term on the right represents the
Lorentz force; the second term shows the Darwin interac-
tion between electrons (positrons) [11]. The third terms are
also the Darwin interaction between electrons and positrons
(The Darwin interaction term is due to one particle reacting
to the magnetic field generated by the other particle. The
Darwin Lagrangian describes the interaction to order V 2/c2

between two charged particles in a vacuum and is given by
L = L1 +L2, where L1 is the free particle Lagrangian and the
L2 is the interaction Lagrangian, Linter = LCou +LDar, where
the Coulomb interaction LCou is −(q1q2)/r, and the Dar-
win interaction Lagrangian is LDar = (q1q2)/(2c2r)(p1/m1),
(1 + r̂r̂), p2/m2, here q1, q2, m1, m2, v1, and v2 are the
charges, masses, and the velocities of the particles 1 and
2, respectively, also c is the speed of light, r is the dis-
tance between the two particles, and r̂ is the unit vector
in the direction of r. Darwin’s contribution to the parti-
cle motion equation is 1 is dtpDar = (q1q2)/(2m1m2c2r2)
{p1(p2 · r̂)+p2(p1 · r̂)− r̂[p1 · (1̄+3r̂r̂) ·p2}. For fluid case,
we can use alternative p j ≡ n j(h̄/i)∇, and simplify the re-
sult.). Other terms describe; the spin interaction with the non-
uniform magnetic field, spin interaction with non-uniform
spin, and the annihilation interaction (The pair annihilation
is the process that occurs when a subatomic particle collides
with its respective antiparticle to produce other particles, such
as an electron colliding a positron to produce two photons.),
non-uniform spin, and the annihilation interaction correspond-
ingly [12–14]. Now, we convert the two-fluid equations to a
single fluid.
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2.2 Investigation of spin-wave propagation and vi-
bration modes

Let define, ne ≈ np = n, 2ū = ue + up, Sp = −Se ≡ S and
the current density J = e(npup −neue) = en(up −ue). It can
conclude,

ue = ū− e
2n

J (12)

up = ū+
e

2n
J (13)

According to the definition of the mean velocit ū and the total
density n, the continuity equation is obtained by adding Eqs.
(3), (4).

∂tn+∇ · (nū) = 0 (14)

and equations of motion for each species become

n[∂t +(ū− e
2n

J) ·∇](ū− e
2n

J)+
1
m

∇pe−
nh̄2

2m2 ∇(
∇2√n√

n
) =

−en
m
[E+(ū− e

2n
J)×B]+

enh̄
2m2c

(S ·∇)[B− h̄
2en

∇(n∇ ·S)]

+
nh̄2

2m2 ∇(∂µ Sv∂µ Sv)+
2πe2h̄2

m2c2 n∇n+2πnµ
β

∇(nµ
β ) (15)

n[∂t +(ū+
e

2n
J) ·∇](ū+

e
2n

J)+
1
m

∇pp−
nh̄2

2m2 ∇(
∇2√n√

n
) =

en
m
[E+(ū+

e
2n

J)×B]+
enh̄

2m2c
(S ·∇)[B+

h̄
2en

∇(n∇ ·S)]

+
nh̄2

2m2 ∇(∂µ Sv∂µ Sv)+
2πe2h̄2

m2c2 n∇n+2πnµ
β

∇(nµ
β ) (16)

and, for evolution of spin,

dtS =
e

2m
S× [B+

h̄
2en

∇(n∇ ·S)] (17)

Adding Eqs. (15), (16), and considering pe + pp ≈ pF =

[(2(3π2)2/3h̄2)/(5m)]n5/3 ≡ η0n5/3, and using total spin cur-
rents density, we obtain the equation of evolution for ū,

∂t ū =−(ū ·∇)ū− e2

4n2 (J ·∇)J− η0

2m
∇n

2
3 +

e2

2nm
J×B+

eh̄
2m2c

(S ·∇)B+
h̄2

2m2 ∇×∇×S−

h̄2

2m2 ∇(
∇2√n√

n
)+

2πe2h̄2

nm2c2 n∇n (18)

By calculating E of Eq. (15) and then taking the curl on
both sides of the result, all terms resulting from the gradient

become zero. So, the evolution of the magnetic field ∇×E =
−∂tB becomes,

∂tB = ∇× (ū×B)+
m
e

∂t(∇× ū)+
eh̄

8m2 ∇S×∇B (19)

In the first term in the right hand, (ū×B) is Hall term, and the
second term represents a battery effect due to electron inertia.
The first two terms are the classic ones of MHD, the last term
is a spin electromotive force.
Let us consider the equilibrium state where B = Bẑ+ δB,
⟨u⟩= 0, k = k(0,sinϕ,cosϕ), where ϕ is the angle between
wave vector and magnetic field.
For parallel propagation, k∥B, the linear perturbations around
the equilibrium state, k = kẑ, δB = δBxx̂+δByŷ. Using Eqs.
(15-19), we can write,

C4 −iω/k 0 0 −C5 0 0 0
−iω/k −C4 0 C5 0 0 0 0

0 0 ω/k 0 0 0 0 −1
0 0 0 C1 −C3 −C2 cosθ 0
0 0 0 cosθ 0 0 ω/k 0
0 0 0 0 cosθ ω/k 0 0
0 0 0 C3 C1 cosθ C2 sinθ

0 0 −η 0 C6 0 0 ω/k



×



Sx
Sy
n

δBy
δBx
un
uy
uz


= 0 (20)

where,
C1 ≡ ω

k [1+
mc2k2

8πn1/3e2 ],

C2 ≡ i
√

mc2

8πn1/3e2 ω ,

C3 ≡ i
√

mc2

8πn1/3e2 k cosθ ,

C4 ≡
√

8πn1/3e2

mc2 [1+ h̄cn2/3

2eB0
k2],

C5 ≡
√

8πn1/3e2

mc2 ,

C6 = [1+ k 2π h̄en5/6

cmB0
]sinθ ,

η ≡ π h̄2n5/3

2mB2 (1+4π2k2).

The spin effect appears only in the four elements[
C4 −iω/k

−iω/k −C4

]
and does not appear in the rest of them. The frequency of this
spin mode is equal to ωspin, so,

ωspin =

√
8πn1/3e2

mc2 [1+
h̄cn2/3

2eB0
k2]k (21)
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We considered spin effects for only the spin- magnetic field
coupling, as it is linear in h̄. The other spin interactions are of
the second order in h̄ and have weaker effects.
Use the properties of determinants, we have [15, 16],

det(8×8) = det(6×6)×det
∣∣∣∣ C4 −iω/k
−iω/k −C4

∣∣∣∣= 0 (22)

Solving det(6×6= 0), normal modes without spin can obtain.


ω/k 0 0 0 0 −1

0 C1 −C3 −C2 cosθ 0
0 cosθ 0 0 ω/k 0
0 0 cosθ ω/k 0 0
0 C3 C1 cosθ C2 sinθ

−η 0 C6 0 0 ω/k



×


n

δBy
δBx
un
uy
uz

= 0 (23)

In the Eqs. (23), (uz,n) correspond to the fast mode, but
(uy,δBy,un,δBx) correspond to the Alfven-slow mode. For
parallel propagation (θ = 0), one of the solusions is[

ω/k −1
−η ω/k

]
×
[

n
uz

]
= 0 or,

ω
2 =

h̄2n2/3

8m2

ω2
p

ω2
c
(k2 +4π

2k4) (24)

At very long wavelengths, the value of k is small and ω can be
approximated as ω ≈ (h̄n1/3)/(2

√
2m)(ωp/ωc)k , which does

not show any dispersion. At low wavelengths, the value of k is
high and ω can be approximated as ω ≈ (h̄n1/3)/(

√
2m)(ωp/ωc)πk2.

The others have modes with the characteristic equation,∣∣∣∣∣∣∣∣
C1 −C3 −C2 1
1 0 0 ω/k
0 1 ω/k 0

C3 C1 1 C2

∣∣∣∣∣∣∣∣= 0

where

C1 ≡ ω/k[1+ mc2k2

8πn1/3e2 ],

C2 ≡ i
√

mc2

8πn1/3e2 ω ,

C3 ≡ i
√

mc2

8πn1/3e2 k.

After calculating the determinant and placing the values and
simplification, we get,

ω2

k2 =
4ω4

p

4ω4
p +2c2k2n2/3ω2

p − c4k4n4/3 (25)

where ωpe = (=
√

4πne2

m ) is the plasma frequency. At very
long wavelengths, the value of k is small and can be approxi-
mated as

ω2/k2 ≈ (2ω2
p)/(2ω2

p + c2k2n2/3),

and for very short wavelengths, it can be approximated,

ω2/k2 ≈ (4ω2
p)/(2c2k2n2/3ω2

p − c4k4n4/3).

This relationship indicates that for very short wavelengths,
there is a cut-off frequency.
The answer ω2

+ is always positive, and the system oscillations
are stable. The answer ω2

− can be negative, and system os-
cillations become unstable. For perpendicular propagation,
k ⊥ B, k = kŷ, δB = δByŷ−δBzẑ, θ = π/2, we can write,

C1 ≡ ω

k [1+
mc2k2

8πn1/3e2 ],

C2 ≡ i
√

mc2

8πn1/3e2 ω ,

C3 ≡ 0,

C4 ≡
√

8πn1/3e2

mc2 [1+ h̄cn2/3

2eB0
k2],

C5 =
√

8πn1/3e2

mc2 ,

C6 = [1+ k 2π h̄en5/6

cmB0
].∣∣∣∣∣∣∣∣

ω/k 0 0 −1
0 0 ω/k 0
0 C1 C2 1
−η C6 0 ω/k

∣∣∣∣∣∣∣∣= 0 (26)

after calculating the determinants and placing the values and
simplification, we get,

ω2

k2 [1+
c2k2

2ω2
p
] = c2[1+

h̄ω2
p

2cmω2
c

k

−
3π2ω2

p h̄2

8m2c2ω2
c

k2 −
π2h̄3

ω2
p

4m3c3ω2
c

k3] (27)

ω
2 =

c2k2

(1+ c2k2

2ω2
p
)
[1+

h̄ω2
p

2cmω2
c

k

−
3π2ω2

p h̄2

8m2c2ω2
c

k2 +
π2h̄3

ω2
p

4m3c3ω2
c

k3] (28)

At very long wavelengths, the value of k is small and can
be approximated ω2 ≈ c2(k2 +(h̄ω2

p)/(2cmω2
c )k

3), and for
very short wavelengths, the value of k is high and can be
approximated

ω
2 ≈ c2k2

c2k2

2ω2
p

(
π2h̄3

ω2
p

4m3c3ω2
c

k3)≈
π2h̄3

ω4
p

2m3c3ω2
c

k3

In the absence of spin effects, for parallel propagation, in
the fast magnetosonic domain, the frequency is determined
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by the Fermi pressure, Bohm forces (quantum effects), and
in the Alfven-slow domain, is determined by the Hall effect
(non quantum effects). Indeed, for the high wavenumbers, the
MHD Alfven mode separates into whistler and ion-cyclotron
modes but for perpendicular propagation, there is only fast
mode.

3. Study of instability
When a disturbance occurs in the environment, it affects
many physical quantities. The relationship between dispersion
waves as they propagate through matter and these quantities is
an interesting subject to study. The behavior of a quantity can
be very different at different frequencies, and even for a range
of frequencies, it wastes less wave energy and, conversely,
absorbs wave energy strongly over a range of frequencies
and does not allow it to pass. The relationship between this
quantity and vibrational modes is called the stability and in-
stability of those modes against this quantity. The stability
and instability of those modes depends on the type of material
and the type of quantity. Historically, in the discussion of
multi-fluid plasma, one of the first quantities to be studied is
the dielectric function.
This section discusses the stability and instability of turbulence-
induced modes in electron-positron plasma. An external mag-
netic field can have a stabilizing effect. This section aims to
investigate the instability of two quantum fluids in magnetized
dense plasma in a specific transverse configuration. In the fol-
lowing, the application conditions of the model and its specific
parameters are discussed. Unlike the classical case, which has
instability for large wavelengths, Fermi pressure effects have
a minimum cut-off wavelength for instability; Therefore, a
comparison of the strengths of each of these effects is consid-
ered. We assume the plasma as a non-relativistic Fermi gas
and obtain a new transverse mode in the two-current magnetic
quantum plasma.

3.1 Dielectric function
The dielectric function of plasma expresse as follows, [17,18]

ε(k,ω) = 1+
4π2e2

k2 (χe +χp) (29)

where χ is the susceptibility of the particles; If the equation
ε(k,ω) = 0 as a function of ω has roots in the upper half of
the complex plane, the plasma is unstable. In classical plasma,
the susceptibility is given by [19, 20],

χ
c
ep(k,ω) =

e2nep

m

∫
d3V [

kβ ∂β fep

ω − kβ uβ

] (30)

where fi is the normalization distribution function; for de-
generate electrons, the susceptibility χe of the electrons and
protons is obtained by the Lindhard equation,

χ
Q
e (k,ω) =

3ne

mv2
F

L(u,β ) (31)

and

χ
Q
p (k,ω) =

3np

mv2
F

L(u,β ) (32)

where vF is Fermi velocity and kF is Fermi wave vector,
β ≡ k/2kF , u = ω/kvF , and L is Lindhard function; sup-
pose that two currents of electrons and positrons are moving
in opposite directions in a one-dimensional space. The longi-
tudinal dielectric function of this one-dimensional plasma for
the electron and positron currents spin is written as [21–24],

ε = 1+
4πe2

k2 [χQ
e (k,ω+kβ ueβ )+χ

Q
P (k,ω−kβ upβ )] (33)

where ue and up are the drift velocity of the electrons and
positrons, respectively L(u,β ) is Linard function,

Lre =
1
2
+

1
8z

[1− (β −u)2] log(
|β −u+1|
|β +u+1|

)

+
1

8β
[1− (β +u)2] log(

|β +u+1|
|β −u+1|

) (34)

Using Eqs. (33,34), expansion of the logarithmic terms, lin-
earization of the result, and a little mathematical work, we
obtain,

ε(k,ω) = 1− 1
2

ω2
p

(ω − kue)2 − h̄2k4

4m2

− 1
2

ω2
p

(ω + kup)2 − h̄2k4

4m2

(35)

The condition for the stability of the answer is ε(k,ω) ≥ 0.
Assuming ue ≈−up ≡ uẑ, the equation ε(k,ω) = 0 has two
answers to ω2,

ω
2
± =

1
2

ω
2
p +k2u2+

h̄2k4

4m2 ± 1
2

ω
2
p[1+

8k2u2

ω2
p

+
4h̄2k6u2

m2ω4
p

]
1
2

(36)

The first solution (36) describes a sound-like wave existing in
magnetized dielectrics due to different equilibrium distribu-
tion of particles. The quantum pressure produces a nonlinear
contribution ∼ k4 that may be important at large k. The quan-
tum correction associated to the Bohm potential is taken into
account. The answer ω2

+ is always positive, and its oscilla-
tions are stable. The answer ω2

− can be negative ω2
− < 0, and

its oscillations become unstable. By defining dimensionless
variable R≡ ku/ωp, Eq. (36) can rewrite as follow,

ω
2
− =

1
2

ω
2
p +k2u2+

h̄2k4

4m2 − 1
2

ω
2
p[1+8R2+

4h̄2
ω2

pR
6

m2u4 ]
1
2

(37)

then by approximating the radical term in Eq. (36) and
assuming R ≪ 1 (long wavelengths or small k) and also
(4h̄2

ω2
pR

6)/(m2u4)≪ 1, we obtain,

ω
2
− =−k2u2 +

h̄2k4

4m2 (1−4R2) (38)
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The condition of instability is that ω2
− < 0, which is equiv-

alent to (for R≪ 1) [(h̄2k2)/(4m2)](1− 4R2) < u2. In this
case, the amplitude of the dispersion wave is proportional to
exp[−γt], where γ is the instability parameter and is given by,

γ = ku[1− h̄2k2

4m2u2 (1−4R2)]
1
2 (39)

now, suppose again,

ue = up = uẑ, B = Bẑ, E = 0 (40)

Moreover, a small amplitude is applied to the system where
k = kx̂ is the wave vector. In addition, we assume that the
disturbance of the electric field is along the magnetic δB =
δBŷ. Since the current velocities are in the direction of field
B, they have no role in transverse modes. By linearizing the
quantities in Eq. (30) and Fourier analyzing into space and
time, we obtain the following dispersion relation,

ω
2 − c2k2 = ω

2
p[1+

u2k2

ω2 − 3
5 v2

F −ω2
c − h̄2k4

4m2

] (41)

This equation can quickly solve in terms of ω . In Eq. (34),
factors such as ωp and ωc can significantly stabilize unstable
modes. In low-density plasmas, the role of the magnetic field
in stabilizing these modes is significant. In dense plasma,
the two effects of Fermi pressure and Bohm pressure have a
stabilizing effect. The answer to Eq. (34) is given by,

ω2
±

ω2
P
=

1
2
[1+

c2k2

ω2
p
(1+

3
5

ν
2
F)+

ω2
c

ω2
p
+

1
4

h̄2k4

m2ω2
p
]

±1
2
{[1+ c2k2

ω2
p
(1− 3

5
V 2

F )−
ω2

c

ω2
p
− 1

4
h̄2k4

m2ω2
p
]2+

4u2k2

ω2
p

}
1
2 (42)

It is possible to omit terms appropriate to h̄2 due to their small
size compared to other terms. Like Eq. (29), the answer ω2

+

is always positive, and its oscillations are stable. Answer ω2
−

can become unstable, provided this relation is established,

u2k2ω2
p

ω2
p + c2k2 > ω

2
c +

3
5

k2
ν

2
F (43)

In the quantum regime ωc ≪ kνF , the instability condition
(36) becomes simpler,

u2 >
3
5

ωp + c2k2

ω2
p

V 2
F ork2 <

ω2
p

c2 (
5
3

u2

V 2
F
−1) (44)

According to this condition and using λ = 2π/k, we obtain a
cut-off wave number

k2
cut =

ω2
p

c2 (
5
3

u2

V 2
F
−1)

kcut =
ωp

c
(

5
3

u2

V 2
F
−1)

1
2

then

λcut =
2πc
ωp

[
5u2

3ν2
F
−1]−

1
2 (45)

as a result, λ < λcut is definitely stable.

4. Conclusion
In this paper, we write a set of two-fluid electron-positron
plasma equations based on the hydrodynamic model and
briefly discuss its various terms and the role of spin in different
spin-spin, spin-field, and spin interactions. We discussed their
density and the effect of heterogeneity in the equations. These
equations can determine what dispersion relations to expect if
turbulence occurs in equilibrium plasma. Here, we take a path
for discussion that differs from the typical path taken in other
articles and obtain new dispersion equations. We also exam-
ined the limits of weak and strong magnetic fields and the
effect of spin polarization on ripple waves in plasma. Again,
assuming that the external magnetic field is weak, we found
a quasi-sound wave due to differences in electron-positron
states’ distribution in the two-fluid electron-positron model.
We found that the spin-current evolution in a magnetized
plasma creates a new dispersion mode. We also showed that
we have only the fast mode in the direction perpendicular to
the direction of propagation of the waves. The speed of this
mode is equal to the speed of the mode in the parallel direction
plus an additional term that depends on the system’s character-
istics. For high-density plasma, this correction is negligible,
but for very low densities and weak magnetic fields, this effect
is significant. Then, we discussed the stability and instability
of oscillating plasma modes, including electron-positron as
two stream plasma, and determined these vibration modes’
range of stability and instability. Finally, we calculated the
cut-off wavelength.
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