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Abstract
Skyrme Forces (SF) Based Mean Field Model (MFM) or related density function is widely used to describe
nuclear states, collective vibrational excitation, and heavy-ion collisions. To investigate 100Sn + 16O and 100Sn +
48Ca collisions on a 3-dimensional(3D) mesh with Skyrme SV-bas forces in Ecm=100, 150, and 200 MeV, Time-
Dependent Hartree-Fock Skyrme(TDHFS) computations were done. The effective interaction in the computation
of reaction dynamics as an important role in understanding the dynamics of the reaction provides us with
knowledge about the characteristics of heavy-ion reactions’ effective interaction. The effect of increasing the ratio
of neutrons to protons and the symmetry and asymmetry of the nuclei, as well as the size of the box at different
energies, on the structure of the composite core, was investigated. The 100Sn + 16O collision time course findings
reveal that the continuous dampening effect remains after the fusion process. The damping mechanism has
been demonstrated to be connected to breaking the dependency on box size, which is like the twisted average
boundary condition that may avoid box size impacts on the 3D coordinate space employed, whereas periodic
boundary conditions are seen for 100Sn + 48Ca.
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1. Introduction

The Time-Dependent Hartree-Fock (TDHF) theory is a no-
perturbation model for low-energy heavy-ion collisions that
describes the transfer of multiple nucleons and is particularly
useful in investigating nuclear dynamics [1–7]. When there is
enough energy for the Coulomb barrier in low-energy heavy-
ion collision reactions, the collision system passes through
two original phases: full fusion and overlap of the target
and projectile, followed by disintegration into two or more
fragments. At low energies, the nucleon’s mean free path
surpasses the size of the composite system. In contrast, at
higher energies, the mean free path of the nucleon decreases
and started to drop as the energy increases.
When computer memory and performance were so restricted
in the 1970s and 1980s, computations had to make limit-
ing assumptions such as axial symmetry and the removal of
spin-orbit pairing. TDHF computations in the 3D Cartesian
lattice without symmetry constraints and with significantly
more accurate numerical approaches have been achievable
over time and with increased computer capability [8–10]. Si-
multaneously, the quality of effective interactions improved
considerably [11–15].
TDHF without pairing is an acceptable approximation for
nuclear collisions with higher excited energy. TDHF com-
putations are typically carried out in three-dimensional (3D)

Cartesian space with periodic boundary conditions [16]. For
more specific examples of physics applied to the SV-bas in-
teraction, see [17]. The TDHF model is an MFM for the
dynamics of particles in nuclear collisions. The microscopic
TDHF technique has the advantage of including shell effects,
low-energy interactions, and often molecular dynamics mod-
els in which Nucleon-Nucleon(NN) collisions may be easily
combined. Because of the neutron-proton ratio, data for 100Sn
are few. Furthermore, the energy of individual particles in
comparison to 100Sn is unknown. The data is restricted to the
energy distribution between two low-energy orbitals [18, 19],
but for higher-energy orbitals, an extrapolation from neighbor-
ing nuclei with typical uncertainties of a few hundred keV is
provided [20]. The 100Sn has an almost inert core that may be
quickly activated by the addition of particles or holes. As a re-
sult, it’s an excellent ground-state test for fundamental nuclear
models. Another reason for the growing interest in nuclear
structure in this field is the nuclear synthesis process [21]. It
was recently determined that this reaction chain terminates
at around 100Sn. Furthermore, 100Sn is anticipated to have a
heavier double magic nucleus. In transfer processes and the
energy of single particles (holes), the shell closure at 48Ca has
been studied in detail [22].

We recently used the Skyrme-Hartree-Fock-Bogolyubov
(SHFB) approach with density-dependent pairing interaction
to investigate data such as total binding energy, charge radius,
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Figure 1. The quadrupole momentum for collisions
100Sn+16O and 100Sn+40Ca of varying energies.

and so on. The null range is calculated using interactions as a
function of density throughout the pairing channels [23]. All
stable cores exhibit consistent statistical behavior, according
to the data. Furthermore, when the mass of the selected nuclei
rises, the behavior becomes more uniform. The ratio rise
in neutron number in heavy nuclei, on the other hand, sug-
gests higher uniformity in the structure of these nuclei than in
lighter nuclei. The average rate of quadrupole deformation in
heavy nuclei, on the other hand, is larger than in other mass
ranges, and there is a direct relationship between the defor-
mation rate and regular behavior. This may be explained by
a combination of rotational and vibrational modes of motion,
increasing the regularity of these nuclei’s structure.
The following is how this article is organized: Section 2
briefly presents the fundamental principles and theoretical
framework, as well as how we derive the numerous observ-
ables described in the paper. Section 3 presents our results
for the center of mass energies. After the fusion phase, the
characteristics of a single particle, the evolution of quadrupole
deformation and kinetic energy, rotational amplitude, and
the continuum damping effect remain. Section 4 contains a

summary of our results and conclusions.

2. Theoretical farmwork
2.1 The time-dependent mean-field equations
The TDHF framework is a quantum mechanical framework
that employs one-particle wave functions. The initial collision
condition at TDHF is derived from the Hartree-Fock (HF)
static equations. To derive the wave functions that represent
the temporal development of a collision system and the density
of space protons and neutrons at any time and location, a
set of time-dependent Schrödinger equations is thoroughly
solved. Certain limitations in static computations can be
employed to solve numerous scenarios beneficial in solving
static Hartree-Fock equations. The steady-state equations are
generated by using the mean-field equations of single-particle
wavefunctions ψα as a starting point:

Ĥψα = εα ψα (1)

Ĥis the Hamiltonian in the mean-field. The single-particle en-
ergy for ”the place” is shown by εα . Since different scattering
investigations have revealed that nucleons move with kinetic
energy (10 MeV) inside nuclei, this energy is compared to nu-
cleon inertial energy, which is approximately (1000 MeV). Re-
gardless of the relativistic effects of nucleon mobility, we may
examine the energy spectrum of nuclei using non-relativistic
quantum mechanics using the Schrödinger equation, which
is a non-relativistic equation. The ground state of a nucleus
with single-particle wave functions ψα(r)exp(−iεα t/h̄) is
expressed as follows [24]

[
−h̄2

2m
∇

2 +V (ρ(ψ))]ψα(r) = εα ψα(r) (2)

This results in a static solution with the phase factor:

eik.r
ψα [r−

h̄k
m

t] (3)

When the Hamiltonian single particle is Galileo-invariant,
this time-dependent equation is solved. To obtain the net
density dependence, we must supplement the density function
with expressions comprising rotating currents and currents.
Certain limitations in static computations can be employed to
solve numerous scenarios beneficial in solving static Hartree-
Fock equations. The most commonly used constraint is the
expectation value constraint used in the quadrupole ⟨ψα |H −
λQ20|ψα⟩. We may show this by including a limit containing
a possible theorem in the single-particle Hamiltonian, as in
the case of quadrupoles

Ĥ → Ĥ −λ (2z2 − x2 − y2) (4)

Because the employed numerical approach does not limit the
deformation, take note outside for unstable constraints like
quadrupoles, which might reach significant values near the
computation box’s boundaries and pull the wave function
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there. Depending on how the system modes and desired ob-
servations are adjusted, the TDHF equations can be evaluated
in Slater determinant wavefunction space [5] or derived us-
ing TDHF. The sources [25, 26] analyze the TDHF equations
based on the Schrödinger equation as a function of time.

ih̄
∂

∂ t
|ψα(t)⟩= Ĥ|ψα(t)⟩ (5)

The static wave functions are displayed as ψstate
α,I (t) that I =

1; 2 labels the two nuclei. ψstate
α,I (r-R,s) is achieved using

grid interpolation. The numerical box for collisions must be
bigger than the numerical box for static Hartree-Fock com-
putations. The Slater state is the initiating configuration for
nuclear reactions, with shifted and increased single-particle
wavefunctions, as seen in Ref. [16]. A Hamiltonian in interac-
tion may also be defined as follows

Ĥ = T̂ +V̂ =∑
αβ

tαβ a+α aβ +
1
2 ∑

αβγδ

Vαβγδ a+α a+
β

aδ aγ (6)

tαβ is the kinetic energy and Vαβγδ is the two-body interaction
matrix elements. Also a+i and a create and annihilate a particle
in the state i, respectively.
The TDHF equations are obtained as follows

S =
∫

dt[E(ψα)−∑
α

⟨ψα |i∂t |ψα⟩] (7)

The code’s mean-field equations are based on the skyrme en-
ergy functional, as shown in Ref. [16]. The following integral
equation can be used to solve TDHF

|ψα(t +∆t)⟩=U(t, t +∆t)|ψα(t)⟩

U(t +∆t) = T̂ e(−
i
h
∫ t+∆t
t Ĥ(t́)dt́) (8)

Û and T̂ are the time-evolution and the time-ordering opera-
tions, respectively.
The TDHF dynamics reported in this paper are derived from
the Sky3D algorithm, which was designed to solve the Hartree-
Fock static and time-dependent equations in a broad 3D ge-
ometry. The reference [16] has a full discussion of the code’s
physics and administration. This model is based on the global
shape’s functional skyrme energy [16]. The code’s mean-field
equations are based on the skyrme energy function. Current
reviews may be found in [12,13]. Without taking into account
pairing, the energy is depicted as

E = Ekin +
∫

d3r(εSk + ε
lS
Sk)+Ec (9)

where energy is

Ekin =
∫

d3r
h̄2

2m
τ (10)

and the following equations there are several terms derived
from the skyrme force

εSk =
1
2

b0ρ
2 +b1(ρτ −J2)− b2

2
ρ∆ρ +

b3

3
ρ

α+2

−∑(
b́0

2
ρ

2
q + b́1(ρqτq−J2)+

b́2

2
ρq∆ρq+

b́3

2
ρ

α
ρ

2
q ) (11)

The code solves mean-field equations using the skyrme energy
function, which is frequently used. As a starting point, we
examine distorted harmonic oscillator wave functions (no f =
0). This is just for static computations. Harmonic oscillator
states with primary radius in three dimensions yield primary
wave functions. Asymmetric nuclei are given three separate
radiuses to prevent being inserted in a symmetrical composite.
The nneut and nprot code inputs, which indicate the number
of neutrons and protons, define the core type, while npsi can
be used to add some empty modes (this sometimes leads to
faster convergence). The number of nodes in each direction
distinguishes them. The following terms are also added after
considering the contribution of the spin current terms

ε
lS
Sk =−b4[ρ∇·J+σ ·(∇×J)]+ b́4 ∑

q
[ρq∇ ·Jq+σq ·(∇×Jq)]

(12)

The Coulomb energy is as follows

Ec =
e2

2

∫
d3rd3ŕρp(r)

1
|r− ŕ|

ρp(ŕ)−
3
4

e2(
3
π
)

1
3

∫
d3r[ρp(r)]

4
3

(13)

with

σq(r) = ∑
q

ϕ
+
α (r)σ̂ϕα(r)

Jq(r) =−i∑
q

ϕ
+
α (r)∇× σ̂ϕα(r)

That q= p for protons and q= n for neutrons and ρ = ρp+ρn
is total density. b3 is defined by the t and x coefficients con-
tained in the skyrme force description, as shown in Ref. [16].
The Sabrotin hpsi mean-field module must be used to deter-
mine additional contributions to single-particle hamiltonin.
The code must be applied, and the result must be added to
the output wave function’s output to calculate how additional
expressions act on the input wave function. Again, spatial
derivatives might be applied in different loops for efficiency.
To compute total energy, we employ a 3D solver (TDHFS) that
solves the self-consistent HF equation as well as the TDHF
equation. For further information, see [16].

2.2 Boundary conditions
The periodic boundary condition is a logical choice for ex-
pressing plane waves and is useful in 3D unitary network
calculations. TBC [16], also known as a generalized block
boundary condition, is expressed as [27]

ψ(r+nL) = eiθ ·n
ψ(r) (14)
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Figure 2. Kinetic energy results for collisions 100Sn+16O and
100Sn+40Ca of varying energies.

In 3D Cartesian coordinates, r denotes the 3D coordinates, L
the box size, and n the unit vector. The twist angle ranges from
0 to 180o degrees. We get the periodic boundary condition if
the twist angle is equal to zero.
The HP equation of a single particle can be written as:

Ĥθ ψαθ (r) = εαθ ψαθ (r) (15)

The discrete state of the one-particle wave function is shown
by . For further information, see [28].

2.3 Multipole moment
In the mean-field Hamiltonian, we employ the skyrme SV-bas
interaction for nucleons in the TDHF computations. Numer-
ical computations are carried out using a three-dimensional
Cartesian grid. Many experimental experiments have been
conducted to investigate the low-energy features of even-even
isotopes of existing nuclei, including Sn. Multipole moments
characterize the majority of density distribution features. The
center of mass is the most significant of them (c.m). Spherical
moments in the quadrupole state are defined as follows:

Q(type)
2m =

∫
d3rr2Y2mρ

(type)(r−R) (16)

Figure 3. Results of angular momentum temporal evolution
for 100Sn+16O and 100Sn+40Ca of varying energies.

The Cartesian quadrupole in this code reads

Q = 2sin(
πz
zbox

)2 − sin(
πy
ybox

)2 − sin(
πx
xbox

)2 (17)

There are two shape parameters a0 and a2 called deformation
β and triaxiality γ called Bohr-Mottelson parameters.

β =
√

a0 +2a2
2,γ = a tan[

√
2a2

a0
] (18)

Single-particle energies allow more detailed energy data. Be-
cause the monopolar momentum is proportional to the total
number of particles, the radius r.m.s. is commonly employed
to characterize monopolar oscillations. Alternatively, their
square is utilized as

rtype
rms =

√∫
d3r(r−R)2ρ type(r)∫

d3rρ type(r)
(19)

The “type” can be a proton, a neutron, or total density.
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Figure 4. Results of z2 temporal evolution for collisions
100Sn+16O and 100Sn+40Ca of varying energies with collision
parameter 2 f m.

3. Results and discussion
Nuclear collision is a key application of nuclear TDHF. Unlike
high-energy collisions, when reaching equilibrium before the
end of the response time is impossible, low-energy collisions
can have several sorts of equilibria, each on a distinct time
scale. During the first phase, a fast charge balance is formed
as a result of nucleon migration near the Fermi surface. The
mechanism of this equilibrium may be interpreted as the ex-
tension of a single particle’s motion from one nucleus to the
other once the potential barrier between two colliding nuclei is
reduced following contact. This procedure may be completed
in a fraction of a second. Charge balancing is critical because
it prevents unusual particles with substantial proton-neutron
asymmetry from forming. Nuclear fission can be trapped in
opposing components of a system when it collides, resulting
in a higher proton-neutron imbalance than the system before
fission. When the Coulomb effects are included, the proton-
neutron imbalance grows to the greatest density measured.
With increased beam energy, the influence of the initial state

Figure 5. Comparison of rrms (tot) obtained for 100Sn+16O
and 100Sn+40Ca of varying energies.

shell is reduced. The motion equilibrium, which depicts the
balance between nuclear forces and coulomb, is projected
to last 10 to 20 seconds. In low-energy collisions, slower
equilibrium processes such as thermal equilibrium and some
composite system fission or decay processes can also persist
longer than 10–15 seconds. This code is intended to make
such collision circumstances more obvious.
We do TDHF 3D collision simulations with Sky3D code and
two magic shells with two projectiles, but in one we detect
symmetry in the number of protons and neutrons, while in
the other we don’t see the asymmetry in the various energies
of neutrons and protons. We know that the initial shell effect
rises as the energy in the beam increases. Quadrupole momen-
tum is atomic nuclei feature that is used in a range of research,
measurement, and nuclear investigations.
The temporal changes of the quadrupole deformities arising
from the TDHF computations of the aforesaid collisions are
shown in Fig. 1. The oscillations are severely damped at large
amplitudes during the fusion phase. At larger impact energy,
the gradients are stronger. The deformation, on the other hand,
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is always near to each other. The variations in kinetic energy
deformation are not symmetrical. Melting, since it is density-
dependent and incompressible, is more than just a damping
oscillator for quadrupole deformations.
The time evolution of the total kinetic energy for 100Sn+16O
and 100Sn+40Ca with impact energies is shown in Fig. 2. The
kinetic energies’ distortion vibrations are not symmetrical.
Because bigger quadrupoles at higher impact energy are not
always associated with larger axial ratios, we may conclude
that the volume expansion of the composite nucleus is at work
in this scenario. Fig. 2 depicts the respective final kinetic en-
ergies. These disparities suggest that kinetic energy has been
converted into potential energies. The final kinetic energies
are lesser and the quadrupole deformation energies are bigger
with higher impact energy. By investigating the collision with
the 2 f m collision parameter, we discovered the boundary
condition in the Skyrme Hartree-Fock time-dependent colli-
sion calculation done in 3D coordinate spaces and discovered
that the rotation amplitude is likewise damped.
The time evolution of the angular momentum Jy for 100Sn+16O
and 100Sn+40Ca collisions is depicted in Fig.3. Even though
the density distribution is spherical, the angular momentum
Jy is not steady. Furthermore, total angular momentum is not
conserved. The cushioning range is larger independent of the
maximum impact energy, as seen in the figure. To deal with
periodic boundary conditions for 100Sn+16O, the oscillation is
seen to be slightly cosine-shaped in the lower stages, but as the
stages advance, we detect a substantial damping effect, which
is connected to breaking the reliance on box size. When we
investigated the collision with the 2 f m impact parameter, we
discovered that the range of rotation diminishes as well. If no
damping is seen for the 100Sn+40Ca collision and there is no
dependence on the size of the box, the rotation is nearly a full
cosine function up to this computation step. The amplitude of
rotation is damped in the calculations, as seen in the figure;
this rotational damping is not surprising given the acceptable
damping of small-amplitude vibrations.
The values of z2 for different collision energies, as well as the
100Sn collision with 16O and 40Ca with varying energies, are
provided in Fig. 4. The Coulomb repulsive strength between
protons is stated to be overcome in stable nuclei due to the
presence of additional neutrons (N/Z) in their scheme. The
findings also reveal a consistent statistical tendency for all
stable nuclei studied. Furthermore, the more consistent behav-
ior grows as the mass of the selected nuclei increases. Our
objective is to investigate the characteristics of stable nuclei
in collisions of various mass ranges, as well as the effect of
various factors such as rotation, quadrupole deformation rate,
and so on. In the results, increasing the mass of the selected
nuclei and taking into account the symmetry and asymmetry
of the nuclei, as well as the box size, resulting in a regular
statistical behavior for the stable nuclei investigated.
A remarkable hybrid system is constructed for Ecm = 150
and 200 MeV in collision and Ecm = 100,15, and 200 MeV
in collision. The overall radius in Fig. 5 depicts how the

system compresses and changes over time. Its value grows
again when it approaches fusion or when the cores split. This
helps you to determine if they are sufficiently far to prevent
unexpected occurrences from occurring. The rationale for
extending the box is that operators, unlike orbital angular mo-
mentum, are not periodic since the vector itself is not periodic
but leaps over the limit. The nuclei deviate and then depart
the calculation box at the lower center of mass energies, as
shown in the calculations. To avoid this, end the computation
when the distance between the cores exceeds the distance
between the centers of mass of the two independent nuclei,
which should generally be set somewhat more than the origi-
nal distance. This demonstrates that the answer has a distorted
average boundary condition and is of the generalized periodic
boundary condition type.
According to the figures, the reaction is comparable to the
twisted mean boundary condition in gigantic resonance TDHF
calculations, which is a generalized periodic boundary condi-
tion for block waves with non-zero twist angles. The twisted
mean boundary condition findings with intermediate twist
angles can considerably balance out the effects of limited box
size in density material physics [29]. The reaction 100Sn+40Ca,
on the other hand, includes general boundary conditions [28].

4. conclusion
In this paper, we look at the Sky3D code, which operates
in 3D coordinate spaces. The damping mechanism, as we
can see, refers to the removal of the dependency on the size
of the box in the twisted limit state. We discovered that the
rotational amplitude is attenuated in a collision with the 2 f m
impact parameter in the 100Sn+16O collision. Using Skyrme
powers results in new impacts and unexpected complications.
Because of the existence of additional neutrons (N/Z), stable
nuclei may overcome the Coulomb repulsive force between
protons. Furthermore, the structure of these nuclei as a re-
sult of the increase in binding energy is determined by the
resulting arrangement of different layers that are complete
and eventually have almost spherical shapes, providing an
excellent opportunity to study the effect of rotation and de-
formation on the structure of the nuclei. The proportional
increase in the number of neutrons in heavy nuclei, on the
other hand, indicates a stronger order in the structure of these
nuclei than in lighter nuclei. Heavy nuclei have a greater aver-
age quadrupole strain rate than other mass ranges, and there is
a real correlation between elastic modulus and regular behav-
ior. This increase in order can be justified by a combination
of rotational and vibrational states, increasing in the order of
these nuclei’s structure. The influence of the distance between
nuclei relative to their centers of mass at various energies on
the demand for nuclear fusion was investigated. It’s intriguing
to see how these effects hold up in heavier systems that are
more symmetrical and asymmetrical. Further applications of
twisted boundary conditions in nuclear processes involving
weakly bound nuclei will be valuable.
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