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Abstract
In this paper, considering the importance of ion acoustic waves in nonlinear phenomena of plasma, the combined
effects of nonextensivity and nonthermality parameters on the ion acoustic cnoidal nonlinear waves studied. In
this regard, the hybrid Cairns-Tsallis distribution function used to describe the electrons and positrons. Conditions
of formation of nonlinear ion acoustic waves and permissible values of nonextensivity (Q) and nonthermality
(α) parameters were determined and the behavior of these waves with changes in these parameters in this
type of plasma have been studied. For this purpose, we have used the reductive perturbation method (RPM)
to derive the corresponding KdV equation for the ion acoustic wave, then considering the Sagdeev potential,
the conditions for the generation of ion acoustic waves in the cnoidal and soliton form discussed. The effect of
nonextensivity (Q) and nonthermality (α) parameters on the Sagdeev potential (potential well width and depth),
wave amplitude and frequency investigated. The results show that for all of the acceptable values of Q and α the
cnoidal ion acoustic wave is compressive.

Keywords
Electron-positron-ion plasma, Ion-acoustic nonlinear wave, Cnoidal wave, Sagdeev potential, The hybrid Cairns-
Tsallis distribution.
Physics Department, Islamic Azad Uni., Aligudarz Branch, Aligudarz, Iran
*Corresponding author: foroughfarhadkiyaei@gmail.com

1. Introduction

Numerous observations clearly show the presence of energetic
particles in plasma and astrophysical environments [1]. In
space plasmas, there are coherent nonlinear waves and struc-
tures that play an important role [2], nonlinear phenomena
and their properties in plasma depend mainly on plasma prop-
erties and particle distribution function. Observations from
the Viking spacecraft [3] and the Freja satellite [4] show that
there are electrostatic soliton structures in the magnetosphere
that cannot expressed by the Maxwell distribution function.
In this regard, Cairns et al. [5] proposed a nonthermal distribu-
tion function for plasma particles. This distribution function
could express the presence of rarefactive ion acoustic soli-
tary (IAS) structures very similar to what observed by the
Viking spacecraft and the Freja satellite. In the nonthermal
distribution function, the population of nonthermal particles
is denoted by α , which varies between 0 and 1 (0 < α < 1).
In caseα → 0, the Maxwell distribution function is retrieved.
In this field, many researchers have assumed their research
plasma model as a Cairns distribution function and have stud-
ied the phenomena in the presence of these particles. After
Cairns, Tsallis generalized the Boltzmann-Gibbs entropy and
proposed nonextensive statistical mechanics to describe sys-
tems that do not follow the Maxwell distribution function,
such as systems with long-range interaction [6].This distribu-
tion function is used commonly to describe various phenom-

ena in plasma, such as dissipative optical lattices [7], plasma
wave propagation [7–9].
The main properties of the Tsallis distribution function are
expressed by the parameter Q, which is called the degree of
nonextensivity which in the case Q < −1, this distribution
function is not normalized. The parameter Q in its normalized
states has two separate states. one in part −1 < Q < 1 where
the particles in this range cover all velocities and the other
Q > 1 in which the distribution function has a cutoff on the
maximum value. The permissible particle velocity is given by
the following equation:

Vmax = (
2υT

Q−1
)

1
2 , υ

2
T =

2KT
m

Here υT is the thermal velocity of the plasma particles. T and
m are the temperature and mass of the particles, respectively.
A comparison of Maxwellian and nonextensive distribution
function show, in the case Q > 1 high energy status are more
likely in the Maxwellian distribution function .however, for
−1 < Q < 1 high energy status are more probable in the
nonextensive distribution function. In state Q → 1, The Tsal-
lis distribution function becomes the Maxwell-Boltzmann
distribution functions.
In recent years, Tribche et al. [10] have studied ion acoustic
solitary wave in a two-component electron-ion plasma with a
nonextensive electron distribution. They concluded that this
plasma model could explain both refractive and compressive
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Figure 1. Plot of O versus Q for different α , having θ = 0.1,
ϑ = 0.1, V = 0.015 and σ0 =−0.002.

solitons, and these results led to the idea that nonthermal and
nonextensive properties may be affect compressive or refrac-
tive in nature the ion’s soliton structures. As a result, Tribcheh
et al. [11] generalized the Cairns model [5] and presented a hy-
brid Cairns–Tsallis velocity distribution that aims to increase
the flexibility parameter in nonthermality plasmas. Such a
two-parameter representation of the distribution function can
be more consistent with observations of spatial plasmas [11].
Since Tribcheh et al. generalized the Cairns model and intro-
duced the Cairns–Tsallis combination distribution function.

Many researchers used this distribution function in their
research. For example, and Amour et al investigated the
propagation of ion acoustic solitons in plasma with this dis-
tribution function that contains hot electrons [12]. In another
study, Farooq et al used this hybrid distribution function in
three-component plasma (e-p-i) to investigate the linear and
nonlinear properties of ions paired with floating waves [13].
In a study, Bozit et al investigated the instability of ion acous-
tic waves in a non-collisional and nonmagnetic plasma, which
included positive ions and electrons that followed this hybrid
distribution function [14]. Benzka et al. and al-Taibani et
al. Each separately investigated the properties of solitonic
ion acoustic waves in the dust plasma, which has a combined
distribution function of nonthermal and nonextensive [15, 16].
Williams et al studied the properties of the hybrid nonther-
mal nonextensive distribution function in the context of ion
acoustic soliton behavior in plasmas with excess superthermal
particles [17]. The head-on collisions of ion acoustic solitons
and rogue waves in unmagnetized electronion plasma were
carried out by El-Tantawy et alusing the Cairns-Tsallis distri-
bution for electrons [18]. Saha et al. [19] studied dust acoustic
waves with ions featuring the Cairns-Tsallis distribution while
Guo and Mei [20] presented the dust ion acoustic waves with
electrons following the hybrid-distribution. Recently, several
authors have adopted the Cairns-Tsallis distribution of parti-
cles to study the dynamics of electrostatic and electromagnetic
waves in different plasma models [21–24].
In this paper, we investigate the combined effects of non-
thermal and nonextensive parameters on the formation and

Figure 2. Plot of l versus Q for different α , having θ = 0.1,
ϑ = 0.1, V = 0.015 and σ0 =−0.002.

propagation of the ion acoustic cnoidal (periodic) wave in
electron-positron-ion nonmagnetic plasma.

2. Basic equations
We consider a noncollisional and nonmagnetic plasma in this
paper that includes a mixed fluid with Boltzmann positrons,
nonthermal and nonextensive distributed electrons, and cold
ions.
To model the effect of nonthermal and nonextensive electrons,
we consider the following distribution function introduced by
a number of researchers [11, 12].

fe(vx) = PQ,α(1+α
v4

x

v4
te
)[1+(1−Q)

v2
x

2v2
te
]

1
Q−1 (1)

In this distribution function, vte =
Te
m is the thermal velocity

of the electron, Te is the temperature of the electron, me is the
mass of the electron, and PQ,α , is the constant of normalization
which depends on Q and α , which is defined as follows.

PQ,α = Ne0

√
me

2πTe

Γ( 1
1−Q )(1−Q)

5
2

Γ( 1
1−Q − 5

2 )[3α +( 1
1−Q − 3

2 )(
1

1−Q − 5
2 )(1−Q)2]

(2)

f or,−1 < Q < 1

PQ,α = Ne0

√
me

2πTe

Γ( 1
Q−1 +

3
2 )(Q−1)

5
2 ( 1

Q−1 +
3
2 )(

1
Q−1 +

5
2 )

Γ( 1
Q−1 +1)[3α +(Q−1)2( 1

Q−1 +
3
2 )(

1
Q−1 +

5
2 )]

(3)

f or,Q > 1
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Figure 3. Plot of l versus α for different Q, having θ = 0.1,
ϑ = 0.1, V = 0.015 and σ0 =−0.002.

where parameter α determines the number of nonthermal
electrons present in this plasma model. Γ is a Gamma function
and Q is a parameter that measures the nonextensive properties
of the system. By integrating equation 1 into the velocity
space, the density of the number of electrons obtained as
follows [11, 12].

Ne(Φ) =
∫ +∞

−∞

fe(ve)dv (4)

Ne(Φ) =
∫ +vmax

−vmax

fe(ve)dv (5)

Ne(Φ) = Ne0[1+(1+(Q−1)
eΦ

Te
](

1
Q−1+

1
2 )

[1+A(
eΦ

Te
)+B(

eΦ

Te
)2] (6)

A =
−16Qα

3−14Q+15Q2 +12α
(7)

B =
16(2Q−1)Qα

3−14Q+15Q2 +12α
(8)

In the nonextensive limit state (Q → 1); the above density is
converted to the following known nonthermal electron density
[5].

Ne(Φ) = Ne0[1−
4α

1+3α
(

eΦ

Te
)

+
4α

1+3α
(

eΦ

Te
)2]exp(

eΦ

Te
) (9)

In contrast, for α = 0 the above density is converted to the
electron density of the nonextensive which is as follows [6].
To model the effect of electron nonextensivity. The Q-distribution
function or Tsallis distribution is considered as follows:

fe(ve) = PQ[1+(1−Q)(
mev2

e

2Te
− eΦ

Te
)](

1
Q−1 ) (10)

Figure 4. Plot of l versus α for different Q, having θ = 0.1,
ϑ = 0.1, V = 0.015 and σ0 =−0.002.

The constant of normalization PQ is given by

PQ = Ne0

√
me(1−Q)

2πTe

Γ( 1
1−Q )

Γ( 1
1−Q − 1

2 )
,−1 < Q < 1 (11)

PQ,α = Ne0(
1+Q

2
)

√
me(Q−1)

2πTe

Γ( 1
Q−1 +

1
2 )

Γ( 1
Q−1 )

,Q > 1 (12)

Here, the parameter Q defines for the strength of nonextensiv-
ity. It may be useful to note that for Q<−1, the Q-distribution
is unnormalizable. In the extensive limiting case (Q = 1), the
Q-distribution reduces to the well-known Maxwell-Boltzmann
distribution. Note that for Q > 1, the Q-distribution function
exhibits a thermal cutoff on the maximum value allowed for
the velocity of the particles, which is given by

vmax =

√
2Te

me
(

eΦ

Te
+

1
Q−1

) (13)

Integrating the Q-distribution over the velocity space, one
obtains the following non-dimensional hot electron number

Figure 5. Plot of α versus α and Q, having θ = 0.1, ϑ = 0.1,
V = 0.015 and σ0 =−0.002.
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Figure 6. Plot of ν(Φ) versus Φ for different Q, having
θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.

density [25, 26]

Ne(Φ) = Ne0[1+(1+(Q−1)
eΦ

Te
)](

1
Q−1+

1
2 ),Q >−1 (14)

In addition, positrons with the Boltzmann distribution function
are introduced as follows.

Np(Φ) = Np0 exp[−θ(
eΦ

Te
)] (15)

In the above equationsΦ, Ne ,Np and N which are the electro-
static potential, the equilibrium densities of electrons, positrons
and ions, respectively, and those with a zero index are equilib-
rium quantities. In addition, the propagation of ion acoustic
waves along the x-axis assumed. Nonlinear behavior of ion
acoustic waves by a set of normalized fluid equations de-
scribed below.

∂tN +∂x(NU) = 0 (16)

∂tU +U∂xU =−∂xΨ (17)

∂
2
x Ψ = Ne − pNp − (1− p)N (18)

Ne = [1+(Q−1)Ψ](
1

Q−1+
1
2 )× [1+AΨ+BΨ

2] (19)

A =
−16Qα

3−14Q+15Q2 +12α
(20)

B =
16(2Q−1)Qα

3−14Q+15Q2 +12α
(21)

Np = exp(−θΨ) (22)

Figure 7. Plot of ν(Φ) versus Φ for different α , having
θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.

For smallΨ, it is expanded as follows:

Np = 1−θΨ+
θ 2Ψ2

2
+ ... (23)

Ne = 1+M1Ψ+M2Ψ
2 + ... (24)

M1 = A+(
Q+1

2
) (25)

M2 = B+(
Q+1

2
)A+(

(Q+1)(3−Q)

8
) (26)

where ϑ = Np0/Ne0, θ = Te/Tp, Ψ = eΦ/Te and ϑ is the
ratio of positrons to electrons in equilibrium. In the above
equations, the velocity u, the potential Φ, the time t, and the
spatial coordinates x are normalized by the speed of the ion
acoustic wave Cs, the thermal potential Te/e the inverse of the
characteristic plasma frequency ω

−1
pi , and the Debye length

λD = ( ε0Te
N0e2 )

1
2 . The ion density N, the electron density Ne, and

the positron density Np are normalized to their corresponding
equilibrium densities, respectively. Tp and Te are the tempera-
tures of the positron and electron fluxes, respectively. In this
case, it is assumed that the destruction time of the positrons
is longer than the inverse frequency characteristic of the ion
acoustic wave. Under such conditions, it can be assumed that
the destruction of the positron by the electron is negligible
and the destruction of the positrons can be neglected.

3. Derivation of KdV equation and
solutions of KdV equation

To obtain the KdV equation from the basic equations 16 to 22,
we introduce the following extended coordinates

ζ = ς
1
2 (x− v0t) (27)
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Figure 8. Plot of dΦ/dµ versus Φ for different Q, having
θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.

τ = ς
3
2 t (28)

where ς is a small parameter that determines the intensity
of the nonlinearity, and v0 is the phase velocity of the wave.
Dependent variables are expanded as follows.

N = 1+ ςN1 + ς
2N2 + ς

3N3 + ... (29)

U = ςU1 + ς
2U2 + ς

3U3 + ... (30)

Ψ = ςΨ1 + ς
2
Ψ2 + ς

3
Ψ3 + ... (31)

By substituting the expressions 29 to 31 within Eqs. 16 to
18 and by using Eqs. 23 and 28, expressions with the lowest
order ς obtained.

−v0∂ζ N1 +∂ζU1 = 0 (32)

−v0∂ζU1 +∂ζ Ψ1 = 0 (33)

Ψ1(M1 +ϑθ)− (1−ϑ)N1 = 0 (34)

By integrating Eqs. 32 and 33 with respect to ζ for a continu-
ous wave that can have even limited perturbation at ζ →±∞

. We have the following relation between the first-order dis-
turbed quantities.

N1 = (
M1 +ϑθ

1−ϑ
)Ψ1 (35)

U1 = v0(
M1 +ϑθ

1−ϑ
)Ψ1 +C1(τ) (36)

Figure 9. Plot of dΦ/dµ versus Φ for different α , having
θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.

C1 is an integration constant that is independent of ζ what
may be dependent on the variable τ . From these two Eqs.
35 and 36, the phase velocity of ion acoustic waves can be
obtained as follows.

v0 = (
M1 +ϑθ

1−ϑ
)
−1
2 (37)

Higher order equations considered as follows.

−v0∂ζ N2 +∂τ N1 +∂ζU2 +∂ζ (N1U1) = 0 (38)

−v0∂ζU2 +∂τU1 +U1∂ζU1 +∂ζ Ψ2 = 0 (39)

∂
2
ζ

Ψ1 = (M1+ϑθ)Ψ2+(M2−
ϑθ 2

2
)Ψ2

1−(1−ϑ)N2 (40)

By Multiplying v0 on both sides of Equation 38 and its differ-
ence from Equation 39 and using the first-order solutions, we
obtain the following relation.

∂ζU2 =
v0

2
∂ζ N2+

1
2v0

∂ζ Ψ2−
1

2v3
0

Ψ1∂ζ Ψ1+
1

2v0
∂τC1 (41)

From equation 40, we have N2 as follows.

N2 = (
M1 +ϑθ

1−ϑ
)Ψ2+

M2 − ϑθ 2

2
1−ϑ

Ψ
2
1−

1
1−ϑ

∂
2
ζ 2 Ψ1 (42)

Substitute N2 obtained from the above equation into Equation
41, resulting in the following equation.

∂ζU2 =
1
v0

∂ζ Ψ2 +
1
v0
(

M2 − ϑθ 2

2
M1 +ϑθ

− 1
v2

0
)∂ζ (Ψ

2
1)

− 1
2v0(M1 +ϑθ)

∂
3
ζ 3Ψ1 +

1
2v0

∂τC1 (43)

By integrating this equation with respect to ζ , we have:

U2 =
Ψ2

v0
+(

M2 − ϑθ 2

2
M1 +ϑθ

− 1
v2

0
)

Ψ2
1

v0
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Figure 10. Plot of the electrostatic potential Φ versus µ for
different Q, having θ = 0.1, ϑ = 0.1, V = 0.015 and
σ0 =−0.002.

− 1
2v0(M1 +ϑθ)

∂
2
ζ 2Ψ1 +C2(τ) (44)

In the above equation, C2(τ) which is the second integration
constant, is independent of ζ but may be dependent on τ . De-
rived from Equation 44, periodic boundary conditions imply
that:

∂τC1 = 0 (45)

Therefore C1 is independent of ζ and τ . Now, to prove the
KdV equati on, we substitute the expression ∂ζU2 of equation
39 into equation 38 and use the first-order solutions, equations
35 and 36. We will have the following relationships.

∂ζ N2 =
2
v3

0
∂τ Ψ1 +

3
V 4

0
Ψ1∂ζ Ψ1

+
2
v3

0
C1∂ζ Ψ1 +

1
v2

0
∂ζ Ψ2 +

1
v2

0
∂τC1 (46)

By differentiating. Eq 40 with respect to ζ and substituting
∂ζ N2 for equation 46, we have

∂τ Ψ1 +aΨ1∂ζ Ψ1 +C1∂ζ Ψ1 +b∂
3
ζ 3Ψ1 = 0 (47)

This equation is the required KdV equation that describes the
evolution of the first order-perturbed potential(Ψ1)the coeffi-
cients a and b are given below.

a =
3

2υ0
−υv0

M−2 ϑθ 2

2
M1 +ϑθ

(48)

b =
υ3

0
2(1−ϑ)

(49)

a and b are the nonlinear coefficient and the dispersion coef-
ficient of the KdV equation, respectively. It is clear that the

Figure 11. Plot of the electrostatic potential Φ versus µ for
different α , having θ = 0.1, ϑ = 0.1, V = 0.015 and
σ0 =−0.002.

nonlinear and dispersion coefficients depend on the temper-
ature rate of the electron to positron θ , the relative density
of the positron to the electron ϑ , the strength of nonexten-
sivity Q, and the population of nonthermal particles α . In
the extensive limiting state (Q → 1), the above coefficients
are converted to the following nonthermal state, which was
previously reported in an article by Alinejad [27].

a =
3

2υ0
−υ0

1−ϑθ 2

1− 4α

1+3α
+ϑθ

(50)

b =
υ3

0
2(1−ϑ)

(51)

υ0 =

√
1−ϑ

1− 4α

1+3α
+ϑθ

(52)

In the nonextensivity limiting case (α → 0), the nonlinear
and dispersion coefficients will be as follows, which were
previously studied by Dorranian et al [28].

a =
3

2υ0
−υ0

( (3−Q)(Q+1)
4 −ϑθ 2)

2(Q+1
2 +ϑθ)

(53)

b =
υ3

0
2(1−ϑ)

(54)

The phase velocity in this case is:

υ =

√
1−ϑ

Q+1
2 +ϑθ

(55)

In order to find the steady state cnoidal and solitary wave
solutions of the KdV Eq 47. We follow the same procedure
as already done in Kaladze et al. [29, 30], and we have used
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Figure 12. Plot of the frequency of the cnoidal waves versus
α , having θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.

it in previous articles and to avoid repetition, we refer you to
them [28–31] .We consider the new variable as µ = ζ −V1τ

where V1 is the velocity of the nonlinear structure moving with
the frame. With this variable change and by double integrating
with respect to µ , we obtain the relation related to the law of
conservation of energy as follows:

1
2
(

dΨ

dµ
)2 +ν(Ψ) = 0 (56)

Here Sagdeev potential ν(Ψ) is defined as

ν(Ψ) =
a

6b
Ψ

3 − u
2b

Ψ
2 +σ0Ψ− 1

2
ε

2
0 (57)

In the above equation V = V1 −C1, σ0 and ε0 are integral
constants. The periodic (cnoidal) wave solution of Eq 56 is as
follows [29–32].

Ψ(µ) = β1 +(β0 −β1)cn2(Rµ, l) (58)

Here β0, β1 and β2 are the real roots of Sagdeev potential.
Where cn is Jacobian elliptic function, whereas the parameters
l ,0 < l < 1 and Rare defined as

l2 =
β0 −β1

β0 −β2
,(0 < l < 1) (59)

R = (
a

12b
(β0 −β2))

1
2 (60)

4. Results and discussion
In this section, we investigate the combined effects of nonther-
mal and nonextensive parameters on the nature and properties
of the ion acoustic wave in electron-positron-ion nonmagnetic
plasma. Ion acoustic periodic (Cnoidal) waves may generate
and propagate in the plasma medium only if Sagdeev potential

Figure 13. Plot of the frequency of the cnoidal waves versus
Q, having θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.

has three real roots. In order to have real roots, the following
inequalities had to establish.

(O = (
V
a
)2 −σ0(

b
a
))> 0,and0 < [

β0 −β1

β0 −β2
]< 1

Acceptable values of α and Q for the formation of these ion
acoustic periodic (Cnoidal) waves are obtained from these
inequalities. In Figs 1 and 2 the Eqs O and l2 are plotted in
terms of Q for different α . These Figs show the range of ac-
ceptable values of Q. In these Figs, the allowable values of Q
start from approximately -0.1 and with increasing α , the range
of allowable values of Q increases. Fig 3 shows the set of
allowable values α for different values Q. This Fig shows that
for all the values defined for α we can have Cnoidal waves.
Fig 4 shows the two-dimensional form of the allowable values
Q and α , for which a periodic ion acoustic waves is formed
.In the plot of these Figs σ0 , V and θ are equal to -0.002,
0.015 and 0.1, respectively. In Fig 5 the nonlinear coefficient
a is plotted versus two parameters Q and α . This Fig shows
that the nonlinear coefficient a is positive for the allowable
values of Q and which emphasizes the compression of the
ion acoustic periodic waves. In Figs 6 and 7 the Sagdeev

Figure 14. Plot of the frequency of the cnoidal waves versus
Q, having θ = 0.1, ϑ = 0.1, V = 0.015 and σ0 =−0.002.
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potential ν(Ψ) is plotted versus Ψ for different values of Q
and α respectively. Fig 6 shows that the width and depth of
the potential well decreases with increasing Q to about 0.2
and then increases and Fig 7 shows that the Sagdeev potential
becomes wider and deeper with increasing α potential. Figs
8 and 9 show the phase curve. The phase curve was plotted
versus Ψ for different Q and α , respectively. The phase curve
is repeated on the same path, and one complete cycle corre-
sponds to one wavelength in the physical space. This implies
that whenever the pseudo particle is velocity becomes zero,
or in other words dΨ/dµ = 0 potential force reflects it back
since −dν(Ψ)/dΨ does not vanish, and therefore, it oscillates
between two points. [33]. Figs 10 and 11 show the effects of
α and Q on the shape of the wave pattern, respectively. Fig 10
shows the wave pattern for Q of 0.1, 0.2 and 0.3 for α = 0.1.
This Fig shows that by increasing Q to Q = 0.2, the amplitude
and wavelength of cnoidal waves decrease and then start to
increase, and Fig 11 shows the wave pattern for Q = 0.1 for
α of 0.1, 0.3 and 0.5. This Fig shows that with increasing α

amplitude and wavelength of cnoidal wave’s increase. Figs
12 and 13 show the frequency of the cnoidal waves versus α

and Q, respectively. Fig 12 shows the frequency versus α for
Q = 0.1. This figure shows that when f increases to about 0.5,
the frequency decreases and then becomes almost constant.
Fig 13 shows the frequency of the cnoidal waves versus Q for
α = 0.1. This Fig shows that with increasing Q, the frequency
increases to about 0.2 and then the frequency decreases. Fig
14 shows the frequency of the cnoidal wave for the allowable
values of two parameters α and Q. In Figs 12, 13 and 14,
the quantities V = 0.015, σ0=-0.002, ϑ = 0.1 and θ=0.1 is
considered as constant values.

5. Conclusion
The study of this three-component plasma model with non-
thermal and nonextensive distributed positrons and electrons
shows that the cnoidal waves are not formed for all values
related to nonextensivity (Q) and for each value α only a
limited range of Q values is allowed to form cnoidal waves.
As mentioned earlier, only values of α and Q are acceptable
for which the Sagdeev potential has three real roots. Fig 4
shows the set of common values between all intervals. For
these common values, the nonlinear coefficient of the KdV
equation is positive, which indicates that the cnoidal waves
in this interval are compressive. Examination of the diagrams
shows that the effect of the parameter α on the width and
depth of the potential well is greater than the parameter Q.
The wavelength and amplitude of the cnoidal waves will in-
crease more with increasing α compared to increasing the
parameter Q. Examination of frequency diagrams shows that
with increasing α , first the frequency decreases and then the
trend of changes is almost constant. However, when the pa-
rameter Q increases, the frequency first increases and then
decreases.
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