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Holographic uncomplexity in the hyperscaling
violating backgrounds
Zahra Borvayeh1, Mohammad Reza Tanhayi2,3,Shahnoosh Rafibakhsh1*

Abstract
In this paper, using complexity equals action proposal, we investigate holographic complexity for hyperscaling
violating theories on different subregions of space-time enclosed by the null boundaries. By recalling the
computation of on-shell action for certain subregions of the intersection between the Wheeler DeWitt patch,
as well as, the future interior of a two-sided black brane, we are interested in compute uncomplexity in the
hyperscaling violating theories [1]. We show that the dynamical exponent plays a crucial role in computing
the rate of complexification. However, at the late time,the rate of the complexity growth is independent of the
hyperscaling parameters. Moreover, we compute holographic uncomplexity in hyperscaling violating backgrounds
and show when a black hole is formed, uncomplexity is the total space-time volume which is accessible to an
observer who decides to pass over the horizon. Therefore, uncomplexity could be considered as a resource
which indicates the computational power of a system. In fact, it can extract and analyze the useful information
from the system.
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1. Introduction
Investigating new concepts in different aspects of physics to
explain what happens around us has been always interesting.
In fact, everything began with human’s curiosity and which
led to a scientific revolution. Obtaining information about
unknown subjects and also finding a way to understand them,
as much as possible, is fascinating for everyone especially
physicists. For example in first place, a black hole was known
as a mathematical object. However, several works were done
afterwards to detect this attractive creature and explore the
world behind the event horizon which is still a mystery. Scien-
tist are curious to know what is happening behind the horizon.
This question and the same ones lead to many developments
in different fields of physics and the other branches of science.
Recently, entanglement entropy and holographic complex-
ity are the most important computational tools in black hole
physics, condensed matter physics, quantum information and
etc. Entanglement entropy is used to extract information
from entangled systems [2–6]. In other words, entanglement
entropy of a system is the amount of information that the
correspondence observer, who has no access to this region,
receives [7]. Furthermore, complexity as well as entangle-
ment entropy is used as a useful tool to understand condensed
physical systems especially black hole physics [8–14]. As a
matter of fact, holographic complexity explains how difficult
it is to implement the computation of unitary operations of the
observers. In the language of quantum circuits, complexity is
defined as the minimal elementary gates required for compu-

tation of the unitary operations [2], [4]. It means complexity
is the amount of the difficulty that maps an unentangled and
pure state (reference state) to the corresponding orthogonal
bases. Therefore, the complexity of a target quantum state can
be defined as: The state complexity is the minimal operator
complexity of any unitary operator that maps the system from
a reference state (typically the complete unentangled state) to
the target state [15, 16].
Complexity is a quantity which grows linearly by time for
a temporal exponential function K : C(t) = Kt. At the time
t : ek, complexity reaches its possible maximal value Cmaxand
for a long time remains in this state. This is the period of
complexity equilibrium in which the complexity moves to the
maximum limit Cmax : eK [16–18].
These conjectures have been used as powerful computational
tools to help us to study condensed systems or systems with
many degrees of freedom [8, 9]. It might be interesting to
study complexity from thermodynamic point of view [18].
In fact, the definitions of holographic complexity, explained
above, show the evolution of classical entropy. At first, con-
sider a classical system with the minimal entropy . In this
system, the gas reaches equilibrium after that the evolution
happens for the entropy, not complexity. However, for the
classical case, the linear growth of entropy, in the number of
degrees of freedom, insists only for the time polynomial. The
maximum entropy is in the order of the number of degrees of
freedom, and the recurrence time is simply exponential and
not doubly exponential [16–18].
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Simply, the quantum complexity for a k-qubit-system behaves
like the entropy of a classical system with 2k degrees of free-
dom. In the definition of complexity from thermodynamic
point of view, at any moment, the ensemble average of the
computational complexity of the quantum system Q is pro-
portional to the classical positional entropy of the auxiliary
system A [16]. This means that the entropy grows with time
and eventually reaches its maximum value, but the system
never reaches thermal equilibrium if the initial velocities are
not Maxwell-Boltzmann distributed. This is almost like the
gas of absolutely free particles located on a very large sur-
face with negative Riemann’s curvature. Despite the kinetic
energy of every particle is conserved, the positions spread
out and finally fill the space. Matching these two concepts
-average complexity and axillary entropy- one can provide
an approximate similarity between the growth and the evo-
lution of computational complexity. At first, a large number
of particles (almost 2k) are situated close to the origin of a
large pack of the volume exp2k. As we know, the velocities
are Maxwell-Boltzmann distributed. Then, the gas begins to
expand and the entropy of the gas grows. Finally, the gas fills
the box and reaches equilibrium. Afterwards, the system stays
in equilibrium for a large time but on timescales exp2k recur-
rences happen [16]. One can make the computations much
more simple by using another quantity. Uncomplexity is a
new concept introduced to identify how much computational
power the system has, in some special cases.
Uncomplexity of a pure state is defined by the difference be-
tween maximum complexity Cmax and the correspondence
complexity of the pure state C(t)

∆C(t) =Cmax −C(t) (1)

For a holographic system with strongly interactions in dual
black hole geometry, it has been conjectured that the com-
plexity of the state with entropy S is increased linearly with
time until it is saturated in its maximum value es [19]. Before
the system reaches maximum complexity, the desired state
has some computational power given by its uncomplexity. In
other words, from the perspective of black hole physics, one
can say uncomplexity of a black hole is related to its interior
space that is accessible for the falling observer who wants to
jump in [16–19].
This article has been organized as follows: In section 2, ac-
cording to our computational framework and by using holog-
raphy principle, we briefly review holography principle and
AdS/CFT correspondence. In section 3, using complexity
equal action proposal, we discuss on-shell action and also
recall the process to find on-shell action for WDW patch and
its subregions, future interior and past interior in hyperscaling
violating theory. Uncomplexity is computed in hyperscaling
violating background and is discussed from two points of
view, thermodynamic and black hole physics, in section 4. At
the end, in section 5, we present a discussion of our result.

2. Holography principle
Recently, the research on the black hole indicates that there
might be a relationship between black hole physics and infor-
mation quantum theory. Moreover, inspired by the studies in
the black hole physics, it has been claimed according to the
compatibility between gravity and quantum mechanics laws,
the universe might behave like a hologram [2]. Holography,
as a powerful and useful tool, helps us to study quantum field
theories strongly coupled. More precisely, one can do some
conceptual and useful computation on some quantities which
belong to the space-time with one dimension less. On the other
hand, according to AdS/CFT correspondence, everything in
quantum field theory maps to its quantity in gravitational field
theory with one more dimension [7–9]. This duality illustrates
that quantum gravity has a meaningful deep relation with quan-
tum information theory (surface and volume) [7–9], [20–23].
From AdS/CFT perspective it has been proposed the inte-
rior growth of a black brain is the dual of complexity growth
of quantum information theory [20, 24]. If this conjecture
works and leads to conceptual result, one can expect quantum
information might play an important role in understanding
the nature of space-time [2–6]. On the other hand, in many
condensed matter systems, the theory is conformally invariant
in critical points [1]. In such theories, when the temporal and
spatial coordinates are rescaled with a constant, the system
remains invariant. However, there are some systems which do
not scale similarly at their critical points. From holographic
perspective, these systems are dual to Lifshitz and hyperscal-
ing violating geometries [25, 26]. The purpose of this paper,
is to find an explicit form for uncomplexity by following the
complexity computation given in Ref. [1] and expanding the
results more precisely in hyperscaling violating backgrounds.
We should say that such geometries have anisotropic and hy-
perscaling violating components in their nature [12, 25].

3. The total action in the hyperscaling
violating background

It was proposed the complexity related to boundary state
at a specific time t, is proportional to the value of the on-
shell gravitational action A(t)of a certain bulk region [27–35].
This bulk region is the dependence domain of a Cauchy slice
anchored on the boundary at time t. This conjecture is well-
known as complexity equals action (CA) conjecture and the
bulk region is named the Wheeler DeWitt (WDW ) patch. The
CAconjecture is defined by [4, 8, 9]

C =
AWDW

π
(2)

On the other side, the rate of the computation done by the
system is limited by the energy of the system. This limitation
is a famous universal bound known as Lloyd’s bound [36] and
is given by

dC
dτ

≤ 2E
π

(3)
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where E is the average energy of the system at time t.
In addition, that there is another holographic proposal for
finding holographic complexity of the boundary state known
as complexity equals volume (CV ) [21–23], which has been
applied in several works [37–39]. The proposal expresses that
the complexity is dual to the codimension-1 volume of the
maximal space-like slice anchored at the two given boundary
times.
According to AdS/CFT correspondence, AdS geometries are
dual to the conformally symmetric field theories. Furthermore,
field theories which are scale invariant but not conformal in-
variant are very important. For instance, in addressing the
Landau-Fermi liquids, one needs Lifshitz metrics in dual grav-
ity theory where the spatial and time coordinates of the theory
have been scaled differently. Hence studying the holographic
dual models for such systems seems to be necessary. In fact, to
make such a homogeneity for physical systems which do not
respect conformal invariance and, in their critical points, rep-
resent a rather different scaling in space and time, one should
couple Einstein gravity to a massive vector. In the theory with
the Lifshitz fixed point, space and time scale differently as
below [25]

t → ζ
zt,xi → ζ xi,r → ζ r (4)

where z is dynamical critical exponent and in conformal field
theory sets to 1. The Lifshitz invariant theory is spatially
isotropic and homogeneous and admits the non-relativistic
scaling symmetry 4. In addition, a full class of scaling metrics
which means hyperscaling violating geometries, can be ob-
tained by considering both dilaton scalar field and an Abelian
gauge field. Then, the corresponding action is written as
below

A=
1

8πGN

∫
dd+2x

√
−g[R− 1

2
(∂ϕ)2+V (ϕ)− 1

4
eηϕ(Fµν)

2]

(5)

where GN is Newton constant and the potential of the scalar
field and the vector field are defined by [11]

V (ϕ) =V0eξ ϕ ,At =
L

r
θ

d
f

√
2(z−1)
d + z−θ

1
rd+z−θ

,

e−ϕ = rq=
√

2(d−θ)(z−1−θe) (6)

where L is the geometry’s radius and r f is a dynamical scale,
where the metric may not be a good description for UV com-
plete theory above it. In the above equation, η , ξ and V0 are
free parameters of the model given by [11]

V0 =L2
e(d+z−θ −1)(d+z−θ),ξ =

2θ

d
√

2(d −θ)(z−1−θ)

η =
2θ(d −1)−2d2√
2(d −θ)(z−1−θ)

(7)

Obviously, one can find that the vector field produces an
anisotropy of the theory while non-trivial scalar potential leads
to hyperscaling violating factor. For simplicity, it is useful to
characterize an effective hyperscaling violating exponent θe =
θ

d , an effective dimension de = d − θ and also an effective
scale Le =

L
rθe

f
.

For simplification in the rest of this paper, we set Le = 1 [1].
The solutions are given by [11, 25]

ds2
d+2 =

1
r2(1−θe)

(− f (r)
r2(z−1) dt2 +

dr2

f (r)
+Σ

d
i=1dx2

i ) (8)

The function f (r) is defined as follows [11]

f (r) = 1− (
r
rh
)d+z−θ (9)

where rh is the radius of horizon. The metric is not scale in-
variant and under the scale transformation Eq. (4), transforms
like blow

ds → ζ
θeds (10)

It should be mentioned that according to null energy condition
one has [10, 11]

(d −θ)(d(z−1)−θ)≥ 0,(z−1)(d + z−θ)≥ 0 (11)

In this equation, one can assume that d > θ which leads to
z ≥ 1. After some straightforward calculations in action and
by using hyperscaling violating geometry, it is shown that
action density in this background is obtained as follows [1]

√
−g(R− 1

2
(∂ϕ)2 +V0eζ ϕ − 1

4
eηϕ F2)

=−2(1−θe)(de + z)
1

rde+z+1 (12)

Also Hawking temperature and entropy in hyperscaling vio-
lating theory are defined by

T =
de + z
4πrh

,Sth =
Vd

4GNrde
h

(13)

In above equations, Vd is the volume of the spatial coordinate
parametrized by xi, i = 1, ...d.
According to ”Complexity = Action” proposal, one needs to
evaluate the on-shell action for three regions. The first one
defines and computes on-shell action inside the WDW patch
as shown in Fig.1. The second one is the future interior of
the black hole and the third is the past interior. For all of
these regions, it is known that the complete action should
have certain Gibbons-Hawking terms defined at those bound-
aries. Moreover, the null boundaries as well as the joint points
(points of intersection of these null boundaries with any other
boundary) have their own stories and it is crucial to add the
corresponding Gibbons-Hawking terms as well as certain joint
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actions. According to the well-defined variational principle,
one can write the following action [1, 20]

A(0)=
1

16πGN

∫
dd+2x

√
−g[R− 1

2
(∂ϕ)2+V0eζ ϕ − 1

4
eηϕ F2]

± 1
8πGN

∫
Σ

d+1
s

KsdΣs ±
1

8πGN

∫
Σ

d+1
n

KndSdλ

+
1

8πGN

∫
Σ

d+1
t

KtdΣt ±
1

8πGN

∫
Jd

adS (14)

Here, the first term is the contribution of bulk action and λ

is the null coordinate, which is defined on the null segments;
space-like, null boundaries and the time-like and also joint
points are denoted by Σd+1s,Σd+1n,Σd+1t and Jd , respectively.
The extrinsic curvatures of the corresponding boundaries are
given by Ks,Kn and Kt . On the other hand, at the intersection
of the boundaries, the function is defined by the logarithm of
the inner product of the corresponding normal vectors. It is
worth to mention that the relative position of the boundaries
and the bulk region of interest identify the sign of different
terms in the above action [20].
In order to preserve the invariance under a reparametrization
of the null generators, an extra term is needed, which should
be added to the action to remove the ambiguity. In Ref. [20]
it has been shown that such term might be given by

Aamb =
1

8πG

∫
Σ

d+1
n

ddxdλ
√

γΘ log
|Θ|
de

(15)

in which γ is the determinant of the induced metric on the
joint point where by definition, two null segments intersect.
Θ is defined by [20]

Θ =
1
√

γ

∂
√

γ

∂λ
(16)

Therefore, up to this level, the on-shell action is A = A(0)+
Aamb[17].
The symmetry of the Penrose diagram in Fig.1, demands that
a symmetric configuration with times τR = τL = τ

2 should be
considered. According to Fig. 1, it is obvious that there are
four null boundaries of the corresponding WDW patch, which
are given by [1]

N1 : t = tR − r∗(ε)+ r∗(r),N2 : t =−tL + r∗(ε)− r∗(r),

N3 : t = tR+r∗(ε)−r∗(r),N4 : t =−tL−r∗(ε)+r∗(r) (17)

and also the location of the joint point m is given by (note that
in our notation, we have used r∗(r)≤ 0)

τ ≡ tr + tL = 2(r∗(ε)− r∗(rm)) (18)

Figure 1. Penrose diagram of the WDW patch of an eternal
AdS black hole. Ni are null boundaries and it is supposed that
tR = tL. To find the complexity, the on-shell action should be
computed on this patch.

In this paper, we are interested in computing uncomplexity
in hyperscaling violating backgrounds. To do this, we follow
the computation of complexity for the on-shell action of the
interior region of an eternal static neutral black brane in the
generic dimensions, presented in Ref. [1], in hyperscaling
violating metrics, which are dual to a thermal state on the
boundary.
Now, by computing the on-shell action over the corresponding
WDW patch, the overall action becomes as below

ÃWDW = Abulk
WDW +Asur f

WDW +A joint
WDW +Aamb

WDW

=
Vd

8πGN
(
(de + z−2)(τ + τc)

2rde+z
h

− log | f (rm)|
rde

m
+

2(z−θe +1)
de

(
2

εde
+

1

rde
m
)+

2logε−2θe

εde
− logr2θe

m

rde
m

) (19)

As one can see the resultant on-shell action is UV-divergent
and here, we follow Ref. [40] to introduce a proper counter
term to the action, which is given by [1]

Act =
1

8πGN

∫
dλddx

√
γΘ(

1
2

ξ φ +
z−1

de
) (20)

=− Vd

8πGN
(

2logε−2θe

εde
− logr−2θe

m

rde
m

+
2(z−θe −1)

de
(

2
de

− 1

rde
m
))

Now, by adding Eq. (19)and Eq. (20) together, one may find
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Figure 2. Intersection of WDW patch with the future (left panel) and past (right panel) interior of black brane.

AWDW = ÃWDW +Act =
Vd

8πGN
(

de + z−2

2rde+z
h

(τ+τc)−
log | f (rm)|

rde
m

)

(21)

On the other hand, the growth rate of the complexity is given
by

dCWDW

dτ
=

1
π

dAWDW

dτ
=

2M
π

(
de + z−1

de
+

1
2

f̃ (rm) log | f (rm)|)

(22)

in which

f̃ (r) = (
rh

r
)de+z −1,M =

Vd

16πGN

de

rde+z
h

(23)

M stands for the mass of a black hole, which is proportional
to the energy of the black brane:

M =
de

de + z−1
E (24)

According to the computation provided for WDW patch and
implementing the whole calculation for future interior of a
black hole (FI), shown in left panel of Fig.2, the total action
for this subregion is given by

AFI =
Vd

8πGN
(
(de + z−2)

2rde+z
h

(τ + τc)+
log |uḿνḿ|+ c0

rde
h

)

=− Vd

8πGN
(
(de + z−1)τ

rde+z
h

+
(de + z−2)τc

2rde+z
h

+
c0

rde
h

) (25)

Then, the rate of complexification is

dCFI

dτ
=

1
π

dAFI

dτ
=

2M
π

de + z−1
de

=
2E
π

(26)

Using the calculation, for the action related to past interior of
a black hole, (right panel of Fig.2, one can see

API =
Vd

8πGN
(

log |umνm|+ c0

rde
h

− log | f (rm)|
rde

m
)

=
Vd

8πGN
(

c0

rde
h

− (de + z)

2rde+z
h

τ − log | f (rm)|
rde

m
) (27)

And the growth rate of complexity is as follows

dCPI

dτ
=

1
π

dAPI

dτ
=

M
π

f̃ (rm) log | f (rm)| (28)

As a result, one can see the growth rate of complexity of whole
WDW patch, Eq. (22), is equal to the sum of growth rate of
future interior Eq. (26) and past interior Eq. (28). So, we have

dCWDW

dτ
=

dCFI
dτ

+
dCPI

dτ

=
2M
π

(
de + z−1

de
+

1
2

f̃ (rm) log | f (rm)|) (29)

On the other hand, adding the equations (25) and (27) together,
one reaches the equation of action of (21), and in fact this is
an important result. So,

AFI +API =
Vd

8πGN
[(
(de + z−2)τ

2rde+z
h

− log | f (rm)|
rde

m
)

+(
(de + z−2)τc

2rde+z
h

+
2c0

rde
h

)] (30)
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where τc is critical time and, as it is obvious the second term
in the above equation, is time-independent and does not have
any contribution in the growth rate of complexity. In fact, this
result shows that the action terms which belong to the region
outside of the horizon of the black hole identified by yellow
regions in Fig.1, are time-independent. Therefore, they have
no contributions in computing the complexification.
Another outcome is that according to the growth rate of WDW
patch, one can see that the Lloyd’s bound is violated and this
comes from the contribution of the joint points located in the
past interior of the black brain. Therefore, one can say joint
points have a necessary role in computing and understanding
complexity.
Moreover, although Lloyd’s bound was violated in hyperscal-
ing violating geometry, the black hole is still Schwarzschild
black brain. However, it should be mentioned at late time
τ → τc, the rate of complexity approaches to 2M.

Figure 3. space-time region corresponds to holographic
uncomplexity

4. Uncomplexity
In essence, the interest in studying complexity theory, in differ-
ent fields of physics like computer science, quantum computer,
quantum circles, quantum information and etc. began with
interesting questions. For example, how can we explain the
interior growth of a black hole based on holography principle?
Or how much information or useful work can one do after a
system reaches its maximum complexity? In other words, if a
system reaches its maximum complexity, does it become un-
usable and out of reach or does it still have some computation
power?
In this section, we are going to study the newest quantity in
mathematical physics known as uncomplexity. In fact, quan-
tum complexity is a new unknown mathematical subject to

most physicists [18]. It is a difficult issue with few quantitative
results and, at least for the moment, no experimental guidance.
As a matter of fact, Lloyd proved that every computer had
main computational power and the rate of the computation in
any computer was bounded by the energy of that system [36].
By simulating a black hole, as a physical system, one can
explore and investigate this ambiguous concept from black
hole physics point of view. Also, we compute and discuss
uncomplexity as a resource in hyperscaling violating back-
grounds. In fact, the relation between black hole physics and
complexity provides a new way to consider uncomplexity as
a ”space-time” resource based on classical general relativity
(GR) [18]. In particular, classical general relativity has intro-
duced a new method about the rejuvenating power of a clean
qubit. To understand uncomplexity as a resource from GR per-
spective, let’s assume Alice is a black hole researcher situated
just outside the AdS one-sided black hole at boundary time t.
She decides to jump from AdS boundary into the black hole.
The volume of the space-time is the resource that Alice cares
about-without which she will disappear at the horizon [18,19].
We recall that the quantum state of the black hole interior for
t > 0 has a growing complexity which is dual to the growing
space-time volume behind the horizon. As mentioned before,
complexity is given by WDW patch. The part of the WDW
patch outside the horizon has a time-independent divergence,
which can be regulated by considering only the portion of the
space behind the horizon. However, we do not care about
this part because in general, it has no role in finding complex-
ity. As it is shown in Fig.3, uncomplexity is proportional to
the volume of the triangular wedges which stops increasing
in tmax : es. This volume is finite and in the limit t → es ap-
proaches zero [18].
We can deduce an interesting point from Fig.3. The blue re-
gion may be identified with the union of all interior locations
behind the horizon where Alice can visit if she jumps into the
black hole at any time after t. So, we can define that uncom-
plexity denotes the space-time source which is available to
an observer who intends to pass the horizon. More clearly,
consider that Alice attempts to jump into the black hole which
has reached maximum complexity in advance but surprisingly
at the horizon she faces an obstacle. This is exactly the same
as trying to work with a computer which has reached its maxi-
mum complexity and it is not able to work anymore or it could
not extract more information. In this case, the very interesting
and important question that arises is when the resource is
ended, can Alice do something to rejuvenate the resource? All
that Alice can do is to throw in one thermal photon and wait
for a scrambling time. This action helps that the horizon gets
clear for an additional exponential time. In computer science,
we can do the same action by adding one new clean qubit
to restore the computational power of a maximally complex
system. So, one can say the obstacle, created at the horizon, is
due to the maximum complexity and injecting one clean qubit
to a quantum computer i.e. black hole will disappear it for a
while. Surely, in this situation, the qubit is a thermal quanta
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i.e. photon. Then, one can say, uncomplexity for a black
hole is related to the information of its interior growth and is
accessible for the observer who attempts to jump in [19].
In thermodynamics and statistical mechanics, there is an im-
portant question: Can these fields of physics be useful for ana-
lyzing the growth rate and evolution of complexity in general
quantum systems? Basically, from thermodynamics perspec-
tive, complexity behaves like entropy in statistical systems.
So, the free parameter in free energy equation is uncomplexity.
Free energy in fact is a resource which represents the amount
of the energy with which one can do some useful work.
Now, we compute uncomplexity in hyperscaling violating
backgrounds by using complexity equals action proposal.
According to the definition provided for uncomplexity, it is
shown that this quantity is proportional to subregions dual-
ity [17]. To make the concept clearer, consider one-sided
black hole which develop from empty AdS space. At t = 0,
some matter in form of spherical shell is injected from the
boundary, then a black hole is created. After that, the inte-
rior growth starts to increase. This growth is proportional to
the increase of complexity. Equivalently, one can say that
the growth is fueled by the computational power which in
fact is the uncomplexity of the state. At a very late time
cutoff t, when there is no more uncomplexity to exploit, the
growth will stop. At any time t, the leftover uncomplexity
corresponds to the potential of the growth of the space-time,
i.e. the leftover interior space-time, in which one can safely
enter into the black hole, decreases linearly with time. We
can quantify the space-time by different quantities which all
of them decrease linearly with time, i.e. action [8, 9], volume
of maximal surface [21, 41], space-time volume, and so on.
The aim of this paper is to study uncomplexity by considering
a time slice and the action corresponds to WDW patch in a
wider family of states supporting both anisotropic and also
hyperscaling violating exponents, means Lifshitz geometry.
As pointed out, the gap between possible maximum complex-
ity and a state complexity is called uncomplexity [42]. In
other words, uncomplexity is a space to increase complexity
and a state complexity is called uncomplexity. According
to Fig.3, the on-shell action of the blue triangular wedges is
given by the on-shell action which belongs to future interior
of the black hole

AUC = AFI2 −AFI1 =
Vd

8πGN

(de + z−1)

rde+z
h

(τ2 − τ1)

= 2M
(de + z−1)

de
(τ2 − τ1) = 2E(τ2 − τ1) (31)

where τ is the real boundary time. It is worth noting that
τ2 should be thought of a time cutoff. Moreover, one can
investigate the τ2 → ∞ limit for some fixed time . On the other
side, one can set the time cutoff in terms of the entropy of
the system, means τ2 : eSth

2πT in which the system reaches the
maximum complexity [17].

As mentioned above, the uncomplexity is the difference be-
tween maximum complexity and a sate complexity at a given
time. So, it is obvious that Eq. (31) cannot satisfy the defi-
nition of uncomplexity, simply it cannot fill the gap. An im-
portant point is that complexity has two elements, one comes
from the boundary term and the other from joint points. So, it
is clear the computed term for uncomplexity, Eq. (31), does
not include the joint points contributions completely. It has
been proved that the joint points play a crucial role in studying
holographic complexity. Therefore, the contribution of joint
points should be considered in computing uncomplexity. Now,
by using Eq. (21), one reaches

∆AWDW
UC = AWDW

2 −AWDW
1

=
Vd

8πGN
(

de + z−2

2rde+z
h

(τ2−τ1)−
log | f (rm2)|

rde
m2

+
log | f (rm1)|

rde
m1

)

(32)

It is evident that in Eq. (32)a joint point term has appeared
which cannot be seen in Fig.3. Therefore, this equation is not
equal to AUC. It is important to note that when both rm1 and
rm2 approach the horizon rh then AUC approaches zero. By
considering τ2 as a time cutoff which is very large rm2 → rh,
the Eq. (32) leads to

∆AWDW
UC = AWDW

2 −AWDW
1

=
Vd

8πGN

de + z−1

rde+z
h

(τ2 − τ1)

− Vd

8πGN
(

c0

2rde+z
h

− de + z

2rde+z
h

τ1 −
log | f (rm1)|

rde
m1

)

≈ 2E(τ2−τ1)−
Vd

8πGN
(

c0

2rde+z
h

− (de + z)

2rde+z
h

τ1−
log | f (rm1)|

rde
m1

)

(33)

The second term of this expression is related to the past interior
of the black hole, i.e. the action of Eq. (27).

5. Conclusion
In this paper, we have used ”complexity equals action” pro-
posal, and studied the holographic complexity on certain sub-
regions enclosed by null boundaries, including the WDW
patch for geometries with hyperscaling violating factor. We
have generalized the results of Ref. [17] for future and past
interior of the black hole, to hyperscaling violating metric.
Although the complexity and the rate of complexification
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depend on the dynamical exponent z and the hyperscaling
violation component θ , qualitatively, the rate of complexity
growth behaves the same as that of Schwarzschild black hole.
Also, we have found that, for this geometries, the value of E
which appears on the Lloyd’s inequality is always greater than
(or equal to) the mass of the black brane. Thus, these kinds of
geometries do not respect Lloyd’s bound.
One of the important results which plays a critical role in com-
puting complexity and even uncomplexity is the contribution
of the joint point action. Our result is fully affected by this
term and no one can ignore its role. One can say the violation
of Lloyd’s bound comes from the joint point part. In hyper-
scaling violating background, we have used an action term
to remove the ambiguity but during the calculation, we have
found out that the computed action for WDW patch and its
subregions are still UV divergent. To remove this divergence,
one needs to add another term. In fact, this divergence might
come from Lifshitz geometry. Then, we have used the main
counter term action and computed this action in hyperscaling
violating metric to get rid of infinity and make our computa-
tion finite.
Moreover, by computing uncomplexity it has been shown
when a black hole is formed, the resource, uncomplexity is
the total space-time volume which is accessible to an observer
who decides to pass over the horizon. In other words, un-
complexity should be the amount of how complicated the
remaining operations can be while limiting one to acting just
on one system. It is also interesting to investigate the concept
of uncomplexity from the thermodynamics perspective. In
thermodynamics, the free energy F = E −T S actually is a
resource that represents the amount of the energy by which
one can do useful work. The entropy of axillary system and
average complexity are equal so:

Fa = Ea −TaSa = Ea −Ta∆C

Since energy and temperature, Ea and Ta respectively, are con-
stants due to the constant number of particles, so the equiva-
lent of the free parameter in the above equation is uncomplex-
ity. Finally, one can say that uncomplexity is a resource and
indicates computational power of a system which can extract
some useful information from the system.

Conflict of interest statement:
The authors declare no competing interests.

References
[1] Z. Borvayeh, M. R. Tanhayi, and S. Rafibakhsh. Mod.

Phys. Lett., 35:2050191, 2020.
[2] M. Moosa. JHEP, 2018:031, 2018.
[3] M. Reza Tanhayi, R. Vazirian, and S. Khoeini-

Moghaddam. Phys. Lett. B, 790:49, 2019.
[4] W. Cottrell and M. Montero. JHEP, 1802:039, 2018.
[5] S. Chapman, H. Marrochio, and R. C. Myers. JHEP,

1806:046, (2018).

[6] C. A. Agn, M. Headrick, and B. Swingle. JHEP,
1902:145, 2019.

[7] S. Ryu and T. Takayanagi. JHEP, 2006:045, 2006.
[8] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle,

and Y. Zhao. Phys. Rev., 93:086006, 2016.
[9] A. R. Brown, D. A. Roberts, L. Susskind, B. Swingle,

and Y. Zhao. Phys. Rev. Lett., 116:191301, 2016.
[10] X. Dong, S. Harrison, S. Kachru, G. Torroba, and

H. Wang. JHEP, 2012:041, 2012.
[11] M. Alishahiha, E. O Colgain, and H. Yavartanoo. JHEP,

2012:137, 2012.
[12] M. Alishahiha, A. Faraji Astaneh, M. R. Mohammadi

Mozaffar, and A. Mollabashi. JHEP, 2018:042, 2018.
[13] A. Akhavan, M. Alishahiha, A. Naseh, and H. Zolfi.

JHEP, 2018:090, 2018.
[14] M. Alishahiha, K. Babaei Velni, and M. R. Tanhayi. J.

Alloys Compd., 425:168398, 2021.
[15] R. Jefferson and R. C. Myers. JHEP, 2017:107, 2017.
[16] H. Stoltenberg. Phys. Rev., 98:126012, 2018.
[17] M. Alishahiha, K. Babaei Velni, and M. R. Mohammadi

Mozaffar. Phys. Rev., 99:126016, 2019.
[18] A. Russo. Mater. Trans., 2104:05027, 2021.
[19] Y. Zhao. Phys. Rev., 97:126007, 2018.
[20] L. Lehner, R. C. Myers, E. Poisson, and R. D. Sorkin.

Phys. Rev., 94:084046, 2016.
[21] D. Stanford and L. Susskind. Phys. Rev., 90:126007,

2014.
[22] L. Susskind. Fortsch. Phys., 64:24–43, 2016.
[23] L. Susskind. Fortsch. Phys., 64:72, 2016.
[24] R. G. Cai, S. M. Ruan, S. J. Wang, R. Q. Yang, and R. H.

Peng. JHEP, 2016:161, 2016.
[25] M. Taylor. Class. Quant. Grav., 33:033001, 2016.
[26] D. Momeni, M. Faizal, A. Myrzakul, and R. Myrzakulov.

Int. J. Mod. Phys., 33:1850099, 2018.
[27] K. Hashimoto, N. Iizuka, and S. Sugishita. Phys. Rev.,

96:126001, 2017.
[28] S. Chapman, M. P. Heller, H. Marrochio, and F. Pastawski.

Phys. Rev. Lett., 120:121602, 2018.
[29] R. Q. Yang. Phys. Rev., 97:066004, 2018.
[30] R. Khan, C. Krishnan, and S. Sharma. Phys. Rev.,

98:126001, 2018.
[31] L. Hackl and R. C. Myers. JHEP, 2018:139, 2018.
[32] D. W. F. Alves and G. Camilo. JHEP, 2018:029, 2018.
[33] A. Bhattacharyya, P. Caputa, S. R. Das, N. Kundu,

M. Miyaji, and T. Takayanagi. Solid State Electron,
2018:086, 2018.

2251-7227/2021/15(1)/012101 [http://dx.doi.org/10.30495/jtap.152103]



Rafibakhsh et al. JTAP15(2021) -152103 9/9

[34] M. Guo, J. Hernandez, R. C. Myers, and S. M. Ruan.
JHEP, 2018:011, 2018.

[35] A. Bhattacharyya, A. Shekar, and A. Sinha. JHEP,
2018:140, 2018.

[36] S. Lloyd. Nature, 406:1047, 2000.
[37] M. Alishahiha. Phys. Rev., 92:126009, 2015.
[38] D. Momeni, M. Faizal, K. Myrzakulov, and R. Myrza-

kulov. Phys. Lett. B, 765:154, 2017.
[39] N. S. Mazhari, D. Momeni, S. Bahamonde, M. Faizal,

and R. Myrzakulov. Phys. Lett. B, 766:94, 2017.
[40] M. Alishahiha and A. Faraji Astaneh. Phys. Rev. D,

100:086004, 2019.
[41] D. A. Roberts, D. Stanford, and L. Susskind. JHEP,

2015:051, 2015.
[42] A. R. Brown and L. Susskind. Phys. Rev. D, 97:086015,

2018.

2251-7227/2021/15(1)/012101 [http://dx.doi.org/10.30495/jtap.152103]


	Introduction
	Introduction
	Holography principle
	The total action in the hyperscaling violating background
	Uncomplexity
	Conclusion
	References

