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Abstract
Laser and plasma interaction leads to several fascinating nonlinear phenomena, out of which bubble wakefield
excitation is one of the recent interests. This field is used for the particle acceleration, which is very useful for
high energy physics, betatron radiation emission, cancer therapy, etc. In the present work, an electromagnetic
field is evaluated in bubble wakefield regime and the shape of the bubble is shown to be controlled by d’Alembert
differential equations and different Gauge conditions. Wakefield potential is calculated in different bubble regimes
such as spherical, longitudinal ellipsoid, transverse ellipsoid bubble regimes. A geometrical parameter is found
to decide the size of the bubble. A detailed study of the same is conducted under the effect of different electron
residual density. A comparative study of different Gauge conditions shows that the accelerator gradient is
maximum in transverse ellipsoid bubble case. Also, energy gain in dephasing length is evaluated that shows
maximum energy when bubble assumes transverse ellipsoid shape.
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1. Introduction

Bubble wakefield acceleration is a new concept for accel-
eration of charged particles in laser wakefield acceleration
first given by Tajima and Dawson in 1979 [1]. In bubble
wakefield acceleration, an intense short laser pulse excites all
the plasma electrons and expells them, forming an ion cavity
behind the laser pulse [2–6]. Expelled electrons create an
electron sheath around bubble boundary, but these electrons
move back to their position due to ions and overshoot their
initial positions due to their momentum and create an electron
plasma wave called wake. The electrons can be self-trapped,
and accelerated otherwise externally injected electrons are
accelerate to high energy [7, 8]. In laser Wakefield accelera-
tion, the observation of formation of bubble has been made
by Hakimi et al. [9]. Advantage of this bubble formation [10]
and self – injection [11, 12] of trapped electrons is that there
is no need of external bunch of electrons as witness bunch and
self -production is possible [13]. In sub-terawatt laser Wake-
field acceleration, ionization-induced injection’s simulation
investigation has been made by Lin et al. [14]. In a sub-mm
nitrogen gas jet, Lin et al. [15] have analyzed a few-terawatt
laser pulse driven laser Wakefield acceleration. For mid-IR
laser drivers in the bubble regime, laser Wakefield acceleration
has been studied by Woodbury et al. [16]. Through angular
distributions of betatron x-rays in laser Wakefield accelera-

tion, diagnosis of bubble evolution has been done by Ma et
al. [17]. This acceleration technique is very useful for high
energy physics, betatron radiation emission, cancer therapy
and renewable clean energy and many more [18–20].
Kostyukov et al. [21] and Wu et al. [22] have developed mod-
els for spherical bubble regime for bubble wakefield accelera-
tion and, these do not talk about the modification of bubble
shape but Sadighi-Bonabi and Rahmatollapur [23] and Li et
al. [24] have used such concept and found different bubble
shapes called longitudinal ellipsoid and transverse ellipsoid
bubbles. They have evaluated the corresponding electromag-
netic fields.
To the best of our knowledge, no investigation has been so
far done for the calculations of accelerator gradient and max-
imum energy gain in different shaped bubble regimes. We
have developed theoretical model for different shaped bubble
regimes and energy gain in dephasing length. In addition, we
have considered different gauge conditions for evaluating the
acceleration gradient and maximum energy.

1.1 Dephasing length in bubble regime
When accelerated electrons outrun the plasma wave and de-
celerate, then the length of acceleration to deceleration region
is called as dephasing length [25]. Dephasing length is differ-
ent in different regimes. It is used to control energy gain in
laser wakefield acceleration [26]. Here acceleration distance
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is limited by dephasing length by [27].
In 3D nonlinear or bubble regime [28], the dephasing length
is defined as:

Ld =
cλp

(c− vph)
(1)

where, λp is the plasma wavelength and vph is the phase
velocity of the wakefield which is same as group velocity
of the laser pulse. But, in bubble regime, group velocity
of the laser pulse decreases due to pump depletion. In this
depletion, laser pulse losses its energy due to etching velocity
of the photons owing to its decrement being vetch = cω2

p/ω2 .
Therefore, the group velocity of the laser pulse which is equal
to the phase velocity vb of bubble.

vg = c

√
1−

ω2
p

ω2 − vetch (2)

For an underdense plasma, ω ≫ ωp, Hence

vg = vb = c(1− 3
2

ω2
p

ω2 ) (3)

Ld =
2
3

ω2

ω2
p

λp =
2
3

ω2

ω2
p

rb (4)

together with rb as the radius of bubble wake. This is obtained
by equating laser pulse ponderomotive force and electrostatic
force of ion cavity on the wakefield electrons being rb =
2
√

a0/kp [11].

2. Analytical investigation
In laser-plasma interaction when the intensity of the laser
is sufficiently high, laser pulse expels all the plasma elec-
trons, creating an ion cavity generally spherical in shape. In
the present work, we consider different geometrical bubble
shapes with the help of d’Alembert differential equations and
find energy gain in the bubble regime.
The d’Alembert differential equations are taken in terms of
the electromagnetic field generated by the laser pulse inside
plasma with the help of Maxwell’s equations and scalar and
vector potentials. Here we use Gaussian system of units.
The dimensionless quantities are obtained by normalizing
the length with kp, velocity with c = 3× 108 m/s, E with
E0 = mecωp/e = 96 GV/m, φ with mec2/e, A with mec2/e.φ
and A being the scalar and vector potentials of the electromag-
netic field, J and ρ = (1−na) are current and charge densities

together with J = −enap/γp, where γp = 1/
√

1− v2
b/c2, vb

is the phase velocity of bubble, ω is the laser frequency [26]
and na is the residual electron density normalized by ambi-
ent plasma electrons density n0 = 1018 cm−3. According to

Wu et al. Jx = −enavx and J⊥ = 0 [22].The laser pulse is
considered to propagate in the x-direction creating an ion cav-
ity. Here we follow Li et al. [24] and consider more Gauge
conditions. Wmax = ExLd is the normalized energy gain, nor-
malized with mec2 [26] and bubble radius rb = 2

√
a0 which

is obtained by equating laser pulse ponderomotive force and
electrostatic force normalized with r0 = c/ωp. . The plasma
frequency ωp =

√
4πn0e2/me = 5.656× 1013 rad/s and de-

phasing length [25]

Ld =
2
√

a0

3
ω2

0
ω2

p
=

2
√

a0

3
γ

2
p

We consider different Gauge conditions and wakefield poten-
tials, defined as follows:
I. Ax = φ and generated wakefield potential Φ = Ax +φ

II. ∇⊥.A⊥ =− ∂φ

∂ξ
and Φ = Ax −φ

III. Ax =−φ and generated wakefield potential Φ = Ax −φ

A = A− xx̂+Ayŷ+Azẑ is vector potential of electromagnetic
field. The transverse component
A⊥ = Ayŷ+Azẑ
Maxwell’s equations in normalized form can be written as:

∇.E = 1−na (5)

∇.B = 0 (6)

∇×E =−∂B
∂ t

(7)

∇×B = J+
∂E
∂ t

(8)

E =−∇φ − ∂A
∂ t

(9)

B = ∇×A (10)

From 5 and 9,

∇.(−∇φ − ∂A
∂ t

) = 1−na (11)

and from 8 and 10,

∇× (∇×A) = J+
∂

∂ t
(−∇φ − ∂A

∂ t
) (12)

The above equations can be written as

∇
2
φ +

∂

∂ t
∇.A =−ρ =−(1−na) (13)

∇
2A− ∂ 2A

∂ t2 −∇(∇.A+
∂φ

∂ t
) =−J (14)

2251-7227/2021/15(1)/012102 [http://dx.doi.org/10.30495/jtap.152102]



Kumar et al. JTAP15(2021) -152102 3/12

Figure 1. Variation of geometrical parameter η2 along y-direction related to shape of bubble having residual electrons density
na along x-direction with a change of transverse geometrical coefficient C.

Figure 2. Variation of geometrical parameter η2 along y-direction related to shape of bubble having residual electrons density
na along x-direction with a change of transverse geometrical coefficient C.

2.1 Ax = φ and wakefield potential Φ = Ax +φ

The simplified d’Alembert equations can be written as (Ap-
pendix)

∇
2
⊥A⊥+(1−v2

b)
∂ 2A⊥
∂ζ 2 = ∇⊥(

1− vb

2
∂Φ

∂ζ
+∇⊥.A⊥) (15)

∇
2
⊥Φ =−(1−v2

b)
∂ 2Φ

∂ζ 2 +
2

1− vb
(na −1−navbvx) (16)

∂ 2Φ

∂ζ 2 =
2(na −1−navx)

(1− vb)2 − 2
1− vb

∂

∂ζ
(∇⊥.A⊥) (17)
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Figure 3. Variation of accelerating field or wakefield Ex with bubble radius rb along the propagation direction with different
values of transverse geometrical coefficient.

Figure 4. Variation of maximum energy gain Wmax with relativistic Lorentz factor γp along the x-direction for different values
of geometrical coefficient C.

From 15 and 16, we can find

∇
2
⊥A⊥+(1− v2

b)
∂ 2A⊥
∂ζ 2 = 0 (18)

General solutions of this equation can be written as

A⊥ =Cζ yĴ+Cζ zk̂ (19)

Φ =
ζ 2

a2 +
y2 + z2

b2 (20)

Here a,b and C are the coefficients that control the geometry
of the bubble. Using 15 - 18 we find:
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Figure 5. Variation of geoemtrical parameter η2 as a function of residual electrons density na for different transverse
coefficient C.

Figure 6. Variation of wakefield potential Φ = ( 1
2 −C)ζ 2 + y2

4 as a function of (ζ ,y) direction with changing of transverse
coefficient C.

1
a2 =

(na −1−navx)

(1− vb)2 − 2C
1− vb

(21)

2
b2 =−

(1− v2
b)

a2 +
(na −1−navbvx)

1− vb
(22)

2.2 Bubble geometry
For bubble geometry, following parameter is defined

η
2 =

b2

a2 =
2

1− vb
(na −1−navx)−2C(1− vb)

(na −1−navbvx)− (1+ vb).[na −1−navx −2C(1− vb)]

(23)
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Figure 7. Variation of accelerating field or wakefield Ex as a function of bubble radius rb along propagation direction x, for
different values of transverse geometrical coefficient C.

Here, b is transverse parameter and a is longitudinal parameter
and for b > a then η > 1, bubble transforms into transverse
ellipsoid bubble and b < a then η < 1, bubble transforms into
longitudinal ellipsoid bubble and for b = a, η = 1, spherical
bubble is formed. For vx = 1, vb =−1

η
2 =

1+4C
1−2na

(24)

Bubble shape transformation depends upon two parameters,
one is geometrical coefficient and other is variation of residual
electron density. Here, residual electrons play important role
for changing bubble shape. If we consider positive value
of geometrical coefficient C, bubble initially is transverse
ellipsoid and if we increase the value of residual electron
density, bubble shape changes to longitudinal ellipsoid.
If we change the value of geometrical coefficient C, then the
shape of the bubble is changed. For example, C1 = 0 gives
spherical bubble (1). The deviation from the spherical shape
starts with the finite values of C. For the positive values of
C, the shape changes from spherical to longitudinal (please
see graphs for C2 = 0.1 and C3 = 0.2). On the other hand,
transverse ellipsoid bubble is obtained for lower value of C
(please see graphs for C4 =−0.1 and C5 =−0.2).

3. Wakefield potential in different shaped
bubble regime

From 20, wakefield potential is

Φ =
ζ 2

a2 +
y2 + z2

b2

and we have used

Φ =
ζ 2

a2 +
y2

b2 z = 0

For vx = 1, vb =−1, na = 0,

1
a2 =−1

4
−C,

1
b2 =−1

4
(25)

Φ = (−1
4
−C)ζ 2 − y2

4
(26)

Wakepotential profile is shown in Fig.2 for different values of
C. Consistent to the variation of parameters η2, the wakepo-
tential also turns from spherical to longitudinal ellipsoid or
transverse ellipsoid in accordance with the positive and neg-
ative values of C, respectively. Wakefield potential changes
from spherical at C1 = 0 to longitudinal ellipsoid potential
at C2 = 0.1 and at C3 = 0.2 and transverse ellipsoid wake-
potential at C4 =−0.1 and at C5 =−0.2 as depicted in Fig.2.

3.1 Electromagnetic field in the bubble regime
From the above equations, we can find all the components of
the electromagnetic field

Ex =−(1− vb)(
(na −1−navx)

(1− vb)2 − 2C
1− vb

)ζ (27)

Ey

y
=

Ez

z
=C(1+2vb)+
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Figure 8. Variation of maximum energy gain Wmax along y-direction with relativistic Lorentz factor γp along x-direction with
the change of transverse geometrical coefficient C.

(na −1−navbvx)− (na −1−navx)(1+ vb)

2(1− vb)
(28)

and

Bx = 0 (29)

By

z
=−Bz

y
=

(na −1−navbvx)− (1−na −navx)(1+ vb)

2(1− vb)
+ vb (30)

These are for the realistic situation of residual electrons. How-
ever, for electron free cavity i.e. when na = 0 and vb = −1,
we have

Ex = (
1
2
+2C)ζ

Ey = (− y
4
−Cy)ζ (31)

Ez = (− z
4
−Cz)

and

Bx = 0

By = (− z
4
−Cz) (32)

Bz = (
y
4
+Cy)

3.2 Acceleration gradient
From equation 31, we analyze longitudinal and transverse
electric and magnetic fields, but acceleration of electrons
takes place by longitudinal electric field. The transverse fields
produce radiation due to transverse oscillation of the electrons.
Here we focus on the longitudinal electric field in view of the
particle acceleration.
Since acceleration occurs at the front side of the bubble, then,
ζ = rb and the longitudinal electric field

Ex = (
1
2
+2C)rb (33)

A clear cut variation of field Ex or the acceleration gradient
within the bubble is shown in Fig.3 through the variation of
bubble radius. The field increases linearly with the longitudi-
nal direction and bigger bubble is supposed to create larger
field and hence, the larger accelerator gradient. Correspond-
ing to Figs.1 and 2, i.e. values of C, we notice that the field
or gradient in transverse ellipsoid bubble regime for C1 = 0.1
and C2 = 0.2 are more than spherical at C1 = 0 and longitudi-
nal ellipsoid bubble regime at C4 =−0.1 and C5 =−0.2.

3.3 Maximum energy gain
Based on the expressions of the electric field Ex and dephasing
length Ld , we calculate the maximum energy gain, as

Wmax = ExLd (34)

Wmax = (
1+4C

3
)a0γ

2
p (35)
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Figure 9. Variation of wakefield potential Φ = ( 1
4 −C)ζ 2 + y2

4 along (ζ ,y) direction with changing of transverse coefficient C.

Figure 10. Variation of accelerating field or wakefield Ex along y – direction with bubble radius rb along propagation direction
x- axis with the change of transverse geometrical coefficient C.

The dependence of maximum energy gain on the Lorentz
factor and shape of bubble is shown in Fig.4 through the
variation of γp and C. As expected maximum energy gain
becomes higher and higher with the increase in the Lorentz
factor and attains value > 12. In this region, the maximum
energy increases almost exponentially with γp. On the other
hand, the maximum energy gain is more in transverse ellipsoid
bubble at C2 = 0.1 and C3 = 0.2 than that of spherical bubble

at C1 = 0 and longitudinal ellipsoid bubble regime at C4 =
−0.1 and C5 =−0.2 for the laser strength parameter a0 = 2.
If we consider higher value of a0 then wakefield is not uniform
and for higher value of a0, density of plasma electrons should
be higher but this case is for overdense plasma. With present
value of electron density, bubble or nonlinear regime has been
made but for higher value of a0, this regime does not occur
with this situation.
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Figure 11. Variation of maximum energy gain Wmax along y-direction with relativistic Lorentz factor γp along x-direction with
the change of transverse geometrical coefficient C.

4. ∇⊥.A⊥ =−∂φ

∂ζ
, Φ = Ax −φ

The d’Alembert equations in this case can be written as

∇
2
⊥A⊥+(1− v2

b)
∂ 2A⊥
∂ζ 2 = ∇⊥(

∂Φ

∂ζ
− vb

∂φ

∂ζ
) (36)

∇
2
⊥Φ+vb(1−vb)

∂ 2Φ

∂ζ 2 +vb(1−vb)
∂ 2φ

∂ζ 2 = 1−na+navx (37)

∂ 2φ

∂ζ 2 +∇
2
⊥φ − vb

∂ 2Φ

∂ζ 2 = na −1 (38)

Solutions of 34, 35 and 36 are 19, 20

φ(ζ ,y,z) =−Cζ
2 +K(y2 + z2)/4 (39)

together with

K = na −1+2C+
2vb

a2 (40)

1
a2 =

1
2vb

(1−na +K −2C) (41)

4
b2 = [1−na +navx +2Cvb(1− vb)−

(1− vb)(1−na +K −2C)] (42)

η
2 =

b2

a2 =

2(1−na +K −2C)

vb[1−na +navx +2Cvb(1− vb)− (1− vb)(1−na +K −2C)]

(43)

4.1 Bubble geometry
For K = 0, C ̸= 0, na ̸= 0, vb = 1, vx = −1, the geometrical
parameter is obtained as

η
2 =

2−2na −4C
1−2na

(44)

With the consideration of ∇⊥ ·A⊥ =− ∂φ

∂ζ
, Φ = Ax −φ , it is

seen that the geometrical shape of bubble changes only in
transverse ellipsoid shape for different values of geometrical
coefficient C (6). Wakefield potential changes from spherical
at C1 = 0 to longitudinal ellipsoid potential at C2 = 0.1 and at
C3 = 0.2 and transverse ellipsoid wake-potential at C4 =−0.1
and at C5 =−0.2.

4.2 Wakefield potential
For K = 0, C ̸= 0, na ̸= 0, vb = 1, vx =−1

Φ = (0.5−C)ζ 2 +0.25y2 (45)
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4.3 Acceleration gradient

Ex = 2Cζ (1− vb)+2ζ vb
1−na +K −2C

2vb
(46)

For vb = 1, ζ = rb, K = 0

Ex = rb(1−na −2C) (47)

For na = 0,
Figure 7 shows the variation of field Ex or the acceleration gra-
dient with the radius of bubble for different values of geomet-
rical parameter rb. Clearly larger field or gradient is realized
in a bigger size bubble. Moreover, acceleration field in trans-
verse ellipsoid bubble regime for C4 =−0.1 and C5 =−0.2
stays larger than the case of spherical bubble at C1 = 0 and
longitudinal ellipsoid bubble at C2 = 0.1 and C3 = 0.2 . For
all the cases, the field stays larger than the previous case of
different Gauge conditions.

4.4 Maximum energy gain
Using the same concept as discussed in previous section, we
find the maximum energy gain as

Wmax = ExLd =
4
3
(1−na −2C)a0γ

2
p (48)

For na = 0, it reads

Wmax =
4
3
(1−2C)a0γ

2
p (49)

Figure 8 makes a comparative study of the maximum en-
ergy gain for different values of geometrical coefficient and
Lorentz factor. However, the gain is much larger in the present
case (Please see Fig.4 for comparison). With regard to the
importance of shape of the bubble for maximum energy gain,
it can be observed that the energy is more in transverse ellip-
soid bubble at C2 = 0.1 and at C3 = 0.2 than that of spherical
bubble at C1 = 0 and longitudinal ellipsoid bubble regime at
C4 =−0.1 and C5 =−0.2 with laser pulse strength a0 = 2.

5. Special case

In order to uncover the role of Gauge selection for realizing
appreciable acceleration of electrons, we also compare our
results with the ones obtained by Li et al. [10] for the Gauge
Ax =−φ and wakefield potential Φ = Ax −φ

Φ = (
1
4
−C)ζ 2 +

r2

4
(50)

The shape of this wakefield potential is shown in Fig.9. Here
also we see that the change in potential profile in view of
different values of C.

5.1 Electromagnetic field in bubble regime
In addition, we calculate the longitudinal electric field Ex that
is important for the electron acceleration. This is given as

Ex = (1+ vb)(
(1−na −navx)

(1+ vb)2 − 2C
1+ vb

)ζ (51)

For vx =−1, vb = 1, ζ = rb, na = 0, this reads

Ex = (
1
2
−2C)ζ = (

1
2
−2C)rb (52)

This field (or the acceleration gradient) is plotted in Fig.??
for different size/radius of bubble and geometrical parameter.
The behaviour of Ex remains the same as discussed for the
previous cases of Gauge conditions. However, the magnitude
remains different. Similar is the case with maximum energy
gain, Wmax = ( 2−8C

3 )a0γ2
p as shown in Fig 11. A comparative

study of Figs.3, 7 and 10 shows that the electric field is the
largest for the Gauge condition ∇⊥.A⊥ =− ∂φ

∂ζ
and Φ = Ax −

φ . This Gauge condition also stays the best with respect to
the maximum energy gain (please see Figs. 4, 8 and 11)
In order to solve the present problem of bubble wakefield
acceleration, we used an analytical approach. However, such
a system of equations can also be solved numerically. The
numerical and simulation approaches have proved to be very
effective in different areas [29–32]. The other interesting
part of the present work could be see the role of laser pulse
shapes which have proved to be efficient for the THz radiation
generation [33–35] and interesting nonlinear phenomena in
optics [36, 37].

6. Conclusion
Geometrical shape of bubble in bubble wakefield accelera-
tion mechanism changes to transverse, spherical, and longi-
tudinal ellipsoid depending on different Gauges conditions
and the wakefield potential assumes spherical to longitudi-
nal and transverse ellipsoid profiles. The calculations show
that the energy gain limited by dephasing length yields its
maximum value in transverse ellipsoid bubble than that of
spherical and longitudinal ellipsoid bubbles in each Gauge
condition. In particular energy gain is found to be greater for
∇⊥.A⊥ =− ∂φ

∂ζ
, Φ = Ax −φ than Ax =−φ , Φ = Ax −φ and

Ax = φ , Φ = Ax +φ cases.
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Appendix
d’Alembert equations: Under the quasi-static approximation,
all the quantities depend on ζ = x− vbt. Hence, L.H.S. of Eq.
12 reads

∂

∂ζ
(∇⊥.A⊥)−∇

2
⊥Ax

for x direction, and

∇⊥(∇⊥.A⊥)+∇⊥(
∂Ax

∂ζ
)−∇

2
⊥A⊥− ∂ 2A⊥

∂ζ 2

for y and z directions.
Combining L.H.S. and R.H.S. of Eq. 12, we get

∂

∂ζ
(∇⊥.A⊥)−

1
2

∇
2
⊥Φ =−navx +

vb

2
∂ 2Φ

∂ζ 2 −
v2

b
2

∂ 2Φ

∂ζ 2

for x direction and

∇⊥(∇⊥.A⊥)+
1
2

∇⊥(
∂Φ

∂ζ
)−∇

2
⊥A⊥− ∂ 2A⊥

∂ζ 2 =

vb

2
∇⊥(

∂Φ

∂ζ
)−

v2
b

2
∂ 2A⊥
∂ζ 2

for y and z directions with Jx = −navx and J⊥ = 0, after
solving Eqs. (15) and (11), we find

∂ 2Φ

∂ζ 2 =
2(na −1−navx)

(1− vb)2 − 2
1− vb

∂

∂ζ
(∇⊥.A⊥)
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for x direction.
For perpendicular directions

∇
2
⊥Φ = 1(1− v2

b)
∂ 2Φ

∂ζ 2 +
2

1/vb
(na −1−navbvx)

From Eqs. 15 and 12, we find;

∇
2
⊥A⊥+(1− v2

b)
∂ 2A⊥
∂ζ 2 = ∇⊥(

1− vb

2
∂Φ

∂ζ
+∇⊥.A⊥)
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